• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/distributions.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <random>
21 #include <vector>
22 
23 #include "gtest/gtest.h"
24 #include "absl/random/internal/distribution_test_util.h"
25 #include "absl/random/random.h"
26 
27 namespace {
28 
29 constexpr int kSize = 400000;
30 
31 class RandomDistributionsTest : public testing::Test {};
32 
33 
34 struct Invalid {};
35 
36 template <typename A, typename B>
37 auto InferredUniformReturnT(int)
38     -> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
39                               std::declval<A>(), std::declval<B>()));
40 
41 template <typename, typename>
42 Invalid InferredUniformReturnT(...);
43 
44 template <typename TagType, typename A, typename B>
45 auto InferredTaggedUniformReturnT(int)
46     -> decltype(absl::Uniform(std::declval<TagType>(),
47                               std::declval<absl::InsecureBitGen&>(),
48                               std::declval<A>(), std::declval<B>()));
49 
50 template <typename, typename, typename>
51 Invalid InferredTaggedUniformReturnT(...);
52 
53 // Given types <A, B, Expect>, CheckArgsInferType() verifies that
54 //
55 //   absl::Uniform(gen, A{}, B{})
56 //
57 // returns the type "Expect".
58 //
59 // This interface can also be used to assert that a given absl::Uniform()
60 // overload does not exist / will not compile. Given types <A, B>, the
61 // expression
62 //
63 //   decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
64 //
65 // will not compile, leaving the definition of InferredUniformReturnT<A, B> to
66 // resolve (via SFINAE) to the overload which returns type "Invalid". This
67 // allows tests to assert that an invocation such as
68 //
69 //   absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
70 //
71 // should not compile, since neither type, float nor int, can precisely
72 // represent both endpoint-values. Writing:
73 //
74 //   CheckArgsInferType<float, int, Invalid>()
75 //
76 // will assert that this overload does not exist.
77 template <typename A, typename B, typename Expect>
CheckArgsInferType()78 void CheckArgsInferType() {
79   static_assert(
80       absl::conjunction<
81           std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
82           std::is_same<Expect,
83                        decltype(InferredUniformReturnT<B, A>(0))>>::value,
84       "");
85   static_assert(
86       absl::conjunction<
87           std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
88                                         absl::IntervalOpenOpenTag, A, B>(0))>,
89           std::is_same<Expect,
90                        decltype(InferredTaggedUniformReturnT<
91                                 absl::IntervalOpenOpenTag, B, A>(0))>>::value,
92       "");
93 }
94 
95 template <typename A, typename B, typename ExplicitRet>
96 auto ExplicitUniformReturnT(int) -> decltype(
97     absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
98                                std::declval<A>(), std::declval<B>()));
99 
100 template <typename, typename, typename ExplicitRet>
101 Invalid ExplicitUniformReturnT(...);
102 
103 template <typename TagType, typename A, typename B, typename ExplicitRet>
104 auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
105     std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
106     std::declval<A>(), std::declval<B>()));
107 
108 template <typename, typename, typename, typename ExplicitRet>
109 Invalid ExplicitTaggedUniformReturnT(...);
110 
111 // Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
112 //
113 //   absl::Uniform<Expect>(gen, A{}, B{})
114 //
115 // returns the type "Expect", and that the function-overload has the signature
116 //
117 //   Expect(URBG&, Expect, Expect)
118 template <typename A, typename B, typename Expect>
CheckArgsReturnExpectedType()119 void CheckArgsReturnExpectedType() {
120   static_assert(
121       absl::conjunction<
122           std::is_same<Expect,
123                        decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
124           std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
125                                    0))>>::value,
126       "");
127   static_assert(
128       absl::conjunction<
129           std::is_same<Expect,
130                        decltype(ExplicitTaggedUniformReturnT<
131                                 absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
132           std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
133                                         absl::IntervalOpenOpenTag, B, A,
134                                         Expect>(0))>>::value,
135       "");
136 }
137 
TEST_F(RandomDistributionsTest,UniformTypeInference)138 TEST_F(RandomDistributionsTest, UniformTypeInference) {
139   // Infers common types.
140   CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
141   CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
142   CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
143   CheckArgsInferType<int16_t, int16_t, int16_t>();
144   CheckArgsInferType<int32_t, int32_t, int32_t>();
145   CheckArgsInferType<int64_t, int64_t, int64_t>();
146   CheckArgsInferType<float, float, float>();
147   CheckArgsInferType<double, double, double>();
148 
149   // Explicitly-specified return-values override inferences.
150   CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
151   CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
152   CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
153   CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
154   CheckArgsReturnExpectedType<int16_t, int32_t, double>();
155   CheckArgsReturnExpectedType<float, float, double>();
156   CheckArgsReturnExpectedType<int, int, int16_t>();
157 
158   // Properly promotes uint16_t.
159   CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
160   CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
161   CheckArgsInferType<uint16_t, int32_t, int32_t>();
162   CheckArgsInferType<uint16_t, int64_t, int64_t>();
163   CheckArgsInferType<uint16_t, float, float>();
164   CheckArgsInferType<uint16_t, double, double>();
165 
166   // Properly promotes int16_t.
167   CheckArgsInferType<int16_t, int32_t, int32_t>();
168   CheckArgsInferType<int16_t, int64_t, int64_t>();
169   CheckArgsInferType<int16_t, float, float>();
170   CheckArgsInferType<int16_t, double, double>();
171 
172   // Invalid (u)int16_t-pairings do not compile.
173   // See "CheckArgsInferType" comments above, for how this is achieved.
174   CheckArgsInferType<uint16_t, int16_t, Invalid>();
175   CheckArgsInferType<int16_t, uint32_t, Invalid>();
176   CheckArgsInferType<int16_t, uint64_t, Invalid>();
177 
178   // Properly promotes uint32_t.
179   CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
180   CheckArgsInferType<uint32_t, int64_t, int64_t>();
181   CheckArgsInferType<uint32_t, double, double>();
182 
183   // Properly promotes int32_t.
184   CheckArgsInferType<int32_t, int64_t, int64_t>();
185   CheckArgsInferType<int32_t, double, double>();
186 
187   // Invalid (u)int32_t-pairings do not compile.
188   CheckArgsInferType<uint32_t, int32_t, Invalid>();
189   CheckArgsInferType<int32_t, uint64_t, Invalid>();
190   CheckArgsInferType<int32_t, float, Invalid>();
191   CheckArgsInferType<uint32_t, float, Invalid>();
192 
193   // Invalid (u)int64_t-pairings do not compile.
194   CheckArgsInferType<uint64_t, int64_t, Invalid>();
195   CheckArgsInferType<int64_t, float, Invalid>();
196   CheckArgsInferType<int64_t, double, Invalid>();
197 
198   // Properly promotes float.
199   CheckArgsInferType<float, double, double>();
200 }
201 
TEST_F(RandomDistributionsTest,UniformExamples)202 TEST_F(RandomDistributionsTest, UniformExamples) {
203   // Examples.
204   absl::InsecureBitGen gen;
205   EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
206   EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
207   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
208                              static_cast<uint16_t>(0), 1.0f));
209   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
210   EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
211   EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
212   EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
213   EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
214 }
215 
TEST_F(RandomDistributionsTest,UniformNoBounds)216 TEST_F(RandomDistributionsTest, UniformNoBounds) {
217   absl::InsecureBitGen gen;
218 
219   absl::Uniform<uint8_t>(gen);
220   absl::Uniform<uint16_t>(gen);
221   absl::Uniform<uint32_t>(gen);
222   absl::Uniform<uint64_t>(gen);
223 }
224 
TEST_F(RandomDistributionsTest,UniformNonsenseRanges)225 TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
226   // The ranges used in this test are undefined behavior.
227   // The results are arbitrary and subject to future changes.
228 
229 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
230   // We're using an x87-compatible FPU, and intermediate operations can be
231   // performed with 80-bit floats. This produces slightly different results from
232   // what we expect below.
233   GTEST_SKIP()
234       << "Skipping the test because we detected x87 floating-point semantics";
235 #endif
236 
237   absl::InsecureBitGen gen;
238 
239   // <uint>
240   EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
241   EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
242   EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
243   EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
244 
245   constexpr auto m = (std::numeric_limits<uint64_t>::max)();
246 
247   EXPECT_EQ(m, absl::Uniform(gen, m, m));
248   EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
249   EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
250   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
251   EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
252   EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
253 
254   // <int>
255   EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
256   EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
257   EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
258   EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
259 
260   constexpr auto l = (std::numeric_limits<int64_t>::min)();
261   constexpr auto r = (std::numeric_limits<int64_t>::max)();
262 
263   EXPECT_EQ(l, absl::Uniform(gen, l, l));
264   EXPECT_EQ(r, absl::Uniform(gen, r, r));
265   EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
266   EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
267   EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
268   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
269   EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
270   EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
271 
272   // <double>
273   const double e = std::nextafter(1.0, 2.0);  // 1 + epsilon
274   const double f = std::nextafter(1.0, 0.0);  // 1 - epsilon
275   const double g = std::numeric_limits<double>::denorm_min();
276 
277   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
278   EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
279   EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
280 
281   EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
282   EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
283   EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
284 }
285 
286 // TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest,UniformReal)287 TEST_F(RandomDistributionsTest, UniformReal) {
288   std::vector<double> values(kSize);
289 
290   absl::InsecureBitGen gen;
291   for (int i = 0; i < kSize; i++) {
292     values[i] = absl::Uniform(gen, 0, 1.0);
293   }
294 
295   const auto moments =
296       absl::random_internal::ComputeDistributionMoments(values);
297   EXPECT_NEAR(0.5, moments.mean, 0.02);
298   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
299   EXPECT_NEAR(0.0, moments.skewness, 0.02);
300   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
301 }
302 
TEST_F(RandomDistributionsTest,UniformInt)303 TEST_F(RandomDistributionsTest, UniformInt) {
304   std::vector<double> values(kSize);
305 
306   absl::InsecureBitGen gen;
307   for (int i = 0; i < kSize; i++) {
308     const int64_t kMax = 1000000000000ll;
309     int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
310     // convert to double.
311     values[i] = static_cast<double>(j) / static_cast<double>(kMax);
312   }
313 
314   const auto moments =
315       absl::random_internal::ComputeDistributionMoments(values);
316   EXPECT_NEAR(0.5, moments.mean, 0.02);
317   EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
318   EXPECT_NEAR(0.0, moments.skewness, 0.02);
319   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
320 
321   /*
322   // NOTE: These are not supported by absl::Uniform, which is specialized
323   // on integer and real valued types.
324 
325   enum E { E0, E1 };    // enum
326   enum S : int { S0, S1 };    // signed enum
327   enum U : unsigned int { U0, U1 };  // unsigned enum
328 
329   absl::Uniform(gen, E0, E1);
330   absl::Uniform(gen, S0, S1);
331   absl::Uniform(gen, U0, U1);
332   */
333 }
334 
TEST_F(RandomDistributionsTest,Exponential)335 TEST_F(RandomDistributionsTest, Exponential) {
336   std::vector<double> values(kSize);
337 
338   absl::InsecureBitGen gen;
339   for (int i = 0; i < kSize; i++) {
340     values[i] = absl::Exponential<double>(gen);
341   }
342 
343   const auto moments =
344       absl::random_internal::ComputeDistributionMoments(values);
345   EXPECT_NEAR(1.0, moments.mean, 0.02);
346   EXPECT_NEAR(1.0, moments.variance, 0.025);
347   EXPECT_NEAR(2.0, moments.skewness, 0.1);
348   EXPECT_LT(5.0, moments.kurtosis);
349 }
350 
TEST_F(RandomDistributionsTest,PoissonDefault)351 TEST_F(RandomDistributionsTest, PoissonDefault) {
352   std::vector<double> values(kSize);
353 
354   absl::InsecureBitGen gen;
355   for (int i = 0; i < kSize; i++) {
356     values[i] = absl::Poisson<int64_t>(gen);
357   }
358 
359   const auto moments =
360       absl::random_internal::ComputeDistributionMoments(values);
361   EXPECT_NEAR(1.0, moments.mean, 0.02);
362   EXPECT_NEAR(1.0, moments.variance, 0.02);
363   EXPECT_NEAR(1.0, moments.skewness, 0.025);
364   EXPECT_LT(2.0, moments.kurtosis);
365 }
366 
TEST_F(RandomDistributionsTest,PoissonLarge)367 TEST_F(RandomDistributionsTest, PoissonLarge) {
368   constexpr double kMean = 100000000.0;
369   std::vector<double> values(kSize);
370 
371   absl::InsecureBitGen gen;
372   for (int i = 0; i < kSize; i++) {
373     values[i] = absl::Poisson<int64_t>(gen, kMean);
374   }
375 
376   const auto moments =
377       absl::random_internal::ComputeDistributionMoments(values);
378   EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
379   EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
380   EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
381   EXPECT_LT(2.0, moments.kurtosis);
382 }
383 
TEST_F(RandomDistributionsTest,Bernoulli)384 TEST_F(RandomDistributionsTest, Bernoulli) {
385   constexpr double kP = 0.5151515151;
386   std::vector<double> values(kSize);
387 
388   absl::InsecureBitGen gen;
389   for (int i = 0; i < kSize; i++) {
390     values[i] = absl::Bernoulli(gen, kP);
391   }
392 
393   const auto moments =
394       absl::random_internal::ComputeDistributionMoments(values);
395   EXPECT_NEAR(kP, moments.mean, 0.01);
396 }
397 
TEST_F(RandomDistributionsTest,Beta)398 TEST_F(RandomDistributionsTest, Beta) {
399   constexpr double kAlpha = 2.0;
400   constexpr double kBeta = 3.0;
401   std::vector<double> values(kSize);
402 
403   absl::InsecureBitGen gen;
404   for (int i = 0; i < kSize; i++) {
405     values[i] = absl::Beta(gen, kAlpha, kBeta);
406   }
407 
408   const auto moments =
409       absl::random_internal::ComputeDistributionMoments(values);
410   EXPECT_NEAR(0.4, moments.mean, 0.01);
411 }
412 
TEST_F(RandomDistributionsTest,Zipf)413 TEST_F(RandomDistributionsTest, Zipf) {
414   std::vector<double> values(kSize);
415 
416   absl::InsecureBitGen gen;
417   for (int i = 0; i < kSize; i++) {
418     values[i] = absl::Zipf<int64_t>(gen, 100);
419   }
420 
421   // The mean of a zipf distribution is: H(N, s-1) / H(N,s).
422   // Given the parameter v = 1, this gives the following function:
423   // (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
424   const auto moments =
425       absl::random_internal::ComputeDistributionMoments(values);
426   EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
427 }
428 
TEST_F(RandomDistributionsTest,Gaussian)429 TEST_F(RandomDistributionsTest, Gaussian) {
430   std::vector<double> values(kSize);
431 
432   absl::InsecureBitGen gen;
433   for (int i = 0; i < kSize; i++) {
434     values[i] = absl::Gaussian<double>(gen);
435   }
436 
437   const auto moments =
438       absl::random_internal::ComputeDistributionMoments(values);
439   EXPECT_NEAR(0.0, moments.mean, 0.02);
440   EXPECT_NEAR(1.0, moments.variance, 0.04);
441   EXPECT_NEAR(0, moments.skewness, 0.2);
442   EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
443 }
444 
TEST_F(RandomDistributionsTest,LogUniform)445 TEST_F(RandomDistributionsTest, LogUniform) {
446   std::vector<double> values(kSize);
447 
448   absl::InsecureBitGen gen;
449   for (int i = 0; i < kSize; i++) {
450     values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
451   }
452 
453   // The mean is the sum of the fractional means of the uniform distributions:
454   // [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
455   // [64..127][128..255][256..511][512..1023]
456   const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
457                        64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
458                       (2.0 * 11.0);
459 
460   const auto moments =
461       absl::random_internal::ComputeDistributionMoments(values);
462   EXPECT_NEAR(mean, moments.mean, 2) << moments;
463 }
464 
465 }  // namespace
466