• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "HalPolicy.hpp"
7 
8 #include <armnn/Optional.hpp>
9 
10 #include "FullyConnected.hpp"
11 #include "Utils.hpp"
12 
13 namespace armnn_driver
14 {
15 namespace hal_1_0
16 {
17 
ConvertOperation(const Operation & operation,const Model & model,ConversionData & data)18 bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
19 {
20     switch (operation.type)
21     {
22         case V1_0::OperationType::ADD:
23             return ConvertAdd(operation, model, data);
24         case V1_0::OperationType::AVERAGE_POOL_2D:
25             return ConvertAveragePool2d(operation, model, data);
26         case V1_0::OperationType::CONCATENATION:
27             return ConvertConcatenation(operation, model, data);
28         case V1_0::OperationType::CONV_2D:
29             return ConvertConv2d(operation, model, data);
30         case V1_0::OperationType::DEPTH_TO_SPACE:
31             return ConvertDepthToSpace(operation, model, data);
32         case V1_0::OperationType::DEPTHWISE_CONV_2D:
33             return ConvertDepthwiseConv2d(operation, model, data);
34         case V1_0::OperationType::DEQUANTIZE:
35             return ConvertDequantize(operation, model, data);
36         case V1_0::OperationType::FLOOR:
37             return ConvertFloor(operation, model, data);
38         case V1_0::OperationType::FULLY_CONNECTED:
39             return ConvertFullyConnected(operation, model, data);
40         case V1_0::OperationType::LOCAL_RESPONSE_NORMALIZATION:
41             return ConvertLocalResponseNormalization(operation, model, data);
42         case V1_0::OperationType::LOGISTIC:
43             return ConvertLogistic(operation, model, data);
44         case V1_0::OperationType::LSTM:
45             return ConvertLstm(operation, model, data);
46         case V1_0::OperationType::L2_NORMALIZATION:
47             return ConvertL2Normalization(operation, model, data);
48         case V1_0::OperationType::L2_POOL_2D:
49             return ConvertL2Pool2d(operation, model, data);
50         case V1_0::OperationType::MAX_POOL_2D:
51             return ConvertMaxPool2d(operation, model, data);
52         case V1_0::OperationType::MUL:
53             return ConvertMul(operation, model, data);
54         case V1_0::OperationType::RELU:
55             return ConvertReLu(operation, model, data);
56         case V1_0::OperationType::RELU1:
57             return ConvertReLu1(operation, model, data);
58         case V1_0::OperationType::RELU6:
59             return ConvertReLu6(operation, model, data);
60         case V1_0::OperationType::SOFTMAX:
61             return ConvertSoftmax(operation, model, data);
62         case V1_0::OperationType::SPACE_TO_DEPTH:
63             return ConvertSpaceToDepth(operation, model, data);
64         case V1_0::OperationType::TANH:
65             return ConvertTanH(operation, model, data);
66         case V1_0::OperationType::RESHAPE:
67             return ConvertReshape(operation, model, data);
68         case V1_0::OperationType::RESIZE_BILINEAR:
69             return ConvertResizeBilinear(operation, model, data);
70         default:
71             return Fail("%s: Operation type %s not supported in ArmnnDriver",
72                         __func__, toString(operation.type).c_str());
73     }
74 }
75 
ConvertAdd(const Operation & operation,const Model & model,ConversionData & data)76 bool HalPolicy::ConvertAdd(const Operation& operation, const Model& model, ConversionData& data)
77 {
78     ALOGV("hal_1_0::HalPolicy::ConvertAdd()");
79     return ::ConvertAdd<hal_1_0::HalPolicy>(operation, model, data);
80 }
81 
ConvertAveragePool2d(const Operation & operation,const Model & model,ConversionData & data)82 bool HalPolicy::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
83 {
84     ALOGV("hal_1_0::HalPolicy::ConvertAveragePool2d()");
85     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Average, model, data);
86 }
87 
ConvertConcatenation(const Operation & operation,const Model & model,ConversionData & data)88 bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
89 {
90     ALOGV("hal_1_0::HalPolicy::ConvertConcatenation()");
91     return ::ConvertConcatenation<hal_1_0::HalPolicy>(operation, model, data);
92 }
93 
ConvertConv2d(const Operation & operation,const Model & model,ConversionData & data)94 bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
95 {
96     ALOGV("hal_1_0::HalPolicy::ConvertConv2d()");
97     return ::ConvertConv2d<hal_1_0::HalPolicy>(operation, model, data);
98 }
99 
ConvertDepthToSpace(const Operation & operation,const Model & model,ConversionData & data)100 bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
101 {
102     ALOGV("hal_1_0::HalPolicy::ConvertDepthToSpace()");
103     return ::ConvertDepthToSpace<hal_1_0::HalPolicy>(operation, model, data);
104 }
105 
ConvertDepthwiseConv2d(const Operation & operation,const Model & model,ConversionData & data)106 bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
107 {
108     ALOGV("hal_1_0::HalPolicy::ConvertDepthwiseConv2d()");
109     return ::ConvertDepthwiseConv2d<hal_1_0::HalPolicy>(operation, model, data);
110 }
111 
ConvertDequantize(const Operation & operation,const Model & model,ConversionData & data)112 bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
113 {
114     ALOGV("hal_1_0::HalPolicy::ConvertDequantize()");
115     return ::ConvertDequantize<hal_1_0::HalPolicy>(operation, model, data);
116 }
117 
ConvertFloor(const Operation & operation,const Model & model,ConversionData & data)118 bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
119 {
120     ALOGV("hal_1_0::HalPolicy::ConvertFloor()");
121     return ::ConvertFloor<hal_1_0::HalPolicy>(operation, model, data);
122 }
123 
ConvertFullyConnected(const Operation & operation,const Model & model,ConversionData & data)124 bool HalPolicy::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
125 {
126     ALOGV("hal_1_0::HalPolicy::ConvertFullyConnected()");
127     return ::ConvertFullyConnected<hal_1_0::HalPolicy>(operation, model, data);
128 }
129 
ConvertLocalResponseNormalization(const Operation & operation,const Model & model,ConversionData & data)130 bool HalPolicy::ConvertLocalResponseNormalization(const Operation& operation,
131                                                   const Model& model,
132                                                   ConversionData& data)
133 {
134     ALOGV("hal_1_0::HalPolicy::ConvertLocalResponseNormalization()");
135     return ::ConvertLocalResponseNormalization<hal_1_0::HalPolicy>(operation, model, data);
136 }
137 
ConvertLogistic(const Operation & operation,const Model & model,ConversionData & data)138 bool HalPolicy::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
139 {
140     ALOGV("hal_1_0::HalPolicy::ConvertLogistic()");
141     return ::ConvertLogistic<hal_1_0::HalPolicy>(operation, model, data);
142 }
143 
ConvertLstm(const Operation & operation,const Model & model,ConversionData & data)144 bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
145 {
146     ALOGV("hal_1_0::HalPolicy::ConvertLstm()");
147 
148     // Inputs:
149     // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
150     //      “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
151     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
152     if (!input.IsValid())
153     {
154         return Fail("%s: Could not read input 0: input", __func__);
155     }
156     // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
157     LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 18, model, data);
158     if (!outputStateIn.IsValid())
159     {
160         return Fail("%s: Could not read input 18: outputStateIn", __func__);
161     }
162     // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
163     LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 19, model, data);
164     if (!cellStateIn.IsValid())
165     {
166         return Fail("%s: Could not read input 19: cellStateIn", __func__);
167     }
168 
169     // Get the mandatory input tensors:
170     // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
171     //     [num_units, input_size].
172     const ConstTensorPin inputToForgetWeightsPin =
173         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 2, model, data);
174     // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
175     // [num_units, input_size].
176     const ConstTensorPin inputToCellWeightsPin =
177         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 3, model, data);
178     // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
179     //     [num_units, input_size].
180     const ConstTensorPin inputToOutputWeightsPin =
181         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 4, model, data);
182     // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
183     //     [num_units, output_size].
184     const ConstTensorPin recurrentToForgetWeightsPin =
185         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 6, model, data);
186     // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
187     //     [num_units, output_size].
188     const ConstTensorPin recurrentToCellWeightsPin =
189         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 7, model, data);
190     // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
191     //     [num_units, output_size].
192     const ConstTensorPin recurrentToOutputWeightsPin =
193             ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 8, model, data);
194     // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
195     const ConstTensorPin forgetGateBiasPin =
196         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 13, model, data);
197     // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
198     const ConstTensorPin cellBiasPin =
199         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 14, model, data);
200     // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
201     const ConstTensorPin outputGateBiasPin =
202         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation, 15, model, data);
203 
204     if (!inputToForgetWeightsPin.IsValid() ||
205         !inputToCellWeightsPin.IsValid() ||
206         !inputToOutputWeightsPin.IsValid() ||
207         !recurrentToForgetWeightsPin.IsValid() ||
208         !recurrentToCellWeightsPin.IsValid() ||
209         !recurrentToOutputWeightsPin.IsValid() ||
210         !forgetGateBiasPin.IsValid() ||
211         !cellBiasPin.IsValid() ||
212         !outputGateBiasPin.IsValid())
213     {
214         return Fail("%s: Operation has invalid tensor inputs", __func__);
215     }
216 
217     // Get the optional input tensors:
218     // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
219     //     [num_units, input_size], where “num_units” corresponds to the number of cell units.
220     const ConstTensorPin inputToInputWeightsPin =
221         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
222                                                                   1,
223                                                                   model,
224                                                                   data,
225                                                                   g_DontPermute,
226                                                                   nullptr,
227                                                                   true);
228 
229     // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
230     //     [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
231     //     “num_units”), or the second dimension of the “projection_weights”, if defined.
232     const ConstTensorPin recurrentToInputWeightsPin =
233         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
234                                                                   5,
235                                                                   model,
236                                                                   data,
237                                                                   g_DontPermute,
238                                                                   nullptr,
239                                                                   true);
240 
241     // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
242     const ConstTensorPin cellToInputWeightsPin =
243         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
244                                                                   9,
245                                                                   model,
246                                                                   data,
247                                                                   g_DontPermute,
248                                                                   nullptr,
249                                                                   true);
250 
251     // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
252     const ConstTensorPin cellToForgetWeightsPin =
253         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
254                                                                   10,
255                                                                   model,
256                                                                   data,
257                                                                   g_DontPermute,
258                                                                   nullptr,
259                                                                   true);
260 
261     // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
262     const ConstTensorPin cellToOutputWeightsPin =
263         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
264                                                                   11,
265                                                                   model,
266                                                                   data,
267                                                                   g_DontPermute,
268                                                                   nullptr,
269                                                                   true);
270 
271     // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
272     const ConstTensorPin inputGateBiasPin =
273         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
274                                                                   12,
275                                                                   model,
276                                                                   data,
277                                                                   g_DontPermute,
278                                                                   nullptr,
279                                                                   true);
280 
281     // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
282     //     [output_size, num_units].
283     const ConstTensorPin projectionWeightsPin =
284         ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
285                                                                   16,
286                                                                   model,
287                                                                   data,
288                                                                   g_DontPermute,
289                                                                   nullptr,
290                                                                   true);
291 
292     // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
293     const ConstTensorPin projectionBiasPin =
294     ConvertOperationInputToConstTensorPin<hal_1_0::HalPolicy>(operation,
295                                                               17,
296                                                               model,
297                                                               data,
298                                                               g_DontPermute,
299                                                               nullptr,
300                                                               true);
301 
302     if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
303         (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
304         (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
305         (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
306         (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
307         (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
308         (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
309         (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
310     {
311         return Fail("%s: Operation has invalid tensor inputs", __func__);
312     }
313 
314     // Get the mandatory input scalars (actually 1-D tensors of size 1):
315     // 20: The activation function: A value indicating the activation function:
316     //     0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
317     // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
318     //     If set to 0.0 then clipping is disabled.
319     // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
320     //     [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
321     ActivationFn activation;
322     float cellClip;
323     float projClip;
324     if (!GetInputActivationFunctionFromTensor<hal_1_0::HalPolicy>(operation, 20, activation, model, data) ||
325         !GetInputScalar<hal_1_0::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
326         !GetInputScalar<hal_1_0::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
327     {
328         return Fail("%s: Operation has invalid scalar inputs", __func__);
329     }
330 
331     // Outputs:
332     // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
333     // with CIFG, or [batch_size, num_units * 3] without CIFG.
334     const Operand* scratchBuffer = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
335     if (!scratchBuffer)
336     {
337         return Fail("%s: Could not read output 0: scratchBuffer", __func__);
338     }
339     // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
340     const Operand* outputStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 1, model);
341     if (!outputStateOut)
342     {
343         return Fail("%s: Could not read output 1: outputStateOut", __func__);
344     }
345     // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
346     const Operand* cellStateOut = GetOutputOperand<hal_1_0::HalPolicy>(operation, 2, model);
347     if (!cellStateOut)
348     {
349         return Fail("%s: Could not read output 2: cellStateOut", __func__);
350     }
351     // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
352     //     effectively the same as the current “output state (out)” value.
353     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 3, model);
354     if (!output)
355     {
356         return Fail("%s: Could not read output 3: output", __func__);
357     }
358 
359     // set the params structure for the AddLstmLayer call
360     armnn::LstmInputParams params;
361     params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
362     params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
363     params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
364     params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
365     params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
366     params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
367     params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
368     params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
369     params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
370     params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
371     params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
372     params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
373     params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
374     params.m_CellBias = cellBiasPin.GetConstTensorPtr();
375     params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
376     params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
377     params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
378 
379     // set the layer descriptor
380     armnn::LstmDescriptor desc;
381     desc.m_ActivationFunc = activation;
382     desc.m_ClippingThresCell = cellClip;
383     desc.m_ClippingThresProj = projClip;
384     desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
385                           params.m_RecurrentToInputWeights == nullptr ||
386                           params.m_InputGateBias == nullptr);
387     desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
388                               params.m_CellToOutputWeights != nullptr);
389     desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
390 
391     // validate the optional input groups
392     if (desc.m_CifgEnabled &&
393         (params.m_InputToInputWeights != nullptr ||
394          params.m_RecurrentToInputWeights != nullptr ||
395          params.m_InputGateBias != nullptr))
396     {
397         return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
398                     " and input gate bias must be provided", __func__);
399     }
400 
401     if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
402     {
403         return Fail("%s: projection bias should not be provided without projection weights", __func__);
404     }
405 
406     if (desc.m_PeepholeEnabled &&
407         (params.m_CellToForgetWeights == nullptr ||
408          params.m_CellToOutputWeights == nullptr ||
409          (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
410     {
411         return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
412                     " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
413     }
414 
415     // Check if the layer is supported
416     // Inputs
417     const armnn::TensorInfo& inputInfo         = input.GetTensorInfo();
418     const armnn::TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
419     const armnn::TensorInfo& cellStateInInfo   = cellStateIn.GetTensorInfo();
420 
421     // Outputs
422     const armnn::TensorInfo& scratchBufferInfo  = GetTensorInfoForOperand(*scratchBuffer);
423     const armnn::TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
424     const armnn::TensorInfo& cellStateOutInfo   = GetTensorInfoForOperand(*cellStateOut);
425     const armnn::TensorInfo& outputInfo         = GetTensorInfoForOperand(*output);
426 
427     // Basic parameters
428     armnn::LstmInputParamsInfo paramsInfo;
429     paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
430     paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
431     paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
432     paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
433     paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
434     paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
435     paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
436     paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
437     paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
438 
439     // Optional parameters
440     if(!desc.m_CifgEnabled)
441     {
442         paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
443         paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
444         if (params.m_CellToInputWeights != nullptr)
445         {
446             paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
447         }
448         paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
449     }
450 
451     if(desc.m_ProjectionEnabled)
452     {
453         paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
454         if (params.m_ProjectionBias != nullptr)
455         {
456             paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
457         }
458     }
459 
460     if(desc.m_PeepholeEnabled)
461     {
462         paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
463         paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
464     }
465 
466     bool isSupported = false;
467     FORWARD_LAYER_SUPPORT_FUNC(__func__,
468                                IsLstmSupported,
469                                data.m_Backends,
470                                isSupported,
471                                inputInfo,
472                                outputStateInInfo,
473                                cellStateInInfo,
474                                scratchBufferInfo,
475                                outputStateOutInfo,
476                                cellStateOutInfo,
477                                outputInfo,
478                                desc,
479                                paramsInfo);
480     if (!isSupported)
481     {
482         return false;
483     }
484 
485     // Add the layer
486     armnn::IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
487 
488     input.Connect(layer->GetInputSlot(0));
489     outputStateIn.Connect(layer->GetInputSlot(1));
490     cellStateIn.Connect(layer->GetInputSlot(2));
491 
492     return (SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, 0, model, data) &&
493             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 1, *layer, 1, model, data) &&
494             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 2, *layer, 2, model, data) &&
495             SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 3, *layer, 3, model, data));
496 }
497 
ConvertL2Normalization(const Operation & operation,const Model & model,ConversionData & data)498 bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
499 {
500     ALOGV("hal_1_0::HalPolicy::ConvertL2Normalization()");
501     return ::ConvertL2Normalization<hal_1_0::HalPolicy>(operation, model, data);
502 }
503 
ConvertL2Pool2d(const Operation & operation,const Model & model,ConversionData & data)504 bool HalPolicy::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
505 {
506     ALOGV("hal_1_0::HalPolicy::ConvertL2Pool2d()");
507     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::L2, model, data);
508 }
509 
ConvertMaxPool2d(const Operation & operation,const Model & model,ConversionData & data)510 bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
511 {
512     ALOGV("hal_1_0::HalPolicy::ConvertMaxPool2d()");
513     return ConvertPooling2d<hal_1_0::HalPolicy>(operation, __func__, armnn::PoolingAlgorithm::Max, model, data);
514 }
515 
ConvertMul(const Operation & operation,const Model & model,ConversionData & data)516 bool HalPolicy::ConvertMul(const Operation& operation, const Model& model, ConversionData& data)
517 {
518     ALOGV("hal_1_0::HalPolicy::ConvertMul()");
519     return ::ConvertMul<hal_1_0::HalPolicy>(operation, model, data);
520 }
521 
ConvertReLu(const Operation & operation,const Model & model,ConversionData & data)522 bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
523 {
524     ALOGV("hal_1_0::HalPolicy::ConvertReLu()");
525     return ::ConvertReLu<hal_1_0::HalPolicy>(operation, model, data);
526 }
527 
ConvertReLu1(const Operation & operation,const Model & model,ConversionData & data)528 bool HalPolicy::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
529 {
530     ALOGV("hal_1_0::HalPolicy::ConvertReLu1()");
531     return ::ConvertReLu1<hal_1_0::HalPolicy>(operation, model, data);
532 }
533 
ConvertReLu6(const Operation & operation,const Model & model,ConversionData & data)534 bool HalPolicy::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
535 {
536     ALOGV("hal_1_0::HalPolicy::ConvertReLu6()");
537     return ::ConvertReLu6<hal_1_0::HalPolicy>(operation, model, data);
538 }
539 
ConvertSoftmax(const Operation & operation,const Model & model,ConversionData & data)540 bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
541 {
542     ALOGV("hal_1_0::HalPolicy::ConvertSoftmax()");
543 
544     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
545     if (!input.IsValid())
546     {
547         return Fail("%s: Operation has invalid inputs", __func__);
548     }
549 
550     const Operand* outputOperand = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
551     if (!outputOperand)
552     {
553         return Fail("%s: Operation has no outputs", __func__);
554     }
555 
556     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
557     if (IsDynamicTensor(outputInfo))
558     {
559         return Fail("%s: Dynamic output tensors are not supported", __func__);
560     }
561 
562     armnn::SoftmaxDescriptor desc;
563     if (!GetInputFloat32<hal_1_0::HalPolicy>(operation, 1, desc.m_Beta, model, data))
564     {
565         return Fail("%s: Operation has invalid inputs", __func__);
566     }
567 
568     bool isSupported = false;
569     FORWARD_LAYER_SUPPORT_FUNC(__func__,
570                                IsSoftmaxSupported,
571                                data.m_Backends,
572                                isSupported,
573                                input.GetTensorInfo(),
574                                outputInfo,
575                                desc);
576     if (!isSupported)
577     {
578         return false;
579     }
580 
581     armnn::IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
582     assert(layer != nullptr);
583     input.Connect(layer->GetInputSlot(0));
584 
585     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
586 }
587 
ConvertSpaceToDepth(const Operation & operation,const Model & model,ConversionData & data)588 bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
589 {
590     ALOGV("hal_1_0::HalPolicy::ConvertSpaceToDepth()");
591 
592     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
593     if (!input.IsValid() )
594     {
595         return Fail("%s: Operation has invalid inputs", __func__);
596     }
597 
598     const armnn::TensorInfo& inputInfo = input.GetTensorInfo();
599     unsigned int rank = inputInfo.GetNumDimensions();
600 
601     if (rank != 4)
602     {
603         return Fail("%s: Only inputs with rank 4 are supported", __func__);
604     }
605 
606     armnn::SpaceToDepthDescriptor desc;
607     bool dataLayoutCheck;
608 
609     GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
610 
611     if (desc.m_BlockSize <= 1)
612     {
613         return Fail("%s: Block size must be at least 1 in all dimensions");
614     }
615 
616     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
617     if (!output)
618     {
619         return Fail("%s: Could not read output 0", __func__);
620     }
621 
622     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
623     if (IsDynamicTensor(outputInfo))
624     {
625         return Fail("%s: Dynamic output tensors are not supported", __func__);
626     }
627 
628     bool isSupported = false;
629     FORWARD_LAYER_SUPPORT_FUNC(__func__,
630                                IsSpaceToDepthSupported,
631                                data.m_Backends,
632                                isSupported,
633                                inputInfo,
634                                outputInfo,
635                                desc);
636     if (!isSupported)
637     {
638         return false;
639     }
640 
641     armnn::IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
642     assert(layer != nullptr);
643     input.Connect(layer->GetInputSlot(0));
644 
645     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
646 }
647 
ConvertTanH(const Operation & operation,const Model & model,ConversionData & data)648 bool HalPolicy::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
649 {
650     ALOGV("hal_1_0::HalPolicy::ConvertTanH()");
651     return ::ConvertTanH<hal_1_0::HalPolicy>(operation, model, data);
652 }
653 
ConvertReshape(const Operation & operation,const Model & model,ConversionData & data)654 bool HalPolicy::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
655 {
656     ALOGV("hal_1_0::HalPolicy::ConvertReshape()");
657     return ::ConvertReshape<hal_1_0::HalPolicy>(operation, model, data);
658 }
659 
ConvertResizeBilinear(const Operation & operation,const Model & model,ConversionData & data)660 bool HalPolicy::ConvertResizeBilinear(const Operation& operation, const Model& model, ConversionData& data)
661 {
662     ALOGV("hal_1_0::HalPolicy::ConvertResizeBilinear()");
663 
664     LayerInputHandle input = ConvertToLayerInputHandle<hal_1_0::HalPolicy>(operation, 0, model, data);
665     if (!input.IsValid())
666     {
667         return Fail("%s: Could not read input 0", __func__);
668     }
669 
670     const Operand* output = GetOutputOperand<hal_1_0::HalPolicy>(operation, 0, model);
671     if (!output)
672     {
673         return Fail("%s: Could not read output 0", __func__);
674     }
675 
676     const armnn::TensorInfo& inputInfo  = input.GetTensorInfo();
677     const armnn::TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
678 
679     if (IsDynamicTensor(outputInfo))
680     {
681         return Fail("%s: Dynamic output tensors are not supported", __func__);
682     }
683 
684     armnn::ResizeDescriptor desc;
685     desc.m_Method     = armnn::ResizeMethod::Bilinear;
686     desc.m_DataLayout = armnn::DataLayout::NHWC;
687 
688     bool isSupported = false;
689     FORWARD_LAYER_SUPPORT_FUNC(__func__,
690                                IsResizeSupported,
691                                data.m_Backends,
692                                isSupported,
693                                inputInfo,
694                                outputInfo,
695                                desc);
696     if (!isSupported)
697     {
698         return false;
699     }
700 
701     if (!GetInputScalar<hal_1_0::HalPolicy>(operation, 1, OperandType::INT32, desc.m_TargetWidth, model, data) ||
702         !GetInputScalar<hal_1_0::HalPolicy>(operation, 2, OperandType::INT32, desc.m_TargetHeight, model, data))
703     {
704         return Fail("%s: Operation has invalid inputs", __func__);
705     }
706 
707     armnn::IConnectableLayer* layer = data.m_Network->AddResizeLayer(desc);
708 
709     assert(layer != nullptr);
710 
711     layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
712     input.Connect(layer->GetInputSlot(0));
713 
714     return SetupAndTrackLayerOutputSlot<hal_1_0::HalPolicy>(operation, 0, *layer, model, data);
715 
716 }
717 
718 } // namespace hal_1_0
719 } // namespace armnn_driver
720