1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #pragma once
7
8 #include <gtest/gtest.h>
9
10 #include <algorithm>
11 #include <cassert>
12 #include <cmath>
13 #include <cstddef>
14 #include <cstdlib>
15 #include <functional>
16 #include <random>
17 #include <vector>
18
19 #include <fp16.h>
20
21 #include <xnnpack.h>
22 #include <xnnpack/AlignedAllocator.h>
23 #include <xnnpack/params-init.h>
24 #include <xnnpack/params.h>
25
26
is_fp16_zero(uint16_t x)27 static inline bool is_fp16_zero(uint16_t x) {
28 const uint16_t two_x = x + x;
29 return two_x == 0;
30 }
31
32 class SpMMMicrokernelTester {
33 public:
mr(size_t mr)34 inline SpMMMicrokernelTester& mr(size_t mr) {
35 this->mr_ = mr;
36 return *this;
37 }
38
mr()39 inline size_t mr() const {
40 return this->mr_;
41 }
42
nr(size_t nr)43 inline SpMMMicrokernelTester& nr(size_t nr) {
44 this->nr_ = nr;
45 return *this;
46 }
47
nr()48 inline size_t nr() const {
49 return this->nr_;
50 }
51
m(size_t m)52 inline SpMMMicrokernelTester& m(size_t m) {
53 this->m_ = m;
54 return *this;
55 }
56
m()57 inline size_t m() const {
58 return this->m_;
59 }
60
n(size_t n)61 inline SpMMMicrokernelTester& n(size_t n) {
62 this->n_ = n;
63 return *this;
64 }
65
n()66 inline size_t n() const {
67 return this->n_;
68 }
69
k(size_t k)70 inline SpMMMicrokernelTester& k(size_t k) {
71 this->k_ = k;
72 return *this;
73 }
74
k()75 inline size_t k() const {
76 return this->k_;
77 }
78
output_stride(size_t output_stride)79 inline SpMMMicrokernelTester& output_stride(size_t output_stride) {
80 assert(output_stride != 0);
81 this->output_stride_ = output_stride;
82 return *this;
83 }
84
output_stride()85 inline size_t output_stride() const {
86 if (this->output_stride_ == 0) {
87 return m();
88 } else {
89 assert(this->output_stride_ >= m());
90 return this->output_stride_;
91 }
92 }
93
sparsity(float sparsity)94 inline SpMMMicrokernelTester& sparsity(float sparsity) {
95 this->sparsity_ = sparsity;
96 return *this;
97 }
98
sparsity()99 inline float sparsity() const {
100 return this->sparsity_;
101 }
102
qmin(uint8_t qmin)103 inline SpMMMicrokernelTester& qmin(uint8_t qmin) {
104 this->qmin_ = qmin;
105 return *this;
106 }
107
qmin()108 inline uint8_t qmin() const {
109 return this->qmin_;
110 }
111
qmax(uint8_t qmax)112 inline SpMMMicrokernelTester& qmax(uint8_t qmax) {
113 this->qmax_ = qmax;
114 return *this;
115 }
116
qmax()117 inline uint8_t qmax() const {
118 return this->qmax_;
119 }
120
iterations(size_t iterations)121 inline SpMMMicrokernelTester& iterations(size_t iterations) {
122 this->iterations_ = iterations;
123 return *this;
124 }
125
iterations()126 inline size_t iterations() const {
127 return this->iterations_;
128 }
129
Test(xnn_f32_spmm_minmax_ukernel_function spmm,xnn_init_f32_minmax_params_fn init_params)130 void Test(xnn_f32_spmm_minmax_ukernel_function spmm, xnn_init_f32_minmax_params_fn init_params) const {
131 ASSERT_GE(m(), 1);
132 ASSERT_GE(n(), 1);
133 ASSERT_GE(k(), 1);
134
135 std::random_device random_device;
136 auto rng = std::mt19937(random_device());
137 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
138 auto prng = std::bind(std::uniform_real_distribution<float>(), rng);
139
140 std::vector<float, AlignedAllocator<float, 64>> input(k() * m());
141 // Think of b as (n/nr + n % nr) x k, expansion happens later.
142 const size_t ncols = n() / nr() + n() % nr();
143 std::vector<float> b(ncols * k());
144 std::vector<float> bias(n());
145 // Number of non-zero weights per N (output channel).
146 std::vector<uint32_t> nmap(n());
147 // Mapping from index of non-zero weight to increment of K (input channel) following this index.
148 std::vector<int32_t> dmap(n() * k());
149 std::vector<float> w(n() * k() + n());
150 std::vector<float> output((n() - 1) * output_stride() + m());
151 std::vector<float> output_ref(n() * m());
152
153 for (size_t iteration = 0; iteration < iterations(); iteration++) {
154 std::generate(input.begin(), input.end(), std::ref(f32rng));
155 std::generate(b.begin(), b.end(), std::ref(f32rng));
156 std::generate(bias.begin(), bias.end(), std::ref(f32rng));
157 std::fill(output.begin(), output.end(), nanf(""));
158 std::fill(output_ref.begin(), output_ref.end(), 0.0f);
159 std::fill(nmap.begin(), nmap.end(), 0);
160 std::fill(dmap.begin(), dmap.end(), 0);
161 std::fill(w.begin(), w.end(), 0.0f);
162
163 for (float& b_value : b) {
164 if (prng() <= sparsity()) {
165 b_value = 0.0f;
166 }
167 }
168
169 uint32_t nnz = 0;
170 uint32_t wcnt = 0;
171 size_t last_kk = 0;
172 bool first_nzz = true;
173 size_t first_kk = 0;
174 for (size_t nn = 0; nn < n() / nr(); nn++) {
175 for (size_t i = 0; i < nr(); ++i)
176 w[wcnt++] = bias[nr() * nn + i];
177 for (size_t kk = 0; kk < k(); kk++) {
178 if (b[nn * k() + kk] != 0.0f) {
179 // Every non-zero actually corresponds to nr adjacent non-zeros.
180 for (size_t i = 0; i < nr(); ++i)
181 w[wcnt++] = b[nn * k() + kk] + static_cast<float>(i);
182 // Skip the very first non-zero weight as we record only the difference.
183 if (first_nzz) {
184 first_kk = kk;
185 } else {
186 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
187 dmap[nnz++] = increment;
188 }
189 last_kk = kk;
190 first_nzz = false;
191 nmap[nn] += 1;
192 }
193 }
194 }
195
196 // now we've constructed the matrix for the blocked part and switch to the
197 // leftovers, which we do as nr=1 always.
198 for (size_t nn = n() / nr(); nn < ncols; nn++) {
199 w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
200 for (size_t kk = 0; kk < k(); kk++) {
201 if (b[nn * k() + kk] != 0.0f) {
202 // Every non-zero actually corresponds to nr adjacent non-zeros.
203 w[wcnt++] = b[nn * k() + kk];
204 // Skip the very first non-zero weight as we record only the difference.
205 if (first_nzz) {
206 first_kk = kk;
207 } else {
208 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
209 dmap[nnz++] = increment;
210 }
211 last_kk = kk;
212 first_nzz = false;
213 nmap[nn] += 1;
214 }
215 }
216 }
217 // In the end, we must return input pointer to the initial value.
218 const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float));
219 dmap[nnz++] = increment;
220
221 // Generate expanded b which will be used in reference calculation.
222 // Everywhere there is input non-zero in the original we copy it and add an
223 // adjacent non-zero with incremented weight value.
224 std::vector<float> b_full(n() * k());
225 if (nr() == 1) {
226 b_full = b;
227 }
228 else {
229 for (size_t nn = 0; nn < n() / nr(); nn++) {
230 for (size_t kk = 0; kk < k(); kk++) {
231 if (b[nn * k() + kk] != 0.0f) {
232 for (size_t i = 0; i < nr(); ++i)
233 b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast<float>(i);
234 }
235 }
236 }
237 for (size_t nn = n() / nr(); nn < ncols; nn++) {
238 for (size_t kk = 0; kk < k(); kk++) {
239 if (b[nn * k() + kk] != 0.0f) {
240 b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
241 }
242 }
243 }
244 }
245
246 for (size_t oc = 0; oc < n(); oc++) {
247 for (size_t pxb = 0; pxb < m(); pxb++) {
248 output_ref[oc * m() + pxb] = bias[oc];
249 for (size_t ic = 0; ic < k(); ic++) {
250 output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic];
251 }
252 }
253 }
254
255 // Micro-kernel can access one element beyond w and dmap for software pipelining.
256 w.resize(wcnt + 1);
257 dmap.resize(nnz + 1);
258
259 // Compute clamping parameters.
260 const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
261 const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
262 const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
263 const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
264
265 // Clamp reference results.
266 for (float& output_value : output_ref) {
267 output_value = std::min(std::max(output_value, output_min), output_max);
268 }
269
270 // Prepare parameters.
271 xnn_f32_minmax_params params;
272 init_params(¶ms, output_min, output_max);
273
274 spmm(m() * sizeof(float), n(),
275 input.data() + first_kk * m(),
276 w.data(), dmap.data(), nmap.data(),
277 output.data(), output_stride() * sizeof(float),
278 ¶ms);
279
280 // Validate micro-kernel outputs.
281 for (size_t i = 0; i < m(); i++) {
282 for (size_t j = 0; j < n(); j++) {
283 ASSERT_NEAR(
284 output[j * output_stride() + i],
285 output_ref[j * m() + i],
286 std::abs(output_ref[j * m() + i]) * 1.0e-6f)
287 << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
288 << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
289 << ", K = " << k();
290 }
291 }
292 }
293 }
294
Test(xnn_f16_spmm_minmax_ukernel_function spmm,xnn_init_f16_scaleminmax_params_fn init_params)295 void Test(xnn_f16_spmm_minmax_ukernel_function spmm, xnn_init_f16_scaleminmax_params_fn init_params) const {
296 ASSERT_GE(m(), 1);
297 ASSERT_GE(n(), 1);
298 ASSERT_GE(k(), 1);
299
300 std::random_device random_device;
301 auto rng = std::mt19937(random_device());
302 auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
303 auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
304 auto prng = std::bind(std::uniform_real_distribution<float>(), rng);
305
306 std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(k() * m());
307 // Think of b as (n/nr + n % nr) x k, expansion happens later.
308 const size_t ncols = n() / nr() + n() % nr();
309 std::vector<uint16_t> b(ncols * k());
310 std::vector<uint16_t> bias(n());
311 // Number of non-zero weights per N (output channel).
312 std::vector<uint32_t> nmap(n());
313 // Mapping from index of non-zero weight to increment of K (input channel) following this index.
314 std::vector<int32_t> dmap(n() * k());
315 std::vector<uint16_t> w(n() * k() + n());
316 std::vector<uint16_t> output((n() - 1) * output_stride() + m());
317 std::vector<float> output_ref(n() * m());
318
319 for (size_t iteration = 0; iteration < iterations(); iteration++) {
320 std::generate(input.begin(), input.end(), std::ref(f16rng));
321 std::generate(b.begin(), b.end(), std::ref(f16rng));
322 std::generate(bias.begin(), bias.end(), std::ref(f16rng));
323 std::fill(output.begin(), output.end(), 0xC000);
324 std::fill(output_ref.begin(), output_ref.end(), 0.0f);
325 std::fill(nmap.begin(), nmap.end(), 0);
326 std::fill(dmap.begin(), dmap.end(), 0);
327 std::fill(w.begin(), w.end(), 0);
328
329 for (uint16_t& b_value : b) {
330 if (prng() <= sparsity()) {
331 b_value = 0;
332 }
333 }
334
335 uint32_t nnz = 0;
336 uint32_t wcnt = 0;
337 size_t last_kk = 0;
338 bool first_nzz = true;
339 size_t first_kk = 0;
340 for (size_t nn = 0; nn < n() / nr(); nn++) {
341 for (size_t i = 0; i < nr(); ++i)
342 w[wcnt++] = bias[nr() * nn + i];
343 for (size_t kk = 0; kk < k(); kk++) {
344 if (!is_fp16_zero(b[nn * k() + kk])) {
345 // Every non-zero actually corresponds to nr adjacent non-zeros.
346 for (size_t i = 0; i < nr(); ++i)
347 w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
348 // Skip the very first non-zero weight as we record only the difference.
349 if (first_nzz) {
350 first_kk = kk;
351 } else {
352 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
353 dmap[nnz++] = increment;
354 }
355 last_kk = kk;
356 first_nzz = false;
357 nmap[nn] += 1;
358 }
359 }
360 }
361
362 // now we've constructed the matrix for the blocked part and switch to the
363 // leftovers, which we do as nr=1 always.
364 for (size_t nn = n() / nr(); nn < ncols; nn++) {
365 w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
366 for (size_t kk = 0; kk < k(); kk++) {
367 if (!is_fp16_zero(b[nn * k() + kk])) {
368 // Every non-zero actually corresponds to nr adjacent non-zeros.
369 w[wcnt++] = b[nn * k() + kk];
370 // Skip the very first non-zero weight as we record only the difference.
371 if (first_nzz) {
372 first_kk = kk;
373 } else {
374 const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
375 dmap[nnz++] = increment;
376 }
377 last_kk = kk;
378 first_nzz = false;
379 nmap[nn] += 1;
380 }
381 }
382 }
383 // In the end, we must return input pointer to the initial value.
384 const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(uint16_t));
385 dmap[nnz++] = increment;
386
387 // Generate expanded b which will be used in reference calculation.
388 // Everywhere there is input non-zero in the original we copy it and add an
389 // adjacent non-zero with incremented weight value.
390 std::vector<uint16_t> b_full(n() * k());
391 if (nr() == 1) {
392 b_full = b;
393 }
394 else {
395 for (size_t nn = 0; nn < n() / nr(); nn++) {
396 for (size_t kk = 0; kk < k(); kk++) {
397 if (b[nn * k() + kk] != 0.0f) {
398 for (size_t i = 0; i < nr(); ++i)
399 b_full[nr() * nn * k() + i * k() + kk] = fp16_ieee_from_fp32_value(
400 fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
401 }
402 }
403 }
404 for (size_t nn = n() / nr(); nn < ncols; nn++) {
405 for (size_t kk = 0; kk < k(); kk++) {
406 if (b[nn * k() + kk] != 0.0f) {
407 b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
408 }
409 }
410 }
411 }
412
413 for (size_t oc = 0; oc < n(); oc++) {
414 for (size_t pxb = 0; pxb < m(); pxb++) {
415 output_ref[oc * m() + pxb] = fp16_ieee_to_fp32_value(bias[oc]);
416 for (size_t ic = 0; ic < k(); ic++) {
417 output_ref[oc * m() + pxb] += fp16_ieee_to_fp32_value(input[ic * m() + pxb]) * fp16_ieee_to_fp32_value(b_full[oc * k() + ic]);
418 }
419 }
420 }
421
422 // Micro-kernel can access one element beyond w and dmap for software pipelining.
423 w.resize(wcnt + 1);
424 dmap.resize(nnz + 1);
425
426 // Compute clamping parameters.
427 const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
428 const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
429 const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
430 const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
431
432 // Clamp reference results.
433 for (float& output_value : output_ref) {
434 output_value = std::min(std::max(output_value, output_min), output_max);
435 }
436
437 // Prepare parameters.
438 xnn_f16_scaleminmax_params params;
439 init_params(¶ms,
440 UINT16_C(0x3C00) /* 1.0 */, fp16_ieee_from_fp32_value(output_min), fp16_ieee_from_fp32_value(output_max));
441
442 spmm(m() * sizeof(uint16_t), n(),
443 input.data() + first_kk * m(),
444 w.data(), dmap.data(), nmap.data(),
445 output.data(), output_stride() * sizeof(uint16_t),
446 ¶ms);
447
448 // Validate micro-kernel outputs.
449 for (size_t i = 0; i < m(); i++) {
450 for (size_t j = 0; j < n(); j++) {
451 ASSERT_NEAR(
452 fp16_ieee_to_fp32_value(output[j * output_stride() + i]),
453 output_ref[j * m() + i],
454 std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f))
455 << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
456 << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
457 << ", K = " << k();
458 }
459 }
460 }
461 }
462
463 private:
464 size_t mr_{1};
465 size_t nr_{1};
466 size_t m_{1};
467 size_t n_{1};
468 size_t k_{1};
469 size_t output_stride_{0};
470 float sparsity_{0.5f};
471 uint8_t qmin_{0};
472 uint8_t qmax_{255};
473 size_t iterations_{1};
474 };
475