1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // This file implements the TimeZoneIf interface using the "zoneinfo"
16 // data provided by the IANA Time Zone Database (i.e., the only real game
17 // in town).
18 //
19 // TimeZoneInfo represents the history of UTC-offset changes within a time
20 // zone. Most changes are due to daylight-saving rules, but occasionally
21 // shifts are made to the time-zone's base offset. The database only attempts
22 // to be definitive for times since 1970, so be wary of local-time conversions
23 // before that. Also, rule and zone-boundary changes are made at the whim
24 // of governments, so the conversion of future times needs to be taken with
25 // a grain of salt.
26 //
27 // For more information see tzfile(5), http://www.iana.org/time-zones, or
28 // https://en.wikipedia.org/wiki/Zoneinfo.
29 //
30 // Note that we assume the proleptic Gregorian calendar and 60-second
31 // minutes throughout.
32
33 #include "time_zone_info.h"
34
35 #include <algorithm>
36 #include <cassert>
37 #include <chrono>
38 #include <cstdint>
39 #include <cstdio>
40 #include <cstdlib>
41 #include <cstring>
42 #include <fstream>
43 #include <functional>
44 #include <memory>
45 #include <sstream>
46 #include <string>
47 #include <utility>
48
49 #include "absl/base/config.h"
50 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
51 #include "time_zone_fixed.h"
52 #include "time_zone_posix.h"
53
54 namespace absl {
55 ABSL_NAMESPACE_BEGIN
56 namespace time_internal {
57 namespace cctz {
58
59 namespace {
60
IsLeap(year_t year)61 inline bool IsLeap(year_t year) {
62 return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0);
63 }
64
65 // The number of days in non-leap and leap years respectively.
66 const std::int_least32_t kDaysPerYear[2] = {365, 366};
67
68 // The day offsets of the beginning of each (1-based) month in non-leap and
69 // leap years respectively (e.g., 335 days before December in a leap year).
70 const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = {
71 {-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
72 {-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366},
73 };
74
75 // We reject leap-second encoded zoneinfo and so assume 60-second minutes.
76 const std::int_least32_t kSecsPerDay = 24 * 60 * 60;
77
78 // 400-year chunks always have 146097 days (20871 weeks).
79 const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay;
80
81 // Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay.
82 const std::int_least32_t kSecsPerYear[2] = {
83 365 * kSecsPerDay,
84 366 * kSecsPerDay,
85 };
86
87 // Convert a cctz::weekday to a POSIX TZ weekday number (0==Sun, ..., 6=Sat).
ToPosixWeekday(weekday wd)88 inline int ToPosixWeekday(weekday wd) {
89 switch (wd) {
90 case weekday::sunday:
91 return 0;
92 case weekday::monday:
93 return 1;
94 case weekday::tuesday:
95 return 2;
96 case weekday::wednesday:
97 return 3;
98 case weekday::thursday:
99 return 4;
100 case weekday::friday:
101 return 5;
102 case weekday::saturday:
103 return 6;
104 }
105 return 0; /*NOTREACHED*/
106 }
107
108 // Single-byte, unsigned numeric values are encoded directly.
Decode8(const char * cp)109 inline std::uint_fast8_t Decode8(const char* cp) {
110 return static_cast<std::uint_fast8_t>(*cp) & 0xff;
111 }
112
113 // Multi-byte, numeric values are encoded using a MSB first,
114 // twos-complement representation. These helpers decode, from
115 // the given address, 4-byte and 8-byte values respectively.
116 // Note: If int_fastXX_t == intXX_t and this machine is not
117 // twos complement, then there will be at least one input value
118 // we cannot represent.
Decode32(const char * cp)119 std::int_fast32_t Decode32(const char* cp) {
120 std::uint_fast32_t v = 0;
121 for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++);
122 const std::int_fast32_t s32max = 0x7fffffff;
123 const auto s32maxU = static_cast<std::uint_fast32_t>(s32max);
124 if (v <= s32maxU) return static_cast<std::int_fast32_t>(v);
125 return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1;
126 }
127
Decode64(const char * cp)128 std::int_fast64_t Decode64(const char* cp) {
129 std::uint_fast64_t v = 0;
130 for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++);
131 const std::int_fast64_t s64max = 0x7fffffffffffffff;
132 const auto s64maxU = static_cast<std::uint_fast64_t>(s64max);
133 if (v <= s64maxU) return static_cast<std::int_fast64_t>(v);
134 return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1;
135 }
136
137 // Generate a year-relative offset for a PosixTransition.
TransOffset(bool leap_year,int jan1_weekday,const PosixTransition & pt)138 std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday,
139 const PosixTransition& pt) {
140 std::int_fast64_t days = 0;
141 switch (pt.date.fmt) {
142 case PosixTransition::J: {
143 days = pt.date.j.day;
144 if (!leap_year || days < kMonthOffsets[1][3]) days -= 1;
145 break;
146 }
147 case PosixTransition::N: {
148 days = pt.date.n.day;
149 break;
150 }
151 case PosixTransition::M: {
152 const bool last_week = (pt.date.m.week == 5);
153 days = kMonthOffsets[leap_year][pt.date.m.month + last_week];
154 const std::int_fast64_t weekday = (jan1_weekday + days) % 7;
155 if (last_week) {
156 days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1;
157 } else {
158 days += (pt.date.m.weekday + 7 - weekday) % 7;
159 days += (pt.date.m.week - 1) * 7;
160 }
161 break;
162 }
163 }
164 return (days * kSecsPerDay) + pt.time.offset;
165 }
166
MakeUnique(const time_point<seconds> & tp)167 inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) {
168 time_zone::civil_lookup cl;
169 cl.kind = time_zone::civil_lookup::UNIQUE;
170 cl.pre = cl.trans = cl.post = tp;
171 return cl;
172 }
173
MakeUnique(std::int_fast64_t unix_time)174 inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) {
175 return MakeUnique(FromUnixSeconds(unix_time));
176 }
177
MakeSkipped(const Transition & tr,const civil_second & cs)178 inline time_zone::civil_lookup MakeSkipped(const Transition& tr,
179 const civil_second& cs) {
180 time_zone::civil_lookup cl;
181 cl.kind = time_zone::civil_lookup::SKIPPED;
182 cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec));
183 cl.trans = FromUnixSeconds(tr.unix_time);
184 cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs));
185 return cl;
186 }
187
MakeRepeated(const Transition & tr,const civil_second & cs)188 inline time_zone::civil_lookup MakeRepeated(const Transition& tr,
189 const civil_second& cs) {
190 time_zone::civil_lookup cl;
191 cl.kind = time_zone::civil_lookup::REPEATED;
192 cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs));
193 cl.trans = FromUnixSeconds(tr.unix_time);
194 cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec));
195 return cl;
196 }
197
YearShift(const civil_second & cs,year_t shift)198 inline civil_second YearShift(const civil_second& cs, year_t shift) {
199 return civil_second(cs.year() + shift, cs.month(), cs.day(), cs.hour(),
200 cs.minute(), cs.second());
201 }
202
203 } // namespace
204
205 // What (no leap-seconds) UTC+seconds zoneinfo would look like.
ResetToBuiltinUTC(const seconds & offset)206 bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) {
207 transition_types_.resize(1);
208 TransitionType& tt(transition_types_.back());
209 tt.utc_offset = static_cast<std::int_least32_t>(offset.count());
210 tt.is_dst = false;
211 tt.abbr_index = 0;
212
213 // We temporarily add some redundant, contemporary (2015 through 2025)
214 // transitions for performance reasons. See TimeZoneInfo::LocalTime().
215 // TODO: Fix the performance issue and remove the extra transitions.
216 transitions_.clear();
217 transitions_.reserve(12);
218 for (const std::int_fast64_t unix_time : {
219 -(1LL << 59), // a "first half" transition
220 1420070400LL, // 2015-01-01T00:00:00+00:00
221 1451606400LL, // 2016-01-01T00:00:00+00:00
222 1483228800LL, // 2017-01-01T00:00:00+00:00
223 1514764800LL, // 2018-01-01T00:00:00+00:00
224 1546300800LL, // 2019-01-01T00:00:00+00:00
225 1577836800LL, // 2020-01-01T00:00:00+00:00
226 1609459200LL, // 2021-01-01T00:00:00+00:00
227 1640995200LL, // 2022-01-01T00:00:00+00:00
228 1672531200LL, // 2023-01-01T00:00:00+00:00
229 1704067200LL, // 2024-01-01T00:00:00+00:00
230 1735689600LL, // 2025-01-01T00:00:00+00:00
231 }) {
232 Transition& tr(*transitions_.emplace(transitions_.end()));
233 tr.unix_time = unix_time;
234 tr.type_index = 0;
235 tr.civil_sec = LocalTime(tr.unix_time, tt).cs;
236 tr.prev_civil_sec = tr.civil_sec - 1;
237 }
238
239 default_transition_type_ = 0;
240 abbreviations_ = FixedOffsetToAbbr(offset);
241 abbreviations_.append(1, '\0');
242 future_spec_.clear(); // never needed for a fixed-offset zone
243 extended_ = false;
244
245 tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
246 tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
247
248 transitions_.shrink_to_fit();
249 return true;
250 }
251
252 // Builds the in-memory header using the raw bytes from the file.
Build(const tzhead & tzh)253 bool TimeZoneInfo::Header::Build(const tzhead& tzh) {
254 std::int_fast32_t v;
255 if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false;
256 timecnt = static_cast<std::size_t>(v);
257 if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false;
258 typecnt = static_cast<std::size_t>(v);
259 if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false;
260 charcnt = static_cast<std::size_t>(v);
261 if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false;
262 leapcnt = static_cast<std::size_t>(v);
263 if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false;
264 ttisstdcnt = static_cast<std::size_t>(v);
265 if ((v = Decode32(tzh.tzh_ttisutcnt)) < 0) return false;
266 ttisutcnt = static_cast<std::size_t>(v);
267 return true;
268 }
269
270 // How many bytes of data are associated with this header. The result
271 // depends upon whether this is a section with 4-byte or 8-byte times.
DataLength(std::size_t time_len) const272 std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const {
273 std::size_t len = 0;
274 len += (time_len + 1) * timecnt; // unix_time + type_index
275 len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index
276 len += 1 * charcnt; // abbreviations
277 len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC
278 len += 1 * ttisstdcnt; // UTC/local indicators
279 len += 1 * ttisutcnt; // standard/wall indicators
280 return len;
281 }
282
283 // zic(8) can generate no-op transitions when a zone changes rules at an
284 // instant when there is actually no discontinuity. So we check whether
285 // two transitions have equivalent types (same offset/is_dst/abbr).
EquivTransitions(std::uint_fast8_t tt1_index,std::uint_fast8_t tt2_index) const286 bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index,
287 std::uint_fast8_t tt2_index) const {
288 if (tt1_index == tt2_index) return true;
289 const TransitionType& tt1(transition_types_[tt1_index]);
290 const TransitionType& tt2(transition_types_[tt2_index]);
291 if (tt1.utc_offset != tt2.utc_offset) return false;
292 if (tt1.is_dst != tt2.is_dst) return false;
293 if (tt1.abbr_index != tt2.abbr_index) return false;
294 return true;
295 }
296
297 // Find/make a transition type with these attributes.
GetTransitionType(std::int_fast32_t utc_offset,bool is_dst,const std::string & abbr,std::uint_least8_t * index)298 bool TimeZoneInfo::GetTransitionType(std::int_fast32_t utc_offset, bool is_dst,
299 const std::string& abbr,
300 std::uint_least8_t* index) {
301 std::size_t type_index = 0;
302 std::size_t abbr_index = abbreviations_.size();
303 for (; type_index != transition_types_.size(); ++type_index) {
304 const TransitionType& tt(transition_types_[type_index]);
305 const char* tt_abbr = &abbreviations_[tt.abbr_index];
306 if (tt_abbr == abbr) abbr_index = tt.abbr_index;
307 if (tt.utc_offset == utc_offset && tt.is_dst == is_dst) {
308 if (abbr_index == tt.abbr_index) break; // reuse
309 }
310 }
311 if (type_index > 255 || abbr_index > 255) {
312 // No index space (8 bits) available for a new type or abbreviation.
313 return false;
314 }
315 if (type_index == transition_types_.size()) {
316 TransitionType& tt(*transition_types_.emplace(transition_types_.end()));
317 tt.utc_offset = static_cast<std::int_least32_t>(utc_offset);
318 tt.is_dst = is_dst;
319 if (abbr_index == abbreviations_.size()) {
320 abbreviations_.append(abbr);
321 abbreviations_.append(1, '\0');
322 }
323 tt.abbr_index = static_cast<std::uint_least8_t>(abbr_index);
324 }
325 *index = static_cast<std::uint_least8_t>(type_index);
326 return true;
327 }
328
329 // Use the POSIX-TZ-environment-variable-style string to handle times
330 // in years after the last transition stored in the zoneinfo data.
ExtendTransitions()331 bool TimeZoneInfo::ExtendTransitions() {
332 extended_ = false;
333 if (future_spec_.empty()) return true; // last transition prevails
334
335 PosixTimeZone posix;
336 if (!ParsePosixSpec(future_spec_, &posix)) return false;
337
338 // Find transition type for the future std specification.
339 std::uint_least8_t std_ti;
340 if (!GetTransitionType(posix.std_offset, false, posix.std_abbr, &std_ti))
341 return false;
342
343 if (posix.dst_abbr.empty()) { // std only
344 // The future specification should match the last transition, and
345 // that means that handling the future will fall out naturally.
346 return EquivTransitions(transitions_.back().type_index, std_ti);
347 }
348
349 // Find transition type for the future dst specification.
350 std::uint_least8_t dst_ti;
351 if (!GetTransitionType(posix.dst_offset, true, posix.dst_abbr, &dst_ti))
352 return false;
353
354 // Extend the transitions for an additional 400 years using the
355 // future specification. Years beyond those can be handled by
356 // mapping back to a cycle-equivalent year within that range.
357 // We may need two additional transitions for the current year.
358 transitions_.reserve(transitions_.size() + 400 * 2 + 2);
359 extended_ = true;
360
361 const Transition& last(transitions_.back());
362 const std::int_fast64_t last_time = last.unix_time;
363 const TransitionType& last_tt(transition_types_[last.type_index]);
364 last_year_ = LocalTime(last_time, last_tt).cs.year();
365 bool leap_year = IsLeap(last_year_);
366 const civil_second jan1(last_year_);
367 std::int_fast64_t jan1_time = jan1 - civil_second();
368 int jan1_weekday = ToPosixWeekday(get_weekday(jan1));
369
370 Transition dst = {0, dst_ti, civil_second(), civil_second()};
371 Transition std = {0, std_ti, civil_second(), civil_second()};
372 for (const year_t limit = last_year_ + 400;; ++last_year_) {
373 auto dst_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_start);
374 auto std_trans_off = TransOffset(leap_year, jan1_weekday, posix.dst_end);
375 dst.unix_time = jan1_time + dst_trans_off - posix.std_offset;
376 std.unix_time = jan1_time + std_trans_off - posix.dst_offset;
377 const auto* ta = dst.unix_time < std.unix_time ? &dst : &std;
378 const auto* tb = dst.unix_time < std.unix_time ? &std : &dst;
379 if (last_time < tb->unix_time) {
380 if (last_time < ta->unix_time) transitions_.push_back(*ta);
381 transitions_.push_back(*tb);
382 }
383 if (last_year_ == limit) break;
384 jan1_time += kSecsPerYear[leap_year];
385 jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7;
386 leap_year = !leap_year && IsLeap(last_year_ + 1);
387 }
388
389 return true;
390 }
391
Load(ZoneInfoSource * zip)392 bool TimeZoneInfo::Load(ZoneInfoSource* zip) {
393 // Read and validate the header.
394 tzhead tzh;
395 if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
396 if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
397 return false;
398 Header hdr;
399 if (!hdr.Build(tzh)) return false;
400 std::size_t time_len = 4;
401 if (tzh.tzh_version[0] != '\0') {
402 // Skip the 4-byte data.
403 if (zip->Skip(hdr.DataLength(time_len)) != 0) return false;
404 // Read and validate the header for the 8-byte data.
405 if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) return false;
406 if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0)
407 return false;
408 if (tzh.tzh_version[0] == '\0') return false;
409 if (!hdr.Build(tzh)) return false;
410 time_len = 8;
411 }
412 if (hdr.typecnt == 0) return false;
413 if (hdr.leapcnt != 0) {
414 // This code assumes 60-second minutes so we do not want
415 // the leap-second encoded zoneinfo. We could reverse the
416 // compensation, but the "right" encoding is rarely used
417 // so currently we simply reject such data.
418 return false;
419 }
420 if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) return false;
421 if (hdr.ttisutcnt != 0 && hdr.ttisutcnt != hdr.typecnt) return false;
422
423 // Read the data into a local buffer.
424 std::size_t len = hdr.DataLength(time_len);
425 std::vector<char> tbuf(len);
426 if (zip->Read(tbuf.data(), len) != len) return false;
427 const char* bp = tbuf.data();
428
429 // Decode and validate the transitions.
430 transitions_.reserve(hdr.timecnt + 2);
431 transitions_.resize(hdr.timecnt);
432 for (std::size_t i = 0; i != hdr.timecnt; ++i) {
433 transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp);
434 bp += time_len;
435 if (i != 0) {
436 // Check that the transitions are ordered by time (as zic guarantees).
437 if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i]))
438 return false; // out of order
439 }
440 }
441 bool seen_type_0 = false;
442 for (std::size_t i = 0; i != hdr.timecnt; ++i) {
443 transitions_[i].type_index = Decode8(bp++);
444 if (transitions_[i].type_index >= hdr.typecnt) return false;
445 if (transitions_[i].type_index == 0) seen_type_0 = true;
446 }
447
448 // Decode and validate the transition types.
449 transition_types_.reserve(hdr.typecnt + 2);
450 transition_types_.resize(hdr.typecnt);
451 for (std::size_t i = 0; i != hdr.typecnt; ++i) {
452 transition_types_[i].utc_offset =
453 static_cast<std::int_least32_t>(Decode32(bp));
454 if (transition_types_[i].utc_offset >= kSecsPerDay ||
455 transition_types_[i].utc_offset <= -kSecsPerDay)
456 return false;
457 bp += 4;
458 transition_types_[i].is_dst = (Decode8(bp++) != 0);
459 transition_types_[i].abbr_index = Decode8(bp++);
460 if (transition_types_[i].abbr_index >= hdr.charcnt) return false;
461 }
462
463 // Determine the before-first-transition type.
464 default_transition_type_ = 0;
465 if (seen_type_0 && hdr.timecnt != 0) {
466 std::uint_fast8_t index = 0;
467 if (transition_types_[0].is_dst) {
468 index = transitions_[0].type_index;
469 while (index != 0 && transition_types_[index].is_dst) --index;
470 }
471 while (index != hdr.typecnt && transition_types_[index].is_dst) ++index;
472 if (index != hdr.typecnt) default_transition_type_ = index;
473 }
474
475 // Copy all the abbreviations.
476 abbreviations_.reserve(hdr.charcnt + 10);
477 abbreviations_.assign(bp, hdr.charcnt);
478 bp += hdr.charcnt;
479
480 // Skip the unused portions. We've already dispensed with leap-second
481 // encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when
482 // interpreting a POSIX spec that does not include start/end rules, and
483 // that isn't the case here (see "zic -p").
484 bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC
485 bp += 1 * hdr.ttisstdcnt; // UTC/local indicators
486 bp += 1 * hdr.ttisutcnt; // standard/wall indicators
487 assert(bp == tbuf.data() + tbuf.size());
488
489 future_spec_.clear();
490 if (tzh.tzh_version[0] != '\0') {
491 // Snarf up the NL-enclosed future POSIX spec. Note
492 // that version '3' files utilize an extended format.
493 auto get_char = [](ZoneInfoSource* azip) -> int {
494 unsigned char ch; // all non-EOF results are positive
495 return (azip->Read(&ch, 1) == 1) ? ch : EOF;
496 };
497 if (get_char(zip) != '\n') return false;
498 for (int c = get_char(zip); c != '\n'; c = get_char(zip)) {
499 if (c == EOF) return false;
500 future_spec_.push_back(static_cast<char>(c));
501 }
502 }
503
504 // We don't check for EOF so that we're forwards compatible.
505
506 // If we did not find version information during the standard loading
507 // process (as of tzh_version '3' that is unsupported), then ask the
508 // ZoneInfoSource for any out-of-bound version string it may be privy to.
509 if (version_.empty()) {
510 version_ = zip->Version();
511 }
512
513 // Trim redundant transitions. zic may have added these to work around
514 // differences between the glibc and reference implementations (see
515 // zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071).
516 // For us, they just get in the way when we do future_spec_ extension.
517 while (hdr.timecnt > 1) {
518 if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index,
519 transitions_[hdr.timecnt - 2].type_index)) {
520 break;
521 }
522 hdr.timecnt -= 1;
523 }
524 transitions_.resize(hdr.timecnt);
525
526 // Ensure that there is always a transition in the first half of the
527 // time line (the second half is handled below) so that the signed
528 // difference between a civil_second and the civil_second of its
529 // previous transition is always representable, without overflow.
530 if (transitions_.empty() || transitions_.front().unix_time >= 0) {
531 Transition& tr(*transitions_.emplace(transitions_.begin()));
532 tr.unix_time = -(1LL << 59); // -18267312070-10-26T17:01:52+00:00
533 tr.type_index = default_transition_type_;
534 }
535
536 // Extend the transitions using the future specification.
537 if (!ExtendTransitions()) return false;
538
539 // Ensure that there is always a transition in the second half of the
540 // time line (the first half is handled above) so that the signed
541 // difference between a civil_second and the civil_second of its
542 // previous transition is always representable, without overflow.
543 const Transition& last(transitions_.back());
544 if (last.unix_time < 0) {
545 const std::uint_fast8_t type_index = last.type_index;
546 Transition& tr(*transitions_.emplace(transitions_.end()));
547 tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00
548 tr.type_index = type_index;
549 }
550
551 // Compute the local civil time for each transition and the preceding
552 // second. These will be used for reverse conversions in MakeTime().
553 const TransitionType* ttp = &transition_types_[default_transition_type_];
554 for (std::size_t i = 0; i != transitions_.size(); ++i) {
555 Transition& tr(transitions_[i]);
556 tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1;
557 ttp = &transition_types_[tr.type_index];
558 tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs;
559 if (i != 0) {
560 // Check that the transitions are ordered by civil time. Essentially
561 // this means that an offset change cannot cross another such change.
562 // No one does this in practice, and we depend on it in MakeTime().
563 if (!Transition::ByCivilTime()(transitions_[i - 1], tr))
564 return false; // out of order
565 }
566 }
567
568 // Compute the maximum/minimum civil times that can be converted to a
569 // time_point<seconds> for each of the zone's transition types.
570 for (auto& tt : transition_types_) {
571 tt.civil_max = LocalTime(seconds::max().count(), tt).cs;
572 tt.civil_min = LocalTime(seconds::min().count(), tt).cs;
573 }
574
575 transitions_.shrink_to_fit();
576 return true;
577 }
578
579 namespace {
580
581 using FilePtr = std::unique_ptr<FILE, int (*)(FILE*)>;
582
583 // fopen(3) adaptor.
FOpen(const char * path,const char * mode)584 inline FilePtr FOpen(const char* path, const char* mode) {
585 #if defined(_MSC_VER)
586 FILE* fp;
587 if (fopen_s(&fp, path, mode) != 0) fp = nullptr;
588 return FilePtr(fp, fclose);
589 #else
590 // TODO: Enable the close-on-exec flag.
591 return FilePtr(fopen(path, mode), fclose);
592 #endif
593 }
594
595 // A stdio(3)-backed implementation of ZoneInfoSource.
596 class FileZoneInfoSource : public ZoneInfoSource {
597 public:
598 static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
599
Read(void * ptr,std::size_t size)600 std::size_t Read(void* ptr, std::size_t size) override {
601 size = std::min(size, len_);
602 std::size_t nread = fread(ptr, 1, size, fp_.get());
603 len_ -= nread;
604 return nread;
605 }
Skip(std::size_t offset)606 int Skip(std::size_t offset) override {
607 offset = std::min(offset, len_);
608 int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR);
609 if (rc == 0) len_ -= offset;
610 return rc;
611 }
Version() const612 std::string Version() const override {
613 // TODO: It would nice if the zoneinfo data included the tzdb version.
614 return std::string();
615 }
616
617 protected:
FileZoneInfoSource(FilePtr fp,std::size_t len=std::numeric_limits<std::size_t>::max ())618 explicit FileZoneInfoSource(
619 FilePtr fp, std::size_t len = std::numeric_limits<std::size_t>::max())
620 : fp_(std::move(fp)), len_(len) {}
621
622 private:
623 FilePtr fp_;
624 std::size_t len_;
625 };
626
Open(const std::string & name)627 std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open(
628 const std::string& name) {
629 // Use of the "file:" prefix is intended for testing purposes only.
630 const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
631
632 // Map the time-zone name to a path name.
633 std::string path;
634 if (pos == name.size() || name[pos] != '/') {
635 const char* tzdir = "/usr/share/zoneinfo";
636 char* tzdir_env = nullptr;
637 #if defined(_MSC_VER)
638 _dupenv_s(&tzdir_env, nullptr, "TZDIR");
639 #else
640 tzdir_env = std::getenv("TZDIR");
641 #endif
642 if (tzdir_env && *tzdir_env) tzdir = tzdir_env;
643 path += tzdir;
644 path += '/';
645 #if defined(_MSC_VER)
646 free(tzdir_env);
647 #endif
648 }
649 path.append(name, pos, std::string::npos);
650
651 // Open the zoneinfo file.
652 auto fp = FOpen(path.c_str(), "rb");
653 if (fp == nullptr) return nullptr;
654 return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(std::move(fp)));
655 }
656
657 class AndroidZoneInfoSource : public FileZoneInfoSource {
658 public:
659 static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const660 std::string Version() const override { return version_; }
661
662 private:
AndroidZoneInfoSource(FilePtr fp,std::size_t len,std::string version)663 explicit AndroidZoneInfoSource(FilePtr fp, std::size_t len,
664 std::string version)
665 : FileZoneInfoSource(std::move(fp), len), version_(std::move(version)) {}
666 std::string version_;
667 };
668
Open(const std::string & name)669 std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open(
670 const std::string& name) {
671 // Use of the "file:" prefix is intended for testing purposes only.
672 const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
673
674 // See Android's libc/tzcode/bionic.cpp for additional information.
675 for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata",
676 "/system/usr/share/zoneinfo/tzdata"}) {
677 auto fp = FOpen(tzdata, "rb");
678 if (fp == nullptr) continue;
679
680 char hbuf[24]; // covers header.zonetab_offset too
681 if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue;
682 if (strncmp(hbuf, "tzdata", 6) != 0) continue;
683 const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : "";
684 const std::int_fast32_t index_offset = Decode32(hbuf + 12);
685 const std::int_fast32_t data_offset = Decode32(hbuf + 16);
686 if (index_offset < 0 || data_offset < index_offset) continue;
687 if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0)
688 continue;
689
690 char ebuf[52]; // covers entry.unused too
691 const std::size_t index_size =
692 static_cast<std::size_t>(data_offset - index_offset);
693 const std::size_t zonecnt = index_size / sizeof(ebuf);
694 if (zonecnt * sizeof(ebuf) != index_size) continue;
695 for (std::size_t i = 0; i != zonecnt; ++i) {
696 if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break;
697 const std::int_fast32_t start = data_offset + Decode32(ebuf + 40);
698 const std::int_fast32_t length = Decode32(ebuf + 44);
699 if (start < 0 || length < 0) break;
700 ebuf[40] = '\0'; // ensure zone name is NUL terminated
701 if (strcmp(name.c_str() + pos, ebuf) == 0) {
702 if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break;
703 return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource(
704 std::move(fp), static_cast<std::size_t>(length), vers));
705 }
706 }
707 }
708
709 return nullptr;
710 }
711
712 // A zoneinfo source for use inside Fuchsia components. This attempts to
713 // read zoneinfo files from one of several known paths in a component's
714 // incoming namespace. [Config data][1] is preferred, but package-specific
715 // resources are also supported.
716 //
717 // Fuchsia's implementation supports `FileZoneInfoSource::Version()`.
718 //
719 // [1]:
720 // https://fuchsia.dev/fuchsia-src/development/components/data#using_config_data_in_your_component
721 class FuchsiaZoneInfoSource : public FileZoneInfoSource {
722 public:
723 static std::unique_ptr<ZoneInfoSource> Open(const std::string& name);
Version() const724 std::string Version() const override { return version_; }
725
726 private:
FuchsiaZoneInfoSource(FilePtr fp,std::string version)727 explicit FuchsiaZoneInfoSource(FilePtr fp, std::string version)
728 : FileZoneInfoSource(std::move(fp)), version_(std::move(version)) {}
729 std::string version_;
730 };
731
Open(const std::string & name)732 std::unique_ptr<ZoneInfoSource> FuchsiaZoneInfoSource::Open(
733 const std::string& name) {
734 // Use of the "file:" prefix is intended for testing purposes only.
735 const std::size_t pos = (name.compare(0, 5, "file:") == 0) ? 5 : 0;
736
737 // Prefixes where a Fuchsia component might find zoneinfo files,
738 // in descending order of preference.
739 const auto kTzdataPrefixes = {
740 "/config/data/tzdata/",
741 "/pkg/data/tzdata/",
742 "/data/tzdata/",
743 };
744 const auto kEmptyPrefix = {""};
745 const bool name_absolute = (pos != name.size() && name[pos] == '/');
746 const auto prefixes = name_absolute ? kEmptyPrefix : kTzdataPrefixes;
747
748 // Fuchsia builds place zoneinfo files at "<prefix><format><name>".
749 for (const std::string prefix : prefixes) {
750 std::string path = prefix;
751 if (!prefix.empty()) path += "zoneinfo/tzif2/"; // format
752 path.append(name, pos, std::string::npos);
753
754 auto fp = FOpen(path.c_str(), "rb");
755 if (fp == nullptr) continue;
756
757 std::string version;
758 if (!prefix.empty()) {
759 // Fuchsia builds place the version in "<prefix>revision.txt".
760 std::ifstream version_stream(prefix + "revision.txt");
761 if (version_stream.is_open()) {
762 // revision.txt should contain no newlines, but to be
763 // defensive we read just the first line.
764 std::getline(version_stream, version);
765 }
766 }
767
768 return std::unique_ptr<ZoneInfoSource>(
769 new FuchsiaZoneInfoSource(std::move(fp), std::move(version)));
770 }
771
772 return nullptr;
773 }
774
775 } // namespace
776
Load(const std::string & name)777 bool TimeZoneInfo::Load(const std::string& name) {
778 // We can ensure that the loading of UTC or any other fixed-offset
779 // zone never fails because the simple, fixed-offset state can be
780 // internally generated. Note that this depends on our choice to not
781 // accept leap-second encoded ("right") zoneinfo.
782 auto offset = seconds::zero();
783 if (FixedOffsetFromName(name, &offset)) {
784 return ResetToBuiltinUTC(offset);
785 }
786
787 // Find and use a ZoneInfoSource to load the named zone.
788 auto zip = cctz_extension::zone_info_source_factory(
789 name, [](const std::string& n) -> std::unique_ptr<ZoneInfoSource> {
790 if (auto z = FileZoneInfoSource::Open(n)) return z;
791 if (auto z = AndroidZoneInfoSource::Open(n)) return z;
792 if (auto z = FuchsiaZoneInfoSource::Open(n)) return z;
793 return nullptr;
794 });
795 return zip != nullptr && Load(zip.get());
796 }
797
798 // BreakTime() translation for a particular transition type.
LocalTime(std::int_fast64_t unix_time,const TransitionType & tt) const799 time_zone::absolute_lookup TimeZoneInfo::LocalTime(
800 std::int_fast64_t unix_time, const TransitionType& tt) const {
801 // A civil time in "+offset" looks like (time+offset) in UTC.
802 // Note: We perform two additions in the civil_second domain to
803 // sidestep the chance of overflow in (unix_time + tt.utc_offset).
804 return {(civil_second() + unix_time) + tt.utc_offset, tt.utc_offset,
805 tt.is_dst, &abbreviations_[tt.abbr_index]};
806 }
807
808 // BreakTime() translation for a particular transition.
LocalTime(std::int_fast64_t unix_time,const Transition & tr) const809 time_zone::absolute_lookup TimeZoneInfo::LocalTime(std::int_fast64_t unix_time,
810 const Transition& tr) const {
811 const TransitionType& tt = transition_types_[tr.type_index];
812 // Note: (unix_time - tr.unix_time) will never overflow as we
813 // have ensured that there is always a "nearby" transition.
814 return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize.
815 tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]};
816 }
817
818 // MakeTime() translation with a conversion-preserving +N * 400-year shift.
TimeLocal(const civil_second & cs,year_t c4_shift) const819 time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs,
820 year_t c4_shift) const {
821 assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_);
822 time_zone::civil_lookup cl = MakeTime(cs);
823 if (c4_shift > seconds::max().count() / kSecsPer400Years) {
824 cl.pre = cl.trans = cl.post = time_point<seconds>::max();
825 } else {
826 const auto offset = seconds(c4_shift * kSecsPer400Years);
827 const auto limit = time_point<seconds>::max() - offset;
828 for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) {
829 if (*tp > limit) {
830 *tp = time_point<seconds>::max();
831 } else {
832 *tp += offset;
833 }
834 }
835 }
836 return cl;
837 }
838
BreakTime(const time_point<seconds> & tp) const839 time_zone::absolute_lookup TimeZoneInfo::BreakTime(
840 const time_point<seconds>& tp) const {
841 std::int_fast64_t unix_time = ToUnixSeconds(tp);
842 const std::size_t timecnt = transitions_.size();
843 assert(timecnt != 0); // We always add a transition.
844
845 if (unix_time < transitions_[0].unix_time) {
846 return LocalTime(unix_time, transition_types_[default_transition_type_]);
847 }
848 if (unix_time >= transitions_[timecnt - 1].unix_time) {
849 // After the last transition. If we extended the transitions using
850 // future_spec_, shift back to a supported year using the 400-year
851 // cycle of calendaric equivalence and then compensate accordingly.
852 if (extended_) {
853 const std::int_fast64_t diff =
854 unix_time - transitions_[timecnt - 1].unix_time;
855 const year_t shift = diff / kSecsPer400Years + 1;
856 const auto d = seconds(shift * kSecsPer400Years);
857 time_zone::absolute_lookup al = BreakTime(tp - d);
858 al.cs = YearShift(al.cs, shift * 400);
859 return al;
860 }
861 return LocalTime(unix_time, transitions_[timecnt - 1]);
862 }
863
864 const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed);
865 if (0 < hint && hint < timecnt) {
866 if (transitions_[hint - 1].unix_time <= unix_time) {
867 if (unix_time < transitions_[hint].unix_time) {
868 return LocalTime(unix_time, transitions_[hint - 1]);
869 }
870 }
871 }
872
873 const Transition target = {unix_time, 0, civil_second(), civil_second()};
874 const Transition* begin = &transitions_[0];
875 const Transition* tr = std::upper_bound(begin, begin + timecnt, target,
876 Transition::ByUnixTime());
877 local_time_hint_.store(static_cast<std::size_t>(tr - begin),
878 std::memory_order_relaxed);
879 return LocalTime(unix_time, *--tr);
880 }
881
MakeTime(const civil_second & cs) const882 time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const {
883 const std::size_t timecnt = transitions_.size();
884 assert(timecnt != 0); // We always add a transition.
885
886 // Find the first transition after our target civil time.
887 const Transition* tr = nullptr;
888 const Transition* begin = &transitions_[0];
889 const Transition* end = begin + timecnt;
890 if (cs < begin->civil_sec) {
891 tr = begin;
892 } else if (cs >= transitions_[timecnt - 1].civil_sec) {
893 tr = end;
894 } else {
895 const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed);
896 if (0 < hint && hint < timecnt) {
897 if (transitions_[hint - 1].civil_sec <= cs) {
898 if (cs < transitions_[hint].civil_sec) {
899 tr = begin + hint;
900 }
901 }
902 }
903 if (tr == nullptr) {
904 const Transition target = {0, 0, cs, civil_second()};
905 tr = std::upper_bound(begin, end, target, Transition::ByCivilTime());
906 time_local_hint_.store(static_cast<std::size_t>(tr - begin),
907 std::memory_order_relaxed);
908 }
909 }
910
911 if (tr == begin) {
912 if (tr->prev_civil_sec >= cs) {
913 // Before first transition, so use the default offset.
914 const TransitionType& tt(transition_types_[default_transition_type_]);
915 if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min());
916 return MakeUnique(cs - (civil_second() + tt.utc_offset));
917 }
918 // tr->prev_civil_sec < cs < tr->civil_sec
919 return MakeSkipped(*tr, cs);
920 }
921
922 if (tr == end) {
923 if (cs > (--tr)->prev_civil_sec) {
924 // After the last transition. If we extended the transitions using
925 // future_spec_, shift back to a supported year using the 400-year
926 // cycle of calendaric equivalence and then compensate accordingly.
927 if (extended_ && cs.year() > last_year_) {
928 const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1;
929 return TimeLocal(YearShift(cs, shift * -400), shift);
930 }
931 const TransitionType& tt(transition_types_[tr->type_index]);
932 if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max());
933 return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
934 }
935 // tr->civil_sec <= cs <= tr->prev_civil_sec
936 return MakeRepeated(*tr, cs);
937 }
938
939 if (tr->prev_civil_sec < cs) {
940 // tr->prev_civil_sec < cs < tr->civil_sec
941 return MakeSkipped(*tr, cs);
942 }
943
944 if (cs <= (--tr)->prev_civil_sec) {
945 // tr->civil_sec <= cs <= tr->prev_civil_sec
946 return MakeRepeated(*tr, cs);
947 }
948
949 // In between transitions.
950 return MakeUnique(tr->unix_time + (cs - tr->civil_sec));
951 }
952
Version() const953 std::string TimeZoneInfo::Version() const { return version_; }
954
Description() const955 std::string TimeZoneInfo::Description() const {
956 std::ostringstream oss;
957 oss << "#trans=" << transitions_.size();
958 oss << " #types=" << transition_types_.size();
959 oss << " spec='" << future_spec_ << "'";
960 return oss.str();
961 }
962
NextTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const963 bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp,
964 time_zone::civil_transition* trans) const {
965 if (transitions_.empty()) return false;
966 const Transition* begin = &transitions_[0];
967 const Transition* end = begin + transitions_.size();
968 if (begin->unix_time <= -(1LL << 59)) {
969 // Do not report the BIG_BANG found in some zoneinfo data as it is
970 // really a sentinel, not a transition. See pre-2018f tz/zic.c.
971 ++begin;
972 }
973 std::int_fast64_t unix_time = ToUnixSeconds(tp);
974 const Transition target = {unix_time, 0, civil_second(), civil_second()};
975 const Transition* tr =
976 std::upper_bound(begin, end, target, Transition::ByUnixTime());
977 for (; tr != end; ++tr) { // skip no-op transitions
978 std::uint_fast8_t prev_type_index =
979 (tr == begin) ? default_transition_type_ : tr[-1].type_index;
980 if (!EquivTransitions(prev_type_index, tr[0].type_index)) break;
981 }
982 // When tr == end we return false, ignoring future_spec_.
983 if (tr == end) return false;
984 trans->from = tr->prev_civil_sec + 1;
985 trans->to = tr->civil_sec;
986 return true;
987 }
988
PrevTransition(const time_point<seconds> & tp,time_zone::civil_transition * trans) const989 bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp,
990 time_zone::civil_transition* trans) const {
991 if (transitions_.empty()) return false;
992 const Transition* begin = &transitions_[0];
993 const Transition* end = begin + transitions_.size();
994 if (begin->unix_time <= -(1LL << 59)) {
995 // Do not report the BIG_BANG found in some zoneinfo data as it is
996 // really a sentinel, not a transition. See pre-2018f tz/zic.c.
997 ++begin;
998 }
999 std::int_fast64_t unix_time = ToUnixSeconds(tp);
1000 if (FromUnixSeconds(unix_time) != tp) {
1001 if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) {
1002 if (end == begin) return false; // Ignore future_spec_.
1003 trans->from = (--end)->prev_civil_sec + 1;
1004 trans->to = end->civil_sec;
1005 return true;
1006 }
1007 unix_time += 1; // ceils
1008 }
1009 const Transition target = {unix_time, 0, civil_second(), civil_second()};
1010 const Transition* tr =
1011 std::lower_bound(begin, end, target, Transition::ByUnixTime());
1012 for (; tr != begin; --tr) { // skip no-op transitions
1013 std::uint_fast8_t prev_type_index =
1014 (tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index;
1015 if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break;
1016 }
1017 // When tr == end we return the "last" transition, ignoring future_spec_.
1018 if (tr == begin) return false;
1019 trans->from = (--tr)->prev_civil_sec + 1;
1020 trans->to = tr->civil_sec;
1021 return true;
1022 }
1023
1024 } // namespace cctz
1025 } // namespace time_internal
1026 ABSL_NAMESPACE_END
1027 } // namespace absl
1028