• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cstddef>
13 #include <cstdlib>
14 #include <functional>
15 #include <random>
16 #include <vector>
17 
18 #include <fp16.h>
19 
20 #include <xnnpack.h>
21 #include <xnnpack/AlignedAllocator.h>
22 #include <xnnpack/pack.h>
23 #include <xnnpack/params-init.h>
24 #include <xnnpack/params.h>
25 
26 
27 class VMulCAddCMicrokernelTester {
28  public:
channel_tile(size_t channel_tile)29   inline VMulCAddCMicrokernelTester& channel_tile(size_t channel_tile) {
30     this->channel_tile_ = channel_tile;
31     return *this;
32   }
33 
channel_tile()34   inline size_t channel_tile() const {
35     return this->channel_tile_;
36   }
37 
channels(size_t channels)38   inline VMulCAddCMicrokernelTester& channels(size_t channels) {
39     assert(channels != 0);
40     this->channels_ = channels;
41     return *this;
42   }
43 
channels()44   inline size_t channels() const {
45     return this->channels_;
46   }
47 
packed_channels()48   inline size_t packed_channels() const {
49     return channels() % channel_tile() == 0 ? channels() : (channels() / channel_tile() + 1) * channel_tile();
50   }
51 
rows(size_t rows)52   inline VMulCAddCMicrokernelTester& rows(size_t rows) {
53     assert(rows != 0);
54     this->rows_ = rows;
55     return *this;
56   }
57 
rows()58   inline size_t rows() const {
59     return this->rows_;
60   }
61 
input_stride(size_t input_stride)62   inline VMulCAddCMicrokernelTester& input_stride(size_t input_stride) {
63     this->input_stride_ = input_stride;
64     return *this;
65   }
66 
input_stride()67   inline size_t input_stride() const {
68     return this->input_stride_ == 0 ? channels() : this->input_stride_;
69   }
70 
output_stride(size_t output_stride)71   inline VMulCAddCMicrokernelTester& output_stride(size_t output_stride) {
72     this->output_stride_ = output_stride;
73     return *this;
74   }
75 
output_stride()76   inline size_t output_stride() const {
77     return this->output_stride_ == 0 ? channels() : this->output_stride_;
78   }
79 
inplace(bool inplace)80   inline VMulCAddCMicrokernelTester& inplace(bool inplace) {
81     this->inplace_ = inplace;
82     return *this;
83   }
84 
inplace()85   inline bool inplace() const {
86     return this->inplace_;
87   }
88 
qmin(uint8_t qmin)89   inline VMulCAddCMicrokernelTester& qmin(uint8_t qmin) {
90     this->qmin_ = qmin;
91     return *this;
92   }
93 
qmin()94   inline uint8_t qmin() const {
95     return this->qmin_;
96   }
97 
qmax(uint8_t qmax)98   inline VMulCAddCMicrokernelTester& qmax(uint8_t qmax) {
99     this->qmax_ = qmax;
100     return *this;
101   }
102 
qmax()103   inline uint8_t qmax() const {
104     return this->qmax_;
105   }
106 
iterations(size_t iterations)107   inline VMulCAddCMicrokernelTester& iterations(size_t iterations) {
108     this->iterations_ = iterations;
109     return *this;
110   }
111 
iterations()112   inline size_t iterations() const {
113     return this->iterations_;
114   }
115 
Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc,xnn_init_f16_minmax_params_fn init_params)116   void Test(xnn_f16_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f16_minmax_params_fn init_params) const {
117     std::random_device random_device;
118     auto rng = std::mt19937(random_device());
119     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
120     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
121 
122     if (inplace()) {
123       ASSERT_EQ(input_stride(), output_stride());
124     }
125 
126     std::vector<uint16_t> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(uint16_t));
127     std::vector<uint16_t> scale(channels());
128     std::vector<uint16_t> bias(channels());
129     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_channels() * 2);
130     std::vector<uint16_t> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(uint16_t) : 0));
131     std::vector<float> y_ref(rows() * channels());
132 
133     for (size_t iteration = 0; iteration < iterations(); iteration++) {
134       std::generate(scale.begin(), scale.end(), std::ref(f16rng));
135       std::generate(bias.begin(), bias.end(), std::ref(f16rng));
136       std::generate(x.begin(), x.end(), std::ref(f16rng));
137       if (inplace()) {
138         std::copy(x.cbegin(), x.cend(), y.begin());
139       } else {
140         std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */);
141       }
142       const uint16_t* x_data = inplace() ? y.data() : x.data();
143 
144       std::fill(packed_w.begin(), packed_w.end(), UINT16_C(0x7E00) /* NaN */);
145       xnn_pack_f16_vmulcaddc_w(channels(), channel_tile(),
146         scale.data(), bias.data(), packed_w.data(), nullptr);
147 
148       // Compute reference results.
149       for (size_t i = 0; i < rows(); i++) {
150         for (size_t j = 0; j < channels(); j++) {
151           y_ref[i * channels() + j] = fp16_ieee_to_fp32_value(x_data[i * input_stride() + j]) * fp16_ieee_to_fp32_value(scale[j]) + fp16_ieee_to_fp32_value(bias[j]);
152         }
153       }
154       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
155       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
156       const float accumulated_range = accumulated_max - accumulated_min;
157       const float y_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - accumulated_range / 255.0f * float(255 - qmax())));
158       const float y_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + accumulated_range / 255.0f * float(qmin())));
159 
160       for (float& y_value : y_ref) {
161         y_value = std::max(std::min(y_value, y_max), y_min);
162       }
163 
164       // Prepare parameters.
165       xnn_f16_minmax_params params;
166       init_params(&params, fp16_ieee_from_fp32_value(y_min), fp16_ieee_from_fp32_value(y_max));
167 
168       // Call optimized micro-kernel.
169       vmulcaddc(rows(), channels() * sizeof(uint16_t),
170         x_data, input_stride() * sizeof(uint16_t),
171         packed_w.data(),
172         y.data(), output_stride() * sizeof(uint16_t),
173         &params);
174 
175       // Verify results.
176       for (size_t i = 0; i < rows(); i++) {
177         for (size_t j = 0; j < channels(); j++) {
178           ASSERT_NEAR(fp16_ieee_to_fp32_value(y[i * output_stride() + j]), y_ref[i * channels() + j], std::max(1.0e-4f, std::abs(y_ref[i * channels() + j]) * 1.0e-2f))
179             << "at pixel " << i << " / " << rows()
180             << ", channel = " << j << " / " << channels();
181         }
182       }
183     }
184   }
185 
Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc,xnn_init_f32_minmax_params_fn init_params)186   void Test(xnn_f32_vmulcaddc_ukernel_function vmulcaddc, xnn_init_f32_minmax_params_fn init_params) const {
187     std::random_device random_device;
188     auto rng = std::mt19937(random_device());
189     auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
190 
191     if (inplace()) {
192       ASSERT_EQ(input_stride(), output_stride());
193     }
194 
195     std::vector<float> x((rows() - 1) * input_stride() + channels() + XNN_EXTRA_BYTES / sizeof(float));
196     std::vector<float> scale(channels());
197     std::vector<float> bias(channels());
198     std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_channels() * 2);
199     std::vector<float> y((rows() - 1) * output_stride() + channels() + (inplace() ? XNN_EXTRA_BYTES / sizeof(float) : 0));
200     std::vector<float> y_ref(rows() * channels());
201     for (size_t iteration = 0; iteration < iterations(); iteration++) {
202       std::generate(scale.begin(), scale.end(), std::ref(f32rng));
203       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
204       std::generate(x.begin(), x.end(), std::ref(f32rng));
205       if (inplace()) {
206         std::copy(x.cbegin(), x.cend(), y.begin());
207       } else {
208         std::fill(y.begin(), y.end(), nanf(""));
209       }
210       const float* x_data = inplace() ? y.data() : x.data();
211 
212       std::fill(packed_w.begin(), packed_w.end(), nanf(""));
213       xnn_pack_f32_vmulcaddc_w(channels(), channel_tile(),
214         scale.data(), bias.data(), packed_w.data(), nullptr);
215 
216       // Compute reference results.
217       for (size_t i = 0; i < rows(); i++) {
218         for (size_t j = 0; j < channels(); j++) {
219           y_ref[i * channels() + j] = x_data[i * input_stride() + j] * scale[j] + bias[j];
220         }
221       }
222       const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
223       const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
224       const float accumulated_range = accumulated_max - accumulated_min;
225       const float y_max = accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
226       const float y_min = accumulated_min + accumulated_range / 255.0f * float(qmin());
227       for (float& y_value : y_ref) {
228         y_value = std::max<float>(std::min<float>(y_value, y_max), y_min);
229       }
230 
231       // Prepare parameters.
232       xnn_f32_minmax_params params;
233       init_params(&params, y_min, y_max);
234 
235       // Call optimized micro-kernel.
236       vmulcaddc(rows(), channels() * sizeof(float),
237         x_data, input_stride() * sizeof(float),
238         packed_w.data(),
239         y.data(), output_stride() * sizeof(float),
240         &params);
241 
242       // Verify results.
243       for (size_t i = 0; i < rows(); i++) {
244         for (size_t j = 0; j < channels(); j++) {
245           ASSERT_NEAR(y[i * output_stride() + j], y_ref[i * channels() + j], std::abs(y_ref[i * channels() + j]) * 1.0e-6f)
246             << "at pixel " << i << " / " << rows()
247             << ", channel = " << j << " / " << channels();
248         }
249       }
250     }
251   }
252 
253  private:
254   size_t channel_tile_{1};
255   size_t channels_{1};
256   size_t rows_{1};
257   size_t input_stride_{0};
258   size_t output_stride_{0};
259   bool inplace_{false};
260   uint8_t qmin_{0};
261   uint8_t qmax_{255};
262   size_t iterations_{15};
263 };
264