• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/base/internal/sysinfo.h"
16 
17 #include "absl/base/attributes.h"
18 
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <fcntl.h>
23 #include <pthread.h>
24 #include <sys/stat.h>
25 #include <sys/types.h>
26 #include <unistd.h>
27 #endif
28 
29 #ifdef __linux__
30 #include <sys/syscall.h>
31 #endif
32 
33 #if defined(__APPLE__) || defined(__FreeBSD__)
34 #include <sys/sysctl.h>
35 #endif
36 
37 #if defined(__myriad2__)
38 #include <rtems.h>
39 #endif
40 
41 #include <string.h>
42 
43 #include <cassert>
44 #include <cstdint>
45 #include <cstdio>
46 #include <cstdlib>
47 #include <ctime>
48 #include <limits>
49 #include <thread>  // NOLINT(build/c++11)
50 #include <utility>
51 #include <vector>
52 
53 #include "absl/base/call_once.h"
54 #include "absl/base/config.h"
55 #include "absl/base/internal/raw_logging.h"
56 #include "absl/base/internal/spinlock.h"
57 #include "absl/base/internal/unscaledcycleclock.h"
58 #include "absl/base/thread_annotations.h"
59 
60 namespace absl {
61 ABSL_NAMESPACE_BEGIN
62 namespace base_internal {
63 
64 namespace {
65 
66 #if defined(_WIN32)
67 
68 // Returns number of bits set in `bitMask`
Win32CountSetBits(ULONG_PTR bitMask)69 DWORD Win32CountSetBits(ULONG_PTR bitMask) {
70   for (DWORD bitSetCount = 0; ; ++bitSetCount) {
71     if (bitMask == 0) return bitSetCount;
72     bitMask &= bitMask - 1;
73   }
74 }
75 
76 // Returns the number of logical CPUs using GetLogicalProcessorInformation(), or
77 // 0 if the number of processors is not available or can not be computed.
78 // https://docs.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getlogicalprocessorinformation
Win32NumCPUs()79 int Win32NumCPUs() {
80 #pragma comment(lib, "kernel32.lib")
81   using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION;
82 
83   DWORD info_size = sizeof(Info);
84   Info* info(static_cast<Info*>(malloc(info_size)));
85   if (info == nullptr) return 0;
86 
87   bool success = GetLogicalProcessorInformation(info, &info_size);
88   if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) {
89     free(info);
90     info = static_cast<Info*>(malloc(info_size));
91     if (info == nullptr) return 0;
92     success = GetLogicalProcessorInformation(info, &info_size);
93   }
94 
95   DWORD logicalProcessorCount = 0;
96   if (success) {
97     Info* ptr = info;
98     DWORD byteOffset = 0;
99     while (byteOffset + sizeof(Info) <= info_size) {
100       switch (ptr->Relationship) {
101         case RelationProcessorCore:
102           logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask);
103           break;
104 
105         case RelationNumaNode:
106         case RelationCache:
107         case RelationProcessorPackage:
108           // Ignore other entries
109           break;
110 
111         default:
112           // Ignore unknown entries
113           break;
114       }
115       byteOffset += sizeof(Info);
116       ptr++;
117     }
118   }
119   free(info);
120   return logicalProcessorCount;
121 }
122 
123 #endif
124 
125 }  // namespace
126 
127 
GetNumCPUs()128 static int GetNumCPUs() {
129 #if defined(__myriad2__)
130   return 1;
131 #elif defined(_WIN32)
132   const unsigned hardware_concurrency = Win32NumCPUs();
133   return hardware_concurrency ? hardware_concurrency : 1;
134 #elif defined(_AIX)
135   return sysconf(_SC_NPROCESSORS_ONLN);
136 #else
137   // Other possibilities:
138   //  - Read /sys/devices/system/cpu/online and use cpumask_parse()
139   //  - sysconf(_SC_NPROCESSORS_ONLN)
140   return std::thread::hardware_concurrency();
141 #endif
142 }
143 
144 #if defined(_WIN32)
145 
GetNominalCPUFrequency()146 static double GetNominalCPUFrequency() {
147 #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \
148     !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP)
149   // UWP apps don't have access to the registry and currently don't provide an
150   // API informing about CPU nominal frequency.
151   return 1.0;
152 #else
153 #pragma comment(lib, "advapi32.lib")  // For Reg* functions.
154   HKEY key;
155   // Use the Reg* functions rather than the SH functions because shlwapi.dll
156   // pulls in gdi32.dll which makes process destruction much more costly.
157   if (RegOpenKeyExA(HKEY_LOCAL_MACHINE,
158                     "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0,
159                     KEY_READ, &key) == ERROR_SUCCESS) {
160     DWORD type = 0;
161     DWORD data = 0;
162     DWORD data_size = sizeof(data);
163     auto result = RegQueryValueExA(key, "~MHz", 0, &type,
164                                    reinterpret_cast<LPBYTE>(&data), &data_size);
165     RegCloseKey(key);
166     if (result == ERROR_SUCCESS && type == REG_DWORD &&
167         data_size == sizeof(data)) {
168       return data * 1e6;  // Value is MHz.
169     }
170   }
171   return 1.0;
172 #endif  // WINAPI_PARTITION_APP && !WINAPI_PARTITION_DESKTOP
173 }
174 
175 #elif defined(CTL_HW) && defined(HW_CPU_FREQ)
176 
GetNominalCPUFrequency()177 static double GetNominalCPUFrequency() {
178   unsigned freq;
179   size_t size = sizeof(freq);
180   int mib[2] = {CTL_HW, HW_CPU_FREQ};
181   if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
182     return static_cast<double>(freq);
183   }
184   return 1.0;
185 }
186 
187 #else
188 
189 // Helper function for reading a long from a file. Returns true if successful
190 // and the memory location pointed to by value is set to the value read.
ReadLongFromFile(const char * file,long * value)191 static bool ReadLongFromFile(const char *file, long *value) {
192   bool ret = false;
193   int fd = open(file, O_RDONLY);
194   if (fd != -1) {
195     char line[1024];
196     char *err;
197     memset(line, '\0', sizeof(line));
198     int len = read(fd, line, sizeof(line) - 1);
199     if (len <= 0) {
200       ret = false;
201     } else {
202       const long temp_value = strtol(line, &err, 10);
203       if (line[0] != '\0' && (*err == '\n' || *err == '\0')) {
204         *value = temp_value;
205         ret = true;
206       }
207     }
208     close(fd);
209   }
210   return ret;
211 }
212 
213 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
214 
215 // Reads a monotonic time source and returns a value in
216 // nanoseconds. The returned value uses an arbitrary epoch, not the
217 // Unix epoch.
ReadMonotonicClockNanos()218 static int64_t ReadMonotonicClockNanos() {
219   struct timespec t;
220 #ifdef CLOCK_MONOTONIC_RAW
221   int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t);
222 #else
223   int rc = clock_gettime(CLOCK_MONOTONIC, &t);
224 #endif
225   if (rc != 0) {
226     perror("clock_gettime() failed");
227     abort();
228   }
229   return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec;
230 }
231 
232 class UnscaledCycleClockWrapperForInitializeFrequency {
233  public:
Now()234   static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); }
235 };
236 
237 struct TimeTscPair {
238   int64_t time;  // From ReadMonotonicClockNanos().
239   int64_t tsc;   // From UnscaledCycleClock::Now().
240 };
241 
242 // Returns a pair of values (monotonic kernel time, TSC ticks) that
243 // approximately correspond to each other.  This is accomplished by
244 // doing several reads and picking the reading with the lowest
245 // latency.  This approach is used to minimize the probability that
246 // our thread was preempted between clock reads.
GetTimeTscPair()247 static TimeTscPair GetTimeTscPair() {
248   int64_t best_latency = std::numeric_limits<int64_t>::max();
249   TimeTscPair best;
250   for (int i = 0; i < 10; ++i) {
251     int64_t t0 = ReadMonotonicClockNanos();
252     int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now();
253     int64_t t1 = ReadMonotonicClockNanos();
254     int64_t latency = t1 - t0;
255     if (latency < best_latency) {
256       best_latency = latency;
257       best.time = t0;
258       best.tsc = tsc;
259     }
260   }
261   return best;
262 }
263 
264 // Measures and returns the TSC frequency by taking a pair of
265 // measurements approximately `sleep_nanoseconds` apart.
MeasureTscFrequencyWithSleep(int sleep_nanoseconds)266 static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) {
267   auto t0 = GetTimeTscPair();
268   struct timespec ts;
269   ts.tv_sec = 0;
270   ts.tv_nsec = sleep_nanoseconds;
271   while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {}
272   auto t1 = GetTimeTscPair();
273   double elapsed_ticks = t1.tsc - t0.tsc;
274   double elapsed_time = (t1.time - t0.time) * 1e-9;
275   return elapsed_ticks / elapsed_time;
276 }
277 
278 // Measures and returns the TSC frequency by calling
279 // MeasureTscFrequencyWithSleep(), doubling the sleep interval until the
280 // frequency measurement stabilizes.
MeasureTscFrequency()281 static double MeasureTscFrequency() {
282   double last_measurement = -1.0;
283   int sleep_nanoseconds = 1000000;  // 1 millisecond.
284   for (int i = 0; i < 8; ++i) {
285     double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds);
286     if (measurement * 0.99 < last_measurement &&
287         last_measurement < measurement * 1.01) {
288       // Use the current measurement if it is within 1% of the
289       // previous measurement.
290       return measurement;
291     }
292     last_measurement = measurement;
293     sleep_nanoseconds *= 2;
294   }
295   return last_measurement;
296 }
297 
298 #endif  // ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
299 
GetNominalCPUFrequency()300 static double GetNominalCPUFrequency() {
301   long freq = 0;
302 
303   // Google's production kernel has a patch to export the TSC
304   // frequency through sysfs. If the kernel is exporting the TSC
305   // frequency use that. There are issues where cpuinfo_max_freq
306   // cannot be relied on because the BIOS may be exporting an invalid
307   // p-state (on x86) or p-states may be used to put the processor in
308   // a new mode (turbo mode). Essentially, those frequencies cannot
309   // always be relied upon. The same reasons apply to /proc/cpuinfo as
310   // well.
311   if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) {
312     return freq * 1e3;  // Value is kHz.
313   }
314 
315 #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY)
316   // On these platforms, the TSC frequency is the nominal CPU
317   // frequency.  But without having the kernel export it directly
318   // though /sys/devices/system/cpu/cpu0/tsc_freq_khz, there is no
319   // other way to reliably get the TSC frequency, so we have to
320   // measure it ourselves.  Some CPUs abuse cpuinfo_max_freq by
321   // exporting "fake" frequencies for implementing new features. For
322   // example, Intel's turbo mode is enabled by exposing a p-state
323   // value with a higher frequency than that of the real TSC
324   // rate. Because of this, we prefer to measure the TSC rate
325   // ourselves on i386 and x86-64.
326   return MeasureTscFrequency();
327 #else
328 
329   // If CPU scaling is in effect, we want to use the *maximum*
330   // frequency, not whatever CPU speed some random processor happens
331   // to be using now.
332   if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
333                        &freq)) {
334     return freq * 1e3;  // Value is kHz.
335   }
336 
337   return 1.0;
338 #endif  // !ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY
339 }
340 
341 #endif
342 
343 ABSL_CONST_INIT static once_flag init_num_cpus_once;
344 ABSL_CONST_INIT static int num_cpus = 0;
345 
346 // NumCPUs() may be called before main() and before malloc is properly
347 // initialized, therefore this must not allocate memory.
NumCPUs()348 int NumCPUs() {
349   base_internal::LowLevelCallOnce(
350       &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); });
351   return num_cpus;
352 }
353 
354 // A default frequency of 0.0 might be dangerous if it is used in division.
355 ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once;
356 ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0;
357 
358 // NominalCPUFrequency() may be called before main() and before malloc is
359 // properly initialized, therefore this must not allocate memory.
NominalCPUFrequency()360 double NominalCPUFrequency() {
361   base_internal::LowLevelCallOnce(
362       &init_nominal_cpu_frequency_once,
363       []() { nominal_cpu_frequency = GetNominalCPUFrequency(); });
364   return nominal_cpu_frequency;
365 }
366 
367 #if defined(_WIN32)
368 
GetTID()369 pid_t GetTID() {
370   return pid_t{GetCurrentThreadId()};
371 }
372 
373 #elif defined(__linux__)
374 
375 #ifndef SYS_gettid
376 #define SYS_gettid __NR_gettid
377 #endif
378 
GetTID()379 pid_t GetTID() {
380   return syscall(SYS_gettid);
381 }
382 
383 #elif defined(__akaros__)
384 
GetTID()385 pid_t GetTID() {
386   // Akaros has a concept of "vcore context", which is the state the program
387   // is forced into when we need to make a user-level scheduling decision, or
388   // run a signal handler.  This is analogous to the interrupt context that a
389   // CPU might enter if it encounters some kind of exception.
390   //
391   // There is no current thread context in vcore context, but we need to give
392   // a reasonable answer if asked for a thread ID (e.g., in a signal handler).
393   // Thread 0 always exists, so if we are in vcore context, we return that.
394   //
395   // Otherwise, we know (since we are using pthreads) that the uthread struct
396   // current_uthread is pointing to is the first element of a
397   // struct pthread_tcb, so we extract and return the thread ID from that.
398   //
399   // TODO(dcross): Akaros anticipates moving the thread ID to the uthread
400   // structure at some point. We should modify this code to remove the cast
401   // when that happens.
402   if (in_vcore_context())
403     return 0;
404   return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id;
405 }
406 
407 #elif defined(__myriad2__)
408 
GetTID()409 pid_t GetTID() {
410   uint32_t tid;
411   rtems_task_ident(RTEMS_SELF, 0, &tid);
412   return tid;
413 }
414 
415 #else
416 
417 // Fallback implementation of GetTID using pthread_getspecific.
418 ABSL_CONST_INIT static once_flag tid_once;
419 ABSL_CONST_INIT static pthread_key_t tid_key;
420 ABSL_CONST_INIT static absl::base_internal::SpinLock tid_lock(
421     absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY);
422 
423 // We set a bit per thread in this array to indicate that an ID is in
424 // use. ID 0 is unused because it is the default value returned by
425 // pthread_getspecific().
426 ABSL_CONST_INIT static std::vector<uint32_t> *tid_array
427     ABSL_GUARDED_BY(tid_lock) = nullptr;
428 static constexpr int kBitsPerWord = 32;  // tid_array is uint32_t.
429 
430 // Returns the TID to tid_array.
FreeTID(void * v)431 static void FreeTID(void *v) {
432   intptr_t tid = reinterpret_cast<intptr_t>(v);
433   int word = tid / kBitsPerWord;
434   uint32_t mask = ~(1u << (tid % kBitsPerWord));
435   absl::base_internal::SpinLockHolder lock(&tid_lock);
436   assert(0 <= word && static_cast<size_t>(word) < tid_array->size());
437   (*tid_array)[word] &= mask;
438 }
439 
InitGetTID()440 static void InitGetTID() {
441   if (pthread_key_create(&tid_key, FreeTID) != 0) {
442     // The logging system calls GetTID() so it can't be used here.
443     perror("pthread_key_create failed");
444     abort();
445   }
446 
447   // Initialize tid_array.
448   absl::base_internal::SpinLockHolder lock(&tid_lock);
449   tid_array = new std::vector<uint32_t>(1);
450   (*tid_array)[0] = 1;  // ID 0 is never-allocated.
451 }
452 
453 // Return a per-thread small integer ID from pthread's thread-specific data.
GetTID()454 pid_t GetTID() {
455   absl::call_once(tid_once, InitGetTID);
456 
457   intptr_t tid = reinterpret_cast<intptr_t>(pthread_getspecific(tid_key));
458   if (tid != 0) {
459     return tid;
460   }
461 
462   int bit;  // tid_array[word] = 1u << bit;
463   size_t word;
464   {
465     // Search for the first unused ID.
466     absl::base_internal::SpinLockHolder lock(&tid_lock);
467     // First search for a word in the array that is not all ones.
468     word = 0;
469     while (word < tid_array->size() && ~(*tid_array)[word] == 0) {
470       ++word;
471     }
472     if (word == tid_array->size()) {
473       tid_array->push_back(0);  // No space left, add kBitsPerWord more IDs.
474     }
475     // Search for a zero bit in the word.
476     bit = 0;
477     while (bit < kBitsPerWord && (((*tid_array)[word] >> bit) & 1) != 0) {
478       ++bit;
479     }
480     tid = (word * kBitsPerWord) + bit;
481     (*tid_array)[word] |= 1u << bit;  // Mark the TID as allocated.
482   }
483 
484   if (pthread_setspecific(tid_key, reinterpret_cast<void *>(tid)) != 0) {
485     perror("pthread_setspecific failed");
486     abort();
487   }
488 
489   return static_cast<pid_t>(tid);
490 }
491 
492 #endif
493 
494 // GetCachedTID() caches the thread ID in thread-local storage (which is a
495 // userspace construct) to avoid unnecessary system calls. Without this caching,
496 // it can take roughly 98ns, while it takes roughly 1ns with this caching.
GetCachedTID()497 pid_t GetCachedTID() {
498 #ifdef ABSL_HAVE_THREAD_LOCAL
499   static thread_local pid_t thread_id = GetTID();
500   return thread_id;
501 #else
502   return GetTID();
503 #endif  // ABSL_HAVE_THREAD_LOCAL
504 }
505 
506 }  // namespace base_internal
507 ABSL_NAMESPACE_END
508 }  // namespace absl
509