1// Copyright 2017 The Abseil Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14// 15// Produce stack trace 16 17#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 18#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 19 20#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) 21#include <ucontext.h> // for ucontext_t 22#endif 23 24#if !defined(_WIN32) 25#include <unistd.h> 26#endif 27 28#include <cassert> 29#include <cstdint> 30#include <limits> 31 32#include "absl/base/macros.h" 33#include "absl/base/port.h" 34#include "absl/debugging/internal/address_is_readable.h" 35#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems 36#include "absl/debugging/stacktrace.h" 37 38#include "absl/base/internal/raw_logging.h" 39 40using absl::debugging_internal::AddressIsReadable; 41 42#if defined(__linux__) && defined(__i386__) 43// Count "push %reg" instructions in VDSO __kernel_vsyscall(), 44// preceeding "syscall" or "sysenter". 45// If __kernel_vsyscall uses frame pointer, answer 0. 46// 47// kMaxBytes tells how many instruction bytes of __kernel_vsyscall 48// to analyze before giving up. Up to kMaxBytes+1 bytes of 49// instructions could be accessed. 50// 51// Here are known __kernel_vsyscall instruction sequences: 52// 53// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). 54// Used on Intel. 55// 0xffffe400 <__kernel_vsyscall+0>: push %ecx 56// 0xffffe401 <__kernel_vsyscall+1>: push %edx 57// 0xffffe402 <__kernel_vsyscall+2>: push %ebp 58// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp 59// 0xffffe405 <__kernel_vsyscall+5>: sysenter 60// 61// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). 62// Used on AMD. 63// 0xffffe400 <__kernel_vsyscall+0>: push %ebp 64// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp 65// 0xffffe403 <__kernel_vsyscall+3>: syscall 66// 67 68// The sequence below isn't actually expected in Google fleet, 69// here only for completeness. Remove this comment from OSS release. 70 71// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) 72// 0xffffe400 <__kernel_vsyscall+0>: int $0x80 73// 0xffffe401 <__kernel_vsyscall+1>: ret 74// 75static const int kMaxBytes = 10; 76 77// We use assert()s instead of DCHECK()s -- this is too low level 78// for DCHECK(). 79 80static int CountPushInstructions(const unsigned char *const addr) { 81 int result = 0; 82 for (int i = 0; i < kMaxBytes; ++i) { 83 if (addr[i] == 0x89) { 84 // "mov reg,reg" 85 if (addr[i + 1] == 0xE5) { 86 // Found "mov %esp,%ebp". 87 return 0; 88 } 89 ++i; // Skip register encoding byte. 90 } else if (addr[i] == 0x0F && 91 (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { 92 // Found "sysenter" or "syscall". 93 return result; 94 } else if ((addr[i] & 0xF0) == 0x50) { 95 // Found "push %reg". 96 ++result; 97 } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { 98 // Found "int $0x80" 99 assert(result == 0); 100 return 0; 101 } else { 102 // Unexpected instruction. 103 assert(false && "unexpected instruction in __kernel_vsyscall"); 104 return 0; 105 } 106 } 107 // Unexpected: didn't find SYSENTER or SYSCALL in 108 // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. 109 assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); 110 return 0; 111} 112#endif 113 114// Assume stack frames larger than 100,000 bytes are bogus. 115static const int kMaxFrameBytes = 100000; 116 117// Returns the stack frame pointer from signal context, 0 if unknown. 118// vuc is a ucontext_t *. We use void* to avoid the use 119// of ucontext_t on non-POSIX systems. 120static uintptr_t GetFP(const void *vuc) { 121#if !defined(__linux__) 122 static_cast<void>(vuc); // Avoid an unused argument compiler warning. 123#else 124 if (vuc != nullptr) { 125 auto *uc = reinterpret_cast<const ucontext_t *>(vuc); 126#if defined(__i386__) 127 const auto bp = uc->uc_mcontext.gregs[REG_EBP]; 128 const auto sp = uc->uc_mcontext.gregs[REG_ESP]; 129#elif defined(__x86_64__) 130 const auto bp = uc->uc_mcontext.gregs[REG_RBP]; 131 const auto sp = uc->uc_mcontext.gregs[REG_RSP]; 132#else 133 const uintptr_t bp = 0; 134 const uintptr_t sp = 0; 135#endif 136 // Sanity-check that the base pointer is valid. It's possible that some 137 // code in the process is compiled with --copt=-fomit-frame-pointer or 138 // --copt=-momit-leaf-frame-pointer. 139 // 140 // TODO(bcmills): -momit-leaf-frame-pointer is currently the default 141 // behavior when building with clang. Talk to the C++ toolchain team about 142 // fixing that. 143 if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp; 144 145 // If bp isn't a plausible frame pointer, return the stack pointer instead. 146 // If we're lucky, it points to the start of a stack frame; otherwise, we'll 147 // get one frame of garbage in the stack trace and fail the sanity check on 148 // the next iteration. 149 return sp; 150 } 151#endif 152 return 0; 153} 154 155// Given a pointer to a stack frame, locate and return the calling 156// stackframe, or return null if no stackframe can be found. Perform sanity 157// checks (the strictness of which is controlled by the boolean parameter 158// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. 159template <bool STRICT_UNWINDING, bool WITH_CONTEXT> 160ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 161ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 162static void **NextStackFrame(void **old_fp, const void *uc, 163 size_t stack_low, size_t stack_high) { 164 void **new_fp = (void **)*old_fp; 165 166#if defined(__linux__) && defined(__i386__) 167 if (WITH_CONTEXT && uc != nullptr) { 168 // How many "push %reg" instructions are there at __kernel_vsyscall? 169 // This is constant for a given kernel and processor, so compute 170 // it only once. 171 static int num_push_instructions = -1; // Sentinel: not computed yet. 172 // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly 173 // be there. 174 static const unsigned char *kernel_rt_sigreturn_address = nullptr; 175 static const unsigned char *kernel_vsyscall_address = nullptr; 176 if (num_push_instructions == -1) { 177#ifdef ABSL_HAVE_VDSO_SUPPORT 178 absl::debugging_internal::VDSOSupport vdso; 179 if (vdso.IsPresent()) { 180 absl::debugging_internal::VDSOSupport::SymbolInfo 181 rt_sigreturn_symbol_info; 182 absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; 183 if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, 184 &rt_sigreturn_symbol_info) || 185 !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, 186 &vsyscall_symbol_info) || 187 rt_sigreturn_symbol_info.address == nullptr || 188 vsyscall_symbol_info.address == nullptr) { 189 // Unexpected: 32-bit VDSO is present, yet one of the expected 190 // symbols is missing or null. 191 assert(false && "VDSO is present, but doesn't have expected symbols"); 192 num_push_instructions = 0; 193 } else { 194 kernel_rt_sigreturn_address = 195 reinterpret_cast<const unsigned char *>( 196 rt_sigreturn_symbol_info.address); 197 kernel_vsyscall_address = 198 reinterpret_cast<const unsigned char *>( 199 vsyscall_symbol_info.address); 200 num_push_instructions = 201 CountPushInstructions(kernel_vsyscall_address); 202 } 203 } else { 204 num_push_instructions = 0; 205 } 206#else // ABSL_HAVE_VDSO_SUPPORT 207 num_push_instructions = 0; 208#endif // ABSL_HAVE_VDSO_SUPPORT 209 } 210 if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && 211 old_fp[1] == kernel_rt_sigreturn_address) { 212 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); 213 // This kernel does not use frame pointer in its VDSO code, 214 // and so %ebp is not suitable for unwinding. 215 void **const reg_ebp = 216 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); 217 const unsigned char *const reg_eip = 218 reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); 219 if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && 220 reg_eip - kernel_vsyscall_address < kMaxBytes) { 221 // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. 222 // Restore from 'ucv' instead. 223 void **const reg_esp = 224 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); 225 // Check that alleged %esp is not null and is reasonably aligned. 226 if (reg_esp && 227 ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { 228 // Check that alleged %esp is actually readable. This is to prevent 229 // "double fault" in case we hit the first fault due to e.g. stack 230 // corruption. 231 void *const reg_esp2 = reg_esp[num_push_instructions - 1]; 232 if (AddressIsReadable(reg_esp2)) { 233 // Alleged %esp is readable, use it for further unwinding. 234 new_fp = reinterpret_cast<void **>(reg_esp2); 235 } 236 } 237 } 238 } 239 } 240#endif 241 242 const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); 243 const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); 244 245 // Check that the transition from frame pointer old_fp to frame 246 // pointer new_fp isn't clearly bogus. Skip the checks if new_fp 247 // matches the signal context, so that we don't skip out early when 248 // using an alternate signal stack. 249 // 250 // TODO(bcmills): The GetFP call should be completely unnecessary when 251 // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's 252 // stack by this point), but it is empirically still needed (e.g. when the 253 // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some 254 // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what 255 // it's supposed to. 256 if (STRICT_UNWINDING && 257 (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { 258 // With the stack growing downwards, older stack frame must be 259 // at a greater address that the current one. 260 if (new_fp_u <= old_fp_u) return nullptr; 261 if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr; 262 263 if (stack_low < old_fp_u && old_fp_u <= stack_high) { 264 // Old BP was in the expected stack region... 265 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { 266 // ... but new BP is outside of expected stack region. 267 // It is most likely bogus. 268 return nullptr; 269 } 270 } else { 271 // We may be here if we are executing in a co-routine with a 272 // separate stack. We can't do safety checks in this case. 273 } 274 } else { 275 if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below 276 // In the non-strict mode, allow discontiguous stack frames. 277 // (alternate-signal-stacks for example). 278 if (new_fp == old_fp) return nullptr; 279 } 280 281 if (new_fp_u & (sizeof(void *) - 1)) return nullptr; 282#ifdef __i386__ 283 // On 32-bit machines, the stack pointer can be very close to 284 // 0xffffffff, so we explicitly check for a pointer into the 285 // last two pages in the address space 286 if (new_fp_u >= 0xffffe000) return nullptr; 287#endif 288#if !defined(_WIN32) 289 if (!STRICT_UNWINDING) { 290 // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test 291 // on AMD-based machines with VDSO-enabled kernels. 292 // Make an extra sanity check to insure new_fp is readable. 293 // Note: NextStackFrame<false>() is only called while the program 294 // is already on its last leg, so it's ok to be slow here. 295 296 if (!AddressIsReadable(new_fp)) { 297 return nullptr; 298 } 299 } 300#endif 301 return new_fp; 302} 303 304template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> 305ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 306ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 307ABSL_ATTRIBUTE_NOINLINE 308static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, 309 const void *ucp, int *min_dropped_frames) { 310 int n = 0; 311 void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); 312 313 size_t stack_low = getpagesize(); // Assume that the first page is not stack. 314 size_t stack_high = std::numeric_limits<size_t>::max() - sizeof(void *); 315 316 while (fp && n < max_depth) { 317 if (*(fp + 1) == reinterpret_cast<void *>(0)) { 318 // In 64-bit code, we often see a frame that 319 // points to itself and has a return address of 0. 320 break; 321 } 322 void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( 323 fp, ucp, stack_low, stack_high); 324 if (skip_count > 0) { 325 skip_count--; 326 } else { 327 result[n] = *(fp + 1); 328 if (IS_STACK_FRAMES) { 329 if (next_fp > fp) { 330 sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp; 331 } else { 332 // A frame-size of 0 is used to indicate unknown frame size. 333 sizes[n] = 0; 334 } 335 } 336 n++; 337 } 338 fp = next_fp; 339 } 340 if (min_dropped_frames != nullptr) { 341 // Implementation detail: we clamp the max of frames we are willing to 342 // count, so as not to spend too much time in the loop below. 343 const int kMaxUnwind = 1000; 344 int num_dropped_frames = 0; 345 for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { 346 if (skip_count > 0) { 347 skip_count--; 348 } else { 349 num_dropped_frames++; 350 } 351 fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low, 352 stack_high); 353 } 354 *min_dropped_frames = num_dropped_frames; 355 } 356 return n; 357} 358 359namespace absl { 360ABSL_NAMESPACE_BEGIN 361namespace debugging_internal { 362bool StackTraceWorksForTest() { 363 return true; 364} 365} // namespace debugging_internal 366ABSL_NAMESPACE_END 367} // namespace absl 368 369#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 370