• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2021 The Abseil Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
16 #define ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
17 
18 #include <cassert>
19 #include <cstdint>
20 #include <iosfwd>
21 
22 #include "absl/base/config.h"
23 #include "absl/base/internal/raw_logging.h"
24 #include "absl/base/optimization.h"
25 #include "absl/strings/internal/cord_internal.h"
26 #include "absl/strings/internal/cord_rep_flat.h"
27 #include "absl/strings/string_view.h"
28 #include "absl/types/span.h"
29 
30 namespace absl {
31 ABSL_NAMESPACE_BEGIN
32 namespace cord_internal {
33 
34 class CordRepBtreeNavigator;
35 
36 // CordRepBtree is as the name implies a btree implementation of a Cordrep tree.
37 // Data is stored at the leaf level only, non leaf nodes contain down pointers
38 // only. Allowed types of data edges are FLAT, EXTERNAL and SUBSTRINGs of FLAT
39 // or EXTERNAL nodes. The implementation allows for data to be added to either
40 // end of the tree only, it does not provide any 'insert' logic. This has the
41 // benefit that we can expect good fill ratios: all nodes except the outer
42 // 'legs' will have 100% fill ratios for trees built using Append/Prepend
43 // methods. Merged trees will typically have a fill ratio well above 50% as in a
44 // similar fashion, one side of the merged tree will typically have a 100% fill
45 // ratio, and the 'open' end will average 50%. All operations are O(log(n)) or
46 // better, and the tree never needs balancing.
47 //
48 // All methods accepting a CordRep* or CordRepBtree* adopt a reference on that
49 // input unless explicitly stated otherwise. All functions returning a CordRep*
50 // or CordRepBtree* instance transfer a reference back to the caller.
51 // Simplified, callers both 'donate' and 'consume' a reference count on each
52 // call, simplifying the API. An example of building a tree:
53 //
54 //   CordRepBtree* tree = CordRepBtree::Create(MakeFlat("Hello"));
55 //   tree = CordRepBtree::Append(tree, MakeFlat("world"));
56 //
57 // In the above example, all inputs are consumed, making each call affecting
58 // `tree` reference count neutral. The returned `tree` value can be different
59 // from the input if the input is shared with other threads, or if the tree
60 // grows in height, but callers typically never have to concern themselves with
61 // that and trust that all methods DTRT at all times.
62 class CordRepBtree : public CordRep {
63  public:
64   // EdgeType identifies `front` and `back` enum values.
65   // Various implementations in CordRepBtree such as `Add` and `Edge` are
66   // generic and templated on operating on either of the boundary edges.
67   // For more information on the possible edges contained in a CordRepBtree
68   // instance see the documentation for `edges_`.
69   enum class EdgeType { kFront, kBack };
70 
71   // Convenience constants into `EdgeType`
72   static constexpr EdgeType kFront = EdgeType::kFront;
73   static constexpr EdgeType kBack = EdgeType::kBack;
74 
75   // Maximum number of edges: based on experiments and performance data, we can
76   // pick suitable values resulting in optimum cacheline aligned values. The
77   // preferred values are based on 64-bit systems where we aim to align this
78   // class onto 64 bytes, i.e.:  6 = 64 bytes, 14 = 128 bytes, etc.
79   // TODO(b/192061034): experiment with alternative sizes.
80   static constexpr size_t kMaxCapacity = 6;
81 
82   // Reasonable maximum height of the btree. We can expect a fill ratio of at
83   // least 50%: trees are always expanded at the front or back. Concatenating
84   // trees will then typically fold at the top most node, where the lower nodes
85   // are at least at capacity on one side of joined inputs. At a lower fill
86   // rate of 4 edges per node, we have capacity for ~16 million leaf nodes.
87   // We will fail / abort if an application ever exceeds this height, which
88   // should be extremely rare (near impossible) and be an indication of an
89   // application error: we do not assume it reasonable for any application to
90   // operate correctly with such monster trees.
91   // Another compelling reason for the number `12` is that any contextual stack
92   // required for navigation or insertion requires 12 words and 12 bytes, which
93   // fits inside 2 cache lines with some room to spare, and is reasonable as a
94   // local stack variable compared to Cord's current near 400 bytes stack use.
95   // The maximum `height` value of a node is then `kMaxDepth - 1` as node height
96   // values start with a value of 0 for leaf nodes.
97   static constexpr int kMaxDepth = 12;
98   static constexpr int kMaxHeight = kMaxDepth - 1;
99 
100   // `Action` defines the action for unwinding changes done at the btree's leaf
101   // level that need to be propagated up to the parent node(s). Each operation
102   // on a node has an effect / action defined as follows:
103   // - kSelf
104   //   The operation (add / update, etc) was performed directly on the node as
105   //   the node is private to the current thread (i.e.: not shared directly or
106   //   indirectly through a refcount > 1). Changes can be propagated directly to
107   //   all parent nodes as all parent nodes are also then private to the current
108   //   thread.
109   // - kCopied
110   //   The operation (add / update, etc) was performed on a copy of the original
111   //   node, as the node is (potentially) directly or indirectly shared with
112   //   other threads. Changes need to be propagated into the parent nodes where
113   //   the old down pointer must be unreffed and replaced with this new copy.
114   //   Such changes to parent nodes may themselves require a copy if the parent
115   //   node is also shared. A kCopied action can propagate all the way to the
116   //   top node where we then must unref the `tree` input provided by the
117   //   caller, and return the new copy.
118   // - kPopped
119   //   The operation (typically add) could not be satisfied due to insufficient
120   //   capacity in the targeted node, and a new 'leg' was created that needs to
121   //   be added into the parent node. For example, adding a FLAT inside a leaf
122   //   node that is at capacity will create a new leaf node containing that
123   //   FLAT, that needs to be 'popped' up the btree. Such 'pop' actions can
124   //   cascade up the tree if parent nodes are also at capacity. A 'Popped'
125   //   action propagating all the way to the top of the tree will result in
126   //   the tree becoming one level higher than the current tree through a final
127   //   `CordRepBtree::New(tree, popped)` call, resulting in a new top node
128   //   referencing the old tree and the new (fully popped upwards) 'leg'.
129   enum Action { kSelf, kCopied, kPopped };
130 
131   // Result of an operation on a node. See the `Action` enum for details.
132   struct OpResult {
133     CordRepBtree* tree;
134     Action action;
135   };
136 
137   // Return value of the CopyPrefix and CopySuffix methods which can
138   // return a node or data edge at any height inside the tree.
139   // A height of 0 defines the lowest (leaf) node, a height of -1 identifies
140   // `edge` as being a plain data node: EXTERNAL / FLAT or SUBSTRING thereof.
141   struct CopyResult {
142     CordRep* edge;
143     int height;
144   };
145 
146   // Logical position inside a node:
147   // - index: index of the edge.
148   // - n: size or offset value depending on context.
149   struct Position {
150     size_t index;
151     size_t n;
152   };
153 
154   // Creates a btree from the given input. Adopts a ref of `rep`.
155   // If the input `rep` is itself a btree, i.e., `IsBtree()`, then this
156   // function immediately returns `rep->btree()`. If the input is a valid data
157   // edge (see IsDataEdge()), then a new leaf node is returned containing `rep`
158   // as the sole data edge. Else, the input is assumed to be a (legacy) concat
159   // tree, and the input is consumed and transformed into a btree().
160   static CordRepBtree* Create(CordRep* rep);
161 
162   // Destroys the provided tree. Should only be called by cord internal API's,
163   // typically after a ref_count.Decrement() on the last reference count.
164   static void Destroy(CordRepBtree* tree);
165 
166   // Use CordRep::Unref() as we overload for absl::Span<CordRep* const>.
167   using CordRep::Unref;
168 
169   // Unrefs all edges in `edges` which are assumed to be 'likely one'.
170   static void Unref(absl::Span<CordRep* const> edges);
171 
172   // Appends / Prepends an existing CordRep instance to this tree.
173   // The below methods accept three types of input:
174   // 1) `rep` is a data node (See `IsDataNode` for valid data edges).
175   // `rep` is appended or prepended to this tree 'as is'.
176   // 2) `rep` is a BTREE.
177   // `rep` is merged into `tree` respecting the Append/Prepend order.
178   // 3) `rep` is some other (legacy) type.
179   // `rep` is converted in place and added to `tree`
180   // Requires `tree` and `rep` to be not null.
181   static CordRepBtree* Append(CordRepBtree* tree, CordRep* rep);
182   static CordRepBtree* Prepend(CordRepBtree* tree, CordRep* rep);
183 
184   // Append/Prepend the data in `data` to this tree.
185   // The `extra` parameter defines how much extra capacity should be allocated
186   // for any additional FLAT being allocated. This is an optimization hint from
187   // the caller. For example, a caller may need to add 2 string_views of data
188   // "abc" and "defghi" which are not consecutive. The caller can in this case
189   // invoke `AddData(tree, "abc", 6)`, and any newly added flat is allocated
190   // where possible with at least 6 bytes of extra capacity beyond `length`.
191   // This helps avoiding data getting fragmented over multiple flats.
192   // There is no limit on the size of `data`. If `data` can not be stored inside
193   // a single flat, then the function will iteratively add flats until all data
194   // has been consumed and appended or prepended to the tree.
195   static CordRepBtree* Append(CordRepBtree* tree, string_view data,
196                               size_t extra = 0);
197   static CordRepBtree* Prepend(CordRepBtree* tree, string_view data,
198                                size_t extra = 0);
199 
200   // Returns a new tree, containing `n` bytes of data from this instance
201   // starting at offset `offset`. Where possible, the returned tree shares
202   // (re-uses) data edges and nodes with this instance to minimize the
203   // combined memory footprint of both trees.
204   // Requires `offset + n <= length`. Returns `nullptr` if `n` is zero.
205   CordRep* SubTree(size_t offset, size_t n);
206 
207   // Removes `n` trailing bytes from `tree`, and returns the resulting tree
208   // or data edge. Returns `tree` if n is zero, and nullptr if n == length.
209   // This function is logically identical to:
210   //   result = tree->SubTree(0, tree->length - n);
211   //   Unref(tree);
212   //   return result;
213   // However, the actual implementation will as much as possible perform 'in
214   // place' modifications on the tree on all nodes and edges that are mutable.
215   // For example, in a fully privately owned tree with the last edge being a
216   // flat of length 12, RemoveSuffix(1) will simply set the length of that data
217   // edge to 11, and reduce the length of all nodes on the edge path by 1.
218   static CordRep* RemoveSuffix(CordRepBtree* tree, size_t n);
219 
220   // Returns the character at the given offset.
221   char GetCharacter(size_t offset) const;
222 
223   // Returns true if this node holds a single data edge, and if so, sets
224   // `fragment` to reference the contained data. `fragment` is an optional
225   // output parameter and allowed to be null.
226   bool IsFlat(absl::string_view* fragment) const;
227 
228   // Returns true if the data of `n` bytes starting at offset `offset`
229   // is contained in a single data edge, and if so, sets fragment to reference
230   // the contained data. `fragment` is an optional output parameter and allowed
231   // to be null.
232   bool IsFlat(size_t offset, size_t n, absl::string_view* fragment) const;
233 
234   // Returns a span (mutable range of bytes) of up to `size` bytes into the
235   // last FLAT data edge inside this tree under the following conditions:
236   // - none of the nodes down into the FLAT node are shared.
237   // - the last data edge in this tree is a non-shared FLAT.
238   // - the referenced FLAT has additional capacity available.
239   // If all these conditions are met, a non-empty span is returned, and the
240   // length of the flat node and involved tree nodes have been increased by
241   // `span.length()`. The caller is responsible for immediately assigning values
242   // to all uninitialized data reference by the returned span.
243   // Requires `this->refcount.IsMutable()`: this function forces the
244   // caller to do this fast path check on the top level node, as this is the
245   // most commonly shared node of a cord tree.
246   Span<char> GetAppendBuffer(size_t size);
247 
248   // Returns the `height` of the tree. The height of a tree is limited to
249   // kMaxHeight. `height` is implemented as an `int` as in some places we
250   // use negative (-1) values for 'data edges'.
height()251   int height() const { return static_cast<int>(storage[0]); }
252 
253   // Properties: begin, back, end, front/back boundary indexes.
begin()254   size_t begin() const { return static_cast<size_t>(storage[1]); }
back()255   size_t back() const { return static_cast<size_t>(storage[2]) - 1; }
end()256   size_t end() const { return static_cast<size_t>(storage[2]); }
index(EdgeType edge)257   size_t index(EdgeType edge) const {
258     return edge == kFront ? begin() : back();
259   }
260 
261   // Properties: size and capacity.
262   // `capacity` contains the current capacity of this instance, where
263   // `kMaxCapacity` contains the maximum capacity of a btree node.
264   // For now, `capacity` and `kMaxCapacity` return the same value, but this may
265   // change in the future if we see benefit in dynamically sizing 'small' nodes
266   // to 'large' nodes for large data trees.
size()267   size_t size() const { return end() - begin(); }
capacity()268   size_t capacity() const { return kMaxCapacity; }
269 
270   // Edge access
271   inline CordRep* Edge(size_t index) const;
272   inline CordRep* Edge(EdgeType edge_type) const;
273   inline absl::Span<CordRep* const> Edges() const;
274   inline absl::Span<CordRep* const> Edges(size_t begin, size_t end) const;
275 
276   // Returns reference to the data edge at `index`.
277   // Requires this instance to be a leaf node, and `index` to be valid index.
278   inline absl::string_view Data(size_t index) const;
279 
280   static const char* EdgeDataPtr(const CordRep* r);
281   static absl::string_view EdgeData(const CordRep* r);
282 
283   // Returns true if the provided rep is a FLAT, EXTERNAL or a SUBSTRING node
284   // holding a FLAT or EXTERNAL child rep.
285   static bool IsDataEdge(const CordRep* rep);
286 
287   // Diagnostics: returns true if `tree` is valid and internally consistent.
288   // If `shallow` is false, then the provided top level node and all child nodes
289   // below it are recursively checked. If `shallow` is true, only the provided
290   // node in `tree` and the cumulative length, type and height of the direct
291   // child nodes of `tree` are checked. The value of `shallow` is ignored if the
292   // internal `cord_btree_exhaustive_validation` diagnostics variable is true,
293   // in which case the performed validations works as if `shallow` were false.
294   // This function is intended for debugging and testing purposes only.
295   static bool IsValid(const CordRepBtree* tree, bool shallow = false);
296 
297   // Diagnostics: asserts that the provided tree is valid.
298   // `AssertValid()` performs a shallow validation by default. `shallow` can be
299   // set to false in which case an exhaustive validation is performed. This
300   // function is implemented in terms of calling `IsValid()` and asserting the
301   // return value to be true. See `IsValid()` for more information.
302   // This function is intended for debugging and testing purposes only.
303   static CordRepBtree* AssertValid(CordRepBtree* tree, bool shallow = true);
304   static const CordRepBtree* AssertValid(const CordRepBtree* tree,
305                                          bool shallow = true);
306 
307   // Diagnostics: dump the contents of this tree to `stream`.
308   // This function is intended for debugging and testing purposes only.
309   static void Dump(const CordRep* rep, std::ostream& stream);
310   static void Dump(const CordRep* rep, absl::string_view label,
311                    std::ostream& stream);
312   static void Dump(const CordRep* rep, absl::string_view label,
313                    bool include_contents, std::ostream& stream);
314 
315   // Adds the edge `edge` to this node if possible. `owned` indicates if the
316   // current node is potentially shared or not with other threads. Returns:
317   // - {kSelf, <this>}
318   //   The edge was directly added to this node.
319   // - {kCopied, <node>}
320   //   The edge was added to a copy of this node.
321   // - {kPopped, New(edge, height())}
322   //   A new leg with the edge was created as this node has no extra capacity.
323   template <EdgeType edge_type>
324   inline OpResult AddEdge(bool owned, CordRep* edge, size_t delta);
325 
326   // Replaces the front or back edge with the provided new edge. Returns:
327   // - {kSelf, <this>}
328   //   The edge was directly set in this node. The old edge is unreffed.
329   // - {kCopied, <node>}
330   //   A copy of this node was created with the new edge value.
331   // In both cases, the function adopts a reference on `edge`.
332   template <EdgeType edge_type>
333   OpResult SetEdge(bool owned, CordRep* edge, size_t delta);
334 
335   // Creates a new empty node at the specified height.
336   static CordRepBtree* New(int height = 0);
337 
338   // Creates a new node containing `rep`, with the height being computed
339   // automatically based on the type of `rep`.
340   static CordRepBtree* New(CordRep* rep);
341 
342   // Creates a new node containing both `front` and `back` at height
343   // `front.height() + 1`. Requires `back.height() == front.height()`.
344   static CordRepBtree* New(CordRepBtree* front, CordRepBtree* back);
345 
346   // Creates a fully balanced tree from the provided tree by rebuilding a new
347   // tree from all data edges in the input. This function is automatically
348   // invoked internally when the tree exceeds the maximum height.
349   static CordRepBtree* Rebuild(CordRepBtree* tree);
350 
351  private:
352   CordRepBtree() = default;
353   ~CordRepBtree() = default;
354 
355   // Initializes the main properties `tag`, `begin`, `end`, `height`.
356   inline void InitInstance(int height, size_t begin = 0, size_t end = 0);
357 
358   // Direct property access begin / end
set_begin(size_t begin)359   void set_begin(size_t begin) { storage[1] = static_cast<uint8_t>(begin); }
set_end(size_t end)360   void set_end(size_t end) { storage[2] = static_cast<uint8_t>(end); }
361 
362   // Decreases the value of `begin` by `n`, and returns the new value. Notice
363   // how this returns the new value unlike atomic::fetch_add which returns the
364   // old value. This is because this is used to prepend edges at 'begin - 1'.
sub_fetch_begin(size_t n)365   size_t sub_fetch_begin(size_t n) {
366     storage[1] -= static_cast<uint8_t>(n);
367     return storage[1];
368   }
369 
370   // Increases the value of `end` by `n`, and returns the previous value. This
371   // function is typically used to append edges at 'end'.
fetch_add_end(size_t n)372   size_t fetch_add_end(size_t n) {
373     const uint8_t current = storage[2];
374     storage[2] = static_cast<uint8_t>(current + n);
375     return current;
376   }
377 
378   // Returns the index of the last edge starting on, or before `offset`, with
379   // `n` containing the relative offset of `offset` inside that edge.
380   // Requires `offset` < length.
381   Position IndexOf(size_t offset) const;
382 
383   // Returns the index of the last edge starting before `offset`, with `n`
384   // containing the relative offset of `offset` inside that edge.
385   // This function is useful to find the edges for some span of bytes ending at
386   // `offset` (i.e., `n` bytes). For example:
387   //
388   //   Position pos = IndexBefore(n)
389   //   edges = Edges(begin(), pos.index)     // All full edges (may be empty)
390   //   last = Sub(Edge(pos.index), 0, pos.n) // Last partial edge (may be empty)
391   //
392   // Requires 0 < `offset` <= length.
393   Position IndexBefore(size_t offset) const;
394 
395   // Returns the index of the edge ending at (or on) length `length`, and the
396   // number of bytes inside that edge up to `length`. For example, if we have a
397   // Node with 2 edges, one of 10 and one of 20 long, then IndexOfLength(27)
398   // will return {1, 17}, and IndexOfLength(10) will return {0, 10}.
399   Position IndexOfLength(size_t n) const;
400 
401   // Identical to the above function except starting from the position `front`.
402   // This function is equivalent to `IndexBefore(front.n + offset)`, with
403   // the difference that this function is optimized to start at `front.index`.
404   Position IndexBefore(Position front, size_t offset) const;
405 
406   // Returns the index of the edge directly beyond the edge containing offset
407   // `offset`, with `n` containing the distance of that edge from `offset`.
408   // This function is useful for iteratively finding suffix nodes and remaining
409   // partial bytes in left-most suffix nodes as for example in CopySuffix.
410   // Requires `offset` < length.
411   Position IndexBeyond(size_t offset) const;
412 
413   // Destruction
414   static void DestroyLeaf(CordRepBtree* tree, size_t begin, size_t end);
415   static void DestroyNonLeaf(CordRepBtree* tree, size_t begin, size_t end);
416   static void DestroyTree(CordRepBtree* tree, size_t begin, size_t end);
Delete(CordRepBtree * tree)417   static void Delete(CordRepBtree* tree) { delete tree; }
418 
419   // Creates a new leaf node containing as much data as possible from `data`.
420   // The data is added either forwards or reversed depending on `edge_type`.
421   // Callers must check the length of the returned node to determine if all data
422   // was copied or not.
423   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
424   template <EdgeType edge_type>
425   static CordRepBtree* NewLeaf(absl::string_view data, size_t extra);
426 
427   // Creates a raw copy of this Btree node, copying all properties, but
428   // without adding any references to existing edges.
429   CordRepBtree* CopyRaw() const;
430 
431   // Creates a full copy of this Btree node, adding a reference on all edges.
432   CordRepBtree* Copy() const;
433 
434   // Creates a partial copy of this Btree node, copying all edges up to `end`,
435   // adding a reference on each copied edge, and sets the length of the newly
436   // created copy to `new_length`.
437   CordRepBtree* CopyBeginTo(size_t end, size_t new_length) const;
438 
439   // Returns a tree containing the edges [tree->begin(), end) and length
440   // of `new_length`. This method consumes a reference on the provided
441   // tree, and logically performs the following operation:
442   //   result = tree->CopyBeginTo(end, new_length);
443   //   CordRep::Unref(tree);
444   //   return result;
445   static CordRepBtree* ConsumeBeginTo(CordRepBtree* tree, size_t end,
446                                       size_t new_length);
447 
448   // Creates a partial copy of this Btree node, copying all edges starting at
449   // `begin`, adding a reference on each copied edge, and sets the length of
450   // the newly created copy to `new_length`.
451   CordRepBtree* CopyToEndFrom(size_t begin, size_t new_length) const;
452 
453   // Extracts and returns the front edge from the provided tree.
454   // This method consumes a reference on the provided tree, and logically
455   // performs the following operation:
456   //   edge = CordRep::Ref(tree->Edge(kFront));
457   //   CordRep::Unref(tree);
458   //   return edge;
459   static CordRep* ExtractFront(CordRepBtree* tree);
460 
461   // Returns a tree containing the result of appending `right` to `left`.
462   static CordRepBtree* MergeTrees(CordRepBtree* left, CordRepBtree* right);
463 
464   // Fallback functions for `Create()`, `Append()` and `Prepend()` which
465   // deal with legacy / non conforming input, i.e.: CONCAT trees.
466   static CordRepBtree* CreateSlow(CordRep* rep);
467   static CordRepBtree* AppendSlow(CordRepBtree*, CordRep* rep);
468   static CordRepBtree* PrependSlow(CordRepBtree*, CordRep* rep);
469 
470   // Recursively rebuilds `tree` into `stack`. If 'consume` is set to true, the
471   // function will consume a reference on `tree`. `stack` is a null terminated
472   // array containing the new tree's state, with the current leaf node at
473   // stack[0], and parent nodes above that, or null for 'top of tree'.
474   static void Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume);
475 
476   // Aligns existing edges to start at index 0, to allow for a new edge to be
477   // added to the back of the current edges.
478   inline void AlignBegin();
479 
480   // Aligns existing edges to end at `capacity`, to allow for a new edge to be
481   // added in front of the current edges.
482   inline void AlignEnd();
483 
484   // Adds the provided edge to this node.
485   // Requires this node to have capacity for the edge. Realigns / moves
486   // existing edges as needed to prepend or append the new edge.
487   template <EdgeType edge_type>
488   inline void Add(CordRep* rep);
489 
490   // Adds the provided edges to this node.
491   // Requires this node to have capacity for the edges. Realigns / moves
492   // existing edges as needed to prepend or append the new edges.
493   template <EdgeType edge_type>
494   inline void Add(absl::Span<CordRep* const>);
495 
496   // Adds data from `data` to this node until either all data has been consumed,
497   // or there is no more capacity for additional flat nodes inside this node.
498   // Requires the current node to be a leaf node, data to be non empty, and the
499   // current node to have capacity for at least one more data edge.
500   // Returns any remaining data from `data` that was not added, which is
501   // depending on the edge type (front / back) either the remaining prefix of
502   // suffix of the input.
503   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
504   template <EdgeType edge_type>
505   absl::string_view AddData(absl::string_view data, size_t extra);
506 
507   // Replace the front or back edge with the provided value.
508   // Adopts a reference on `edge` and unrefs the old edge.
509   template <EdgeType edge_type>
510   inline void SetEdge(CordRep* edge);
511 
512   // Returns a partial copy of the current tree containing the first `n` bytes
513   // of data. `CopyResult` contains both the resulting edge and its height. The
514   // resulting tree may be less high than the current tree, or even be a single
515   // matching data edge if `allow_folding` is set to true.
516   // For example, if `n == 1`, then the result will be the single data edge, and
517   // height will be set to -1 (one below the owning leaf node). If n == 0, this
518   // function returns null. Requires `n <= length`
519   CopyResult CopyPrefix(size_t n, bool allow_folding = true);
520 
521   // Returns a partial copy of the current tree containing all data starting
522   // after `offset`. `CopyResult` contains both the resulting edge and its
523   // height. The resulting tree may be less high than the current tree, or even
524   // be a single matching data edge. For example, if `n == length - 1`, then the
525   // result will be a single data edge, and height will be set to -1 (one below
526   // the owning leaf node).
527   // Requires `offset < length`
528   CopyResult CopySuffix(size_t offset);
529 
530   // Returns a OpResult value of {this, kSelf} or {Copy(), kCopied}
531   // depending on the value of `owned`.
532   inline OpResult ToOpResult(bool owned);
533 
534   // Adds `rep` to the specified tree, returning the modified tree.
535   template <EdgeType edge_type>
536   static CordRepBtree* AddCordRep(CordRepBtree* tree, CordRep* rep);
537 
538   // Adds `data` to the specified tree, returning the modified tree.
539   // See the `Append/Prepend` function for the meaning and purpose of `extra`.
540   template <EdgeType edge_type>
541   static CordRepBtree* AddData(CordRepBtree* tree, absl::string_view data,
542                                size_t extra = 0);
543 
544   // Merges `src` into `dst` with `src` being added either before (kFront) or
545   // after (kBack) `dst`. Requires the height of `dst` to be greater than or
546   // equal to the height of `src`.
547   template <EdgeType edge_type>
548   static CordRepBtree* Merge(CordRepBtree* dst, CordRepBtree* src);
549 
550   // Fallback version of GetAppendBuffer for large trees: GetAppendBuffer()
551   // implements an inlined version for trees of limited height (3 levels),
552   // GetAppendBufferSlow implements the logic for large trees.
553   Span<char> GetAppendBufferSlow(size_t size);
554 
555   // `edges_` contains all edges starting from this instance.
556   // These are explicitly `child` edges only, a cord btree (or any cord tree in
557   // that respect) does not store `parent` pointers anywhere: multiple trees /
558   // parents can reference the same shared child edge. The type of these edges
559   // depends on the height of the node. `Leaf nodes` (height == 0) contain `data
560   // edges` (external or flat nodes, or sub-strings thereof). All other nodes
561   // (height > 0) contain pointers to BTREE nodes with a height of `height - 1`.
562   CordRep* edges_[kMaxCapacity];
563 
564   friend class CordRepBtreeTestPeer;
565   friend class CordRepBtreeNavigator;
566 };
567 
btree()568 inline CordRepBtree* CordRep::btree() {
569   assert(IsBtree());
570   return static_cast<CordRepBtree*>(this);
571 }
572 
btree()573 inline const CordRepBtree* CordRep::btree() const {
574   assert(IsBtree());
575   return static_cast<const CordRepBtree*>(this);
576 }
577 
InitInstance(int height,size_t begin,size_t end)578 inline void CordRepBtree::InitInstance(int height, size_t begin, size_t end) {
579   tag = BTREE;
580   storage[0] = static_cast<uint8_t>(height);
581   storage[1] = static_cast<uint8_t>(begin);
582   storage[2] = static_cast<uint8_t>(end);
583 }
584 
Edge(size_t index)585 inline CordRep* CordRepBtree::Edge(size_t index) const {
586   assert(index >= begin());
587   assert(index < end());
588   return edges_[index];
589 }
590 
Edge(EdgeType edge_type)591 inline CordRep* CordRepBtree::Edge(EdgeType edge_type) const {
592   return edges_[edge_type == kFront ? begin() : back()];
593 }
594 
Edges()595 inline absl::Span<CordRep* const> CordRepBtree::Edges() const {
596   return {edges_ + begin(), size()};
597 }
598 
Edges(size_t begin,size_t end)599 inline absl::Span<CordRep* const> CordRepBtree::Edges(size_t begin,
600                                                       size_t end) const {
601   assert(begin <= end);
602   assert(begin >= this->begin());
603   assert(end <= this->end());
604   return {edges_ + begin, static_cast<size_t>(end - begin)};
605 }
606 
EdgeDataPtr(const CordRep * r)607 inline const char* CordRepBtree::EdgeDataPtr(const CordRep* r) {
608   assert(IsDataEdge(r));
609   size_t offset = 0;
610   if (r->tag == SUBSTRING) {
611     offset = r->substring()->start;
612     r = r->substring()->child;
613   }
614   return (r->tag >= FLAT ? r->flat()->Data() : r->external()->base) + offset;
615 }
616 
EdgeData(const CordRep * r)617 inline absl::string_view CordRepBtree::EdgeData(const CordRep* r) {
618   return absl::string_view(EdgeDataPtr(r), r->length);
619 }
620 
Data(size_t index)621 inline absl::string_view CordRepBtree::Data(size_t index) const {
622   assert(height() == 0);
623   return EdgeData(Edge(index));
624 }
625 
IsDataEdge(const CordRep * rep)626 inline bool CordRepBtree::IsDataEdge(const CordRep* rep) {
627   // The fast path is that `rep` is an EXTERNAL or FLAT node, making the below
628   // if a single, well predicted branch. We then repeat the FLAT or EXTERNAL
629   // check in the slow path the SUBSTRING check to optimize for the hot path.
630   if (rep->tag == EXTERNAL || rep->tag >= FLAT) return true;
631   if (rep->tag == SUBSTRING) rep = rep->substring()->child;
632   return rep->tag == EXTERNAL || rep->tag >= FLAT;
633 }
634 
New(int height)635 inline CordRepBtree* CordRepBtree::New(int height) {
636   CordRepBtree* tree = new CordRepBtree;
637   tree->length = 0;
638   tree->InitInstance(height);
639   return tree;
640 }
641 
New(CordRep * rep)642 inline CordRepBtree* CordRepBtree::New(CordRep* rep) {
643   CordRepBtree* tree = new CordRepBtree;
644   int height = rep->IsBtree() ? rep->btree()->height() + 1 : 0;
645   tree->length = rep->length;
646   tree->InitInstance(height, /*begin=*/0, /*end=*/1);
647   tree->edges_[0] = rep;
648   return tree;
649 }
650 
New(CordRepBtree * front,CordRepBtree * back)651 inline CordRepBtree* CordRepBtree::New(CordRepBtree* front,
652                                        CordRepBtree* back) {
653   assert(front->height() == back->height());
654   CordRepBtree* tree = new CordRepBtree;
655   tree->length = front->length + back->length;
656   tree->InitInstance(front->height() + 1, /*begin=*/0, /*end=*/2);
657   tree->edges_[0] = front;
658   tree->edges_[1] = back;
659   return tree;
660 }
661 
DestroyTree(CordRepBtree * tree,size_t begin,size_t end)662 inline void CordRepBtree::DestroyTree(CordRepBtree* tree, size_t begin,
663                                       size_t end) {
664   if (tree->height() == 0) {
665     DestroyLeaf(tree, begin, end);
666   } else {
667     DestroyNonLeaf(tree, begin, end);
668   }
669 }
670 
Destroy(CordRepBtree * tree)671 inline void CordRepBtree::Destroy(CordRepBtree* tree) {
672   DestroyTree(tree, tree->begin(), tree->end());
673 }
674 
Unref(absl::Span<CordRep * const> edges)675 inline void CordRepBtree::Unref(absl::Span<CordRep* const> edges) {
676   for (CordRep* edge : edges) {
677     if (ABSL_PREDICT_FALSE(!edge->refcount.Decrement())) {
678       CordRep::Destroy(edge);
679     }
680   }
681 }
682 
CopyRaw()683 inline CordRepBtree* CordRepBtree::CopyRaw() const {
684   auto* tree = static_cast<CordRepBtree*>(::operator new(sizeof(CordRepBtree)));
685   memcpy(static_cast<void*>(tree), this, sizeof(CordRepBtree));
686   new (&tree->refcount) RefcountAndFlags;
687   return tree;
688 }
689 
Copy()690 inline CordRepBtree* CordRepBtree::Copy() const {
691   CordRepBtree* tree = CopyRaw();
692   for (CordRep* rep : Edges()) CordRep::Ref(rep);
693   return tree;
694 }
695 
CopyToEndFrom(size_t begin,size_t new_length)696 inline CordRepBtree* CordRepBtree::CopyToEndFrom(size_t begin,
697                                                  size_t new_length) const {
698   assert(begin >= this->begin());
699   assert(begin <= this->end());
700   CordRepBtree* tree = CopyRaw();
701   tree->length = new_length;
702   tree->set_begin(begin);
703   for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
704   return tree;
705 }
706 
CopyBeginTo(size_t end,size_t new_length)707 inline CordRepBtree* CordRepBtree::CopyBeginTo(size_t end,
708                                                size_t new_length) const {
709   assert(end <= capacity());
710   assert(end >= this->begin());
711   CordRepBtree* tree = CopyRaw();
712   tree->length = new_length;
713   tree->set_end(end);
714   for (CordRep* edge : tree->Edges()) CordRep::Ref(edge);
715   return tree;
716 }
717 
AlignBegin()718 inline void CordRepBtree::AlignBegin() {
719   // The below code itself does not need to be fast as typically we have
720   // mono-directional append/prepend calls, and `begin` / `end` are typically
721   // adjusted no more than once. But we want to avoid potential register clobber
722   // effects, making the compiler emit register save/store/spills, and minimize
723   // the size of code.
724   const size_t delta = begin();
725   if (ABSL_PREDICT_FALSE(delta != 0)) {
726     const size_t new_end = end() - delta;
727     set_begin(0);
728     set_end(new_end);
729     // TODO(mvels): we can write this using 2 loads / 2 stores depending on
730     // total size for the kMaxCapacity = 6 case. I.e., we can branch (switch) on
731     // size, and then do overlapping load/store of up to 4 pointers (inlined as
732     // XMM, YMM or ZMM load/store) and up to 2 pointers (XMM / YMM), which is a)
733     // compact and b) not clobbering any registers.
734     ABSL_INTERNAL_ASSUME(new_end <= kMaxCapacity);
735 #ifdef __clang__
736 #pragma unroll 1
737 #endif
738     for (size_t i = 0; i < new_end; ++i) {
739       edges_[i] = edges_[i + delta];
740     }
741   }
742 }
743 
AlignEnd()744 inline void CordRepBtree::AlignEnd() {
745   // See comments in `AlignBegin` for motivation on the hand-rolled for loops.
746   const size_t delta = capacity() - end();
747   if (delta != 0) {
748     const size_t new_begin = begin() + delta;
749     const size_t new_end = end() + delta;
750     set_begin(new_begin);
751     set_end(new_end);
752     ABSL_INTERNAL_ASSUME(new_end <= kMaxCapacity);
753 #ifdef __clang__
754 #pragma unroll 1
755 #endif
756     for (size_t i = new_end - 1; i >= new_begin; --i) {
757       edges_[i] = edges_[i - delta];
758     }
759   }
760 }
761 
762 template <>
763 inline void CordRepBtree::Add<CordRepBtree::kBack>(CordRep* rep) {
764   AlignBegin();
765   edges_[fetch_add_end(1)] = rep;
766 }
767 
768 template <>
769 inline void CordRepBtree::Add<CordRepBtree::kBack>(
770     absl::Span<CordRep* const> edges) {
771   AlignBegin();
772   size_t new_end = end();
773   for (CordRep* edge : edges) edges_[new_end++] = edge;
774   set_end(new_end);
775 }
776 
777 template <>
778 inline void CordRepBtree::Add<CordRepBtree::kFront>(CordRep* rep) {
779   AlignEnd();
780   edges_[sub_fetch_begin(1)] = rep;
781 }
782 
783 template <>
784 inline void CordRepBtree::Add<CordRepBtree::kFront>(
785     absl::Span<CordRep* const> edges) {
786   AlignEnd();
787   size_t new_begin = begin() - edges.size();
788   set_begin(new_begin);
789   for (CordRep* edge : edges) edges_[new_begin++] = edge;
790 }
791 
792 template <CordRepBtree::EdgeType edge_type>
SetEdge(CordRep * edge)793 inline void CordRepBtree::SetEdge(CordRep* edge) {
794   const int idx = edge_type == kFront ? begin() : back();
795   CordRep::Unref(edges_[idx]);
796   edges_[idx] = edge;
797 }
798 
ToOpResult(bool owned)799 inline CordRepBtree::OpResult CordRepBtree::ToOpResult(bool owned) {
800   return owned ? OpResult{this, kSelf} : OpResult{Copy(), kCopied};
801 }
802 
IndexOf(size_t offset)803 inline CordRepBtree::Position CordRepBtree::IndexOf(size_t offset) const {
804   assert(offset < length);
805   size_t index = begin();
806   while (offset >= edges_[index]->length) offset -= edges_[index++]->length;
807   return {index, offset};
808 }
809 
IndexBefore(size_t offset)810 inline CordRepBtree::Position CordRepBtree::IndexBefore(size_t offset) const {
811   assert(offset > 0);
812   assert(offset <= length);
813   size_t index = begin();
814   while (offset > edges_[index]->length) offset -= edges_[index++]->length;
815   return {index, offset};
816 }
817 
IndexBefore(Position front,size_t offset)818 inline CordRepBtree::Position CordRepBtree::IndexBefore(Position front,
819                                                         size_t offset) const {
820   size_t index = front.index;
821   offset = offset + front.n;
822   while (offset > edges_[index]->length) offset -= edges_[index++]->length;
823   return {index, offset};
824 }
825 
IndexOfLength(size_t n)826 inline CordRepBtree::Position CordRepBtree::IndexOfLength(size_t n) const {
827   assert(n <= length);
828   size_t index = back();
829   size_t strip = length - n;
830   while (strip >= edges_[index]->length) strip -= edges_[index--]->length;
831   return {index, edges_[index]->length - strip};
832 }
833 
IndexBeyond(const size_t offset)834 inline CordRepBtree::Position CordRepBtree::IndexBeyond(
835     const size_t offset) const {
836   // We need to find the edge which `starting offset` is beyond (>=)`offset`.
837   // For this we can't use the `offset -= length` logic of IndexOf. Instead, we
838   // track the offset of the `current edge` in `off`, which we increase as we
839   // iterate over the edges until we find the matching edge.
840   size_t off = 0;
841   size_t index = begin();
842   while (offset > off) off += edges_[index++]->length;
843   return {index, off - offset};
844 }
845 
Create(CordRep * rep)846 inline CordRepBtree* CordRepBtree::Create(CordRep* rep) {
847   if (IsDataEdge(rep)) return New(rep);
848   return CreateSlow(rep);
849 }
850 
GetAppendBuffer(size_t size)851 inline Span<char> CordRepBtree::GetAppendBuffer(size_t size) {
852   assert(refcount.IsMutable());
853   CordRepBtree* tree = this;
854   const int height = this->height();
855   CordRepBtree* n1 = tree;
856   CordRepBtree* n2 = tree;
857   CordRepBtree* n3 = tree;
858   switch (height) {
859     case 3:
860       tree = tree->Edge(kBack)->btree();
861       if (!tree->refcount.IsMutable()) return {};
862       n2 = tree;
863       ABSL_FALLTHROUGH_INTENDED;
864     case 2:
865       tree = tree->Edge(kBack)->btree();
866       if (!tree->refcount.IsMutable()) return {};
867       n1 = tree;
868       ABSL_FALLTHROUGH_INTENDED;
869     case 1:
870       tree = tree->Edge(kBack)->btree();
871       if (!tree->refcount.IsMutable()) return {};
872       ABSL_FALLTHROUGH_INTENDED;
873     case 0:
874       CordRep* edge = tree->Edge(kBack);
875       if (!edge->refcount.IsMutable()) return {};
876       if (edge->tag < FLAT) return {};
877       size_t avail = edge->flat()->Capacity() - edge->length;
878       if (avail == 0) return {};
879       size_t delta = (std::min)(size, avail);
880       Span<char> span = {edge->flat()->Data() + edge->length, delta};
881       edge->length += delta;
882       switch (height) {
883         case 3:
884           n3->length += delta;
885           ABSL_FALLTHROUGH_INTENDED;
886         case 2:
887           n2->length += delta;
888           ABSL_FALLTHROUGH_INTENDED;
889         case 1:
890           n1->length += delta;
891           ABSL_FALLTHROUGH_INTENDED;
892         case 0:
893           tree->length += delta;
894           return span;
895       }
896       break;
897   }
898   return GetAppendBufferSlow(size);
899 }
900 
901 extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kBack>(
902     CordRepBtree* tree, CordRep* rep);
903 
904 extern template CordRepBtree* CordRepBtree::AddCordRep<CordRepBtree::kFront>(
905     CordRepBtree* tree, CordRep* rep);
906 
Append(CordRepBtree * tree,CordRep * rep)907 inline CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, CordRep* rep) {
908   if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
909     return CordRepBtree::AddCordRep<kBack>(tree, rep);
910   }
911   return AppendSlow(tree, rep);
912 }
913 
Prepend(CordRepBtree * tree,CordRep * rep)914 inline CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, CordRep* rep) {
915   if (ABSL_PREDICT_TRUE(IsDataEdge(rep))) {
916     return CordRepBtree::AddCordRep<kFront>(tree, rep);
917   }
918   return PrependSlow(tree, rep);
919 }
920 
921 #ifdef NDEBUG
922 
AssertValid(CordRepBtree * tree,bool)923 inline CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree,
924                                                bool /* shallow */) {
925   return tree;
926 }
927 
AssertValid(const CordRepBtree * tree,bool)928 inline const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree,
929                                                      bool /* shallow */) {
930   return tree;
931 }
932 
933 #endif
934 
935 }  // namespace cord_internal
936 ABSL_NAMESPACE_END
937 }  // namespace absl
938 
939 #endif  // ABSL_STRINGS_INTERNAL_CORD_REP_BTREE_H_
940