• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/uniform_real_distribution.h"
16 
17 #include <cfloat>
18 #include <cmath>
19 #include <cstdint>
20 #include <iterator>
21 #include <random>
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25 #include <vector>
26 
27 #include "gmock/gmock.h"
28 #include "gtest/gtest.h"
29 #include "absl/base/internal/raw_logging.h"
30 #include "absl/numeric/internal/representation.h"
31 #include "absl/random/internal/chi_square.h"
32 #include "absl/random/internal/distribution_test_util.h"
33 #include "absl/random/internal/pcg_engine.h"
34 #include "absl/random/internal/sequence_urbg.h"
35 #include "absl/random/random.h"
36 #include "absl/strings/str_cat.h"
37 
38 // NOTES:
39 // * Some documentation on generating random real values suggests that
40 //   it is possible to use std::nextafter(b, DBL_MAX) to generate a value on
41 //   the closed range [a, b]. Unfortunately, that technique is not universally
42 //   reliable due to floating point quantization.
43 //
44 // * absl::uniform_real_distribution<float> generates between 2^28 and 2^29
45 //   distinct floating point values in the range [0, 1).
46 //
47 // * absl::uniform_real_distribution<float> generates at least 2^23 distinct
48 //   floating point values in the range [1, 2). This should be the same as
49 //   any other range covered by a single exponent in IEEE 754.
50 //
51 // * absl::uniform_real_distribution<double> generates more than 2^52 distinct
52 //   values in the range [0, 1), and should generate at least 2^52 distinct
53 //   values in the range of [1, 2).
54 //
55 
56 namespace {
57 
58 template <typename RealType>
59 class UniformRealDistributionTest : public ::testing::Test {};
60 
61 // double-double arithmetic is not supported well by either GCC or Clang; see
62 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
63 // https://bugs.llvm.org/show_bug.cgi?id=49131, and
64 // https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
65 // with double doubles until compiler support is better.
66 using RealTypes =
67     std::conditional<absl::numeric_internal::IsDoubleDouble(),
68                      ::testing::Types<float, double>,
69                      ::testing::Types<float, double, long double>>::type;
70 
71 TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes);
72 
TYPED_TEST(UniformRealDistributionTest,ParamSerializeTest)73 TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) {
74 #if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
75   // We're using an x87-compatible FPU, and intermediate operations are
76   // performed with 80-bit floats. This produces slightly different results from
77   // what we expect below.
78   GTEST_SKIP()
79       << "Skipping the test because we detected x87 floating-point semantics";
80 #endif
81 
82   using param_type =
83       typename absl::uniform_real_distribution<TypeParam>::param_type;
84 
85   constexpr const TypeParam a{1152921504606846976};
86 
87   constexpr int kCount = 1000;
88   absl::InsecureBitGen gen;
89   for (const auto& param : {
90            param_type(),
91            param_type(TypeParam(2.0), TypeParam(2.0)),  // Same
92            param_type(TypeParam(-0.1), TypeParam(0.1)),
93            param_type(TypeParam(0.05), TypeParam(0.12)),
94            param_type(TypeParam(-0.05), TypeParam(0.13)),
95            param_type(TypeParam(-0.05), TypeParam(-0.02)),
96            // double range = 0
97            // 2^60 , 2^60 + 2^6
98            param_type(a, TypeParam(1152921504606847040)),
99            // 2^60 , 2^60 + 2^7
100            param_type(a, TypeParam(1152921504606847104)),
101            // double range = 2^8
102            // 2^60 , 2^60 + 2^8
103            param_type(a, TypeParam(1152921504606847232)),
104            // float range = 0
105            // 2^60 , 2^60 + 2^36
106            param_type(a, TypeParam(1152921573326323712)),
107            // 2^60 , 2^60 + 2^37
108            param_type(a, TypeParam(1152921642045800448)),
109            // float range = 2^38
110            // 2^60 , 2^60 + 2^38
111            param_type(a, TypeParam(1152921779484753920)),
112            // Limits
113            param_type(0, std::numeric_limits<TypeParam>::max()),
114            param_type(std::numeric_limits<TypeParam>::lowest(), 0),
115            param_type(0, std::numeric_limits<TypeParam>::epsilon()),
116            param_type(-std::numeric_limits<TypeParam>::epsilon(),
117                       std::numeric_limits<TypeParam>::epsilon()),
118            param_type(std::numeric_limits<TypeParam>::epsilon(),
119                       2 * std::numeric_limits<TypeParam>::epsilon()),
120        }) {
121     // Validate parameters.
122     const auto a = param.a();
123     const auto b = param.b();
124     absl::uniform_real_distribution<TypeParam> before(a, b);
125     EXPECT_EQ(before.a(), param.a());
126     EXPECT_EQ(before.b(), param.b());
127 
128     {
129       absl::uniform_real_distribution<TypeParam> via_param(param);
130       EXPECT_EQ(via_param, before);
131     }
132 
133     std::stringstream ss;
134     ss << before;
135     absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0),
136                                                      TypeParam(3.1));
137 
138     EXPECT_NE(before.a(), after.a());
139     EXPECT_NE(before.b(), after.b());
140     EXPECT_NE(before.param(), after.param());
141     EXPECT_NE(before, after);
142 
143     ss >> after;
144 
145     EXPECT_EQ(before.a(), after.a());
146     EXPECT_EQ(before.b(), after.b());
147     EXPECT_EQ(before.param(), after.param());
148     EXPECT_EQ(before, after);
149 
150     // Smoke test.
151     auto sample_min = after.max();
152     auto sample_max = after.min();
153     for (int i = 0; i < kCount; i++) {
154       auto sample = after(gen);
155       // Failure here indicates a bug in uniform_real_distribution::operator(),
156       // or bad parameters--range too large, etc.
157       if (after.min() == after.max()) {
158         EXPECT_EQ(sample, after.min());
159       } else {
160         EXPECT_GE(sample, after.min());
161         EXPECT_LT(sample, after.max());
162       }
163       if (sample > sample_max) {
164         sample_max = sample;
165       }
166       if (sample < sample_min) {
167         sample_min = sample;
168       }
169     }
170 
171     if (!std::is_same<TypeParam, long double>::value) {
172       // static_cast<double>(long double) can overflow.
173       std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min),
174                                      ", ", static_cast<double>(sample_max));
175       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
176     }
177   }
178 }
179 
180 #ifdef _MSC_VER
181 #pragma warning(push)
182 #pragma warning(disable:4756)  // Constant arithmetic overflow.
183 #endif
TYPED_TEST(UniformRealDistributionTest,ViolatesPreconditionsDeathTest)184 TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) {
185 #if GTEST_HAS_DEATH_TEST
186   // Hi < Lo
187   EXPECT_DEBUG_DEATH(
188       { absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, "");
189 
190   // Hi - Lo > numeric_limits<>::max()
191   EXPECT_DEBUG_DEATH(
192       {
193         absl::uniform_real_distribution<TypeParam> dist(
194             std::numeric_limits<TypeParam>::lowest(),
195             std::numeric_limits<TypeParam>::max());
196       },
197       "");
198 #endif  // GTEST_HAS_DEATH_TEST
199 #if defined(NDEBUG)
200   // opt-mode, for invalid parameters, will generate a garbage value,
201   // but should not enter an infinite loop.
202   absl::InsecureBitGen gen;
203   {
204     absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0);
205     auto x = dist(gen);
206     EXPECT_FALSE(std::isnan(x)) << x;
207   }
208   {
209     absl::uniform_real_distribution<TypeParam> dist(
210         std::numeric_limits<TypeParam>::lowest(),
211         std::numeric_limits<TypeParam>::max());
212     auto x = dist(gen);
213     // Infinite result.
214     EXPECT_FALSE(std::isfinite(x)) << x;
215   }
216 #endif  // NDEBUG
217 }
218 #ifdef _MSC_VER
219 #pragma warning(pop)  // warning(disable:4756)
220 #endif
221 
TYPED_TEST(UniformRealDistributionTest,TestMoments)222 TYPED_TEST(UniformRealDistributionTest, TestMoments) {
223   constexpr int kSize = 1000000;
224   std::vector<double> values(kSize);
225 
226   // We use a fixed bit generator for distribution accuracy tests.  This allows
227   // these tests to be deterministic, while still testing the qualify of the
228   // implementation.
229   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
230 
231   absl::uniform_real_distribution<TypeParam> dist;
232   for (int i = 0; i < kSize; i++) {
233     values[i] = dist(rng);
234   }
235 
236   const auto moments =
237       absl::random_internal::ComputeDistributionMoments(values);
238   EXPECT_NEAR(0.5, moments.mean, 0.01);
239   EXPECT_NEAR(1 / 12.0, moments.variance, 0.015);
240   EXPECT_NEAR(0.0, moments.skewness, 0.02);
241   EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015);
242 }
243 
TYPED_TEST(UniformRealDistributionTest,ChiSquaredTest50)244 TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) {
245   using absl::random_internal::kChiSquared;
246   using param_type =
247       typename absl::uniform_real_distribution<TypeParam>::param_type;
248 
249   constexpr size_t kTrials = 100000;
250   constexpr int kBuckets = 50;
251   constexpr double kExpected =
252       static_cast<double>(kTrials) / static_cast<double>(kBuckets);
253 
254   // 1-in-100000 threshold, but remember, there are about 8 tests
255   // in this file. And the test could fail for other reasons.
256   // Empirically validated with --runs_per_test=10000.
257   const int kThreshold =
258       absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999);
259 
260   // We use a fixed bit generator for distribution accuracy tests.  This allows
261   // these tests to be deterministic, while still testing the qualify of the
262   // implementation.
263   absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6};
264 
265   for (const auto& param : {param_type(0, 1), param_type(5, 12),
266                             param_type(-5, 13), param_type(-5, -2)}) {
267     const double min_val = param.a();
268     const double max_val = param.b();
269     const double factor = kBuckets / (max_val - min_val);
270 
271     std::vector<int32_t> counts(kBuckets, 0);
272     absl::uniform_real_distribution<TypeParam> dist(param);
273     for (size_t i = 0; i < kTrials; i++) {
274       auto x = dist(rng);
275       auto bucket = static_cast<size_t>((x - min_val) * factor);
276       counts[bucket]++;
277     }
278 
279     double chi_square = absl::random_internal::ChiSquareWithExpected(
280         std::begin(counts), std::end(counts), kExpected);
281     if (chi_square > kThreshold) {
282       double p_value =
283           absl::random_internal::ChiSquarePValue(chi_square, kBuckets);
284 
285       // Chi-squared test failed. Output does not appear to be uniform.
286       std::string msg;
287       for (const auto& a : counts) {
288         absl::StrAppend(&msg, a, "\n");
289       }
290       absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
291       absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
292                       kThreshold);
293       ABSL_RAW_LOG(INFO, "%s", msg.c_str());
294       FAIL() << msg;
295     }
296   }
297 }
298 
TYPED_TEST(UniformRealDistributionTest,StabilityTest)299 TYPED_TEST(UniformRealDistributionTest, StabilityTest) {
300   // absl::uniform_real_distribution stability relies only on
301   // random_internal::RandU64ToDouble and random_internal::RandU64ToFloat.
302   absl::random_internal::sequence_urbg urbg(
303       {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
304        0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
305        0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
306        0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
307 
308   std::vector<int> output(12);
309 
310   absl::uniform_real_distribution<TypeParam> dist;
311   std::generate(std::begin(output), std::end(output), [&] {
312     return static_cast<int>(TypeParam(1000000) * dist(urbg));
313   });
314 
315   EXPECT_THAT(
316       output,  //
317       testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251,
318                            77341, 12527, 708791, 834451, 932808));
319 }
320 
TEST(UniformRealDistributionTest,AlgorithmBounds)321 TEST(UniformRealDistributionTest, AlgorithmBounds) {
322   absl::uniform_real_distribution<double> dist;
323 
324   {
325     // This returns the smallest value >0 from absl::uniform_real_distribution.
326     absl::random_internal::sequence_urbg urbg({0x0000000000000001ull});
327     double a = dist(urbg);
328     EXPECT_EQ(a, 5.42101086242752217004e-20);
329   }
330 
331   {
332     // This returns a value very near 0.5 from absl::uniform_real_distribution.
333     absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull});
334     double a = dist(urbg);
335     EXPECT_EQ(a, 0.499999999999999944489);
336   }
337   {
338     // This returns a value very near 0.5 from absl::uniform_real_distribution.
339     absl::random_internal::sequence_urbg urbg({0x8000000000000000ull});
340     double a = dist(urbg);
341     EXPECT_EQ(a, 0.5);
342   }
343 
344   {
345     // This returns the largest value <1 from absl::uniform_real_distribution.
346     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull});
347     double a = dist(urbg);
348     EXPECT_EQ(a, 0.999999999999999888978);
349   }
350   {
351     // This *ALSO* returns the largest value <1.
352     absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull});
353     double a = dist(urbg);
354     EXPECT_EQ(a, 0.999999999999999888978);
355   }
356 }
357 
358 }  // namespace
359