• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 
12 #include <flatbuffers/flatbuffers.h>
13 #include <tensorflow/lite/interpreter.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/model.h>
16 #include <tensorflow/lite/schema/schema_generated.h>
17 #include <tensorflow/lite/version.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreatePooling2dTfLiteModel(tflite::BuiltinOperator poolingOperatorCode,tflite::TensorType tensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & outputTensorShape,tflite::Padding padding=tflite::Padding_SAME,int32_t strideWidth=0,int32_t strideHeight=0,int32_t filterWidth=0,int32_t filterHeight=0,tflite::ActivationFunctionType fusedActivation=tflite::ActivationFunctionType_NONE,float quantScale=1.0f,int quantOffset=0)24 std::vector<char> CreatePooling2dTfLiteModel(
25     tflite::BuiltinOperator poolingOperatorCode,
26     tflite::TensorType tensorType,
27     const std::vector <int32_t>& inputTensorShape,
28     const std::vector <int32_t>& outputTensorShape,
29     tflite::Padding padding = tflite::Padding_SAME,
30     int32_t strideWidth = 0,
31     int32_t strideHeight = 0,
32     int32_t filterWidth = 0,
33     int32_t filterHeight = 0,
34     tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
35     float quantScale = 1.0f,
36     int quantOffset  = 0)
37 {
38     using namespace tflite;
39     flatbuffers::FlatBufferBuilder flatBufferBuilder;
40 
41     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
42     buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
43 
44     auto quantizationParameters =
45         CreateQuantizationParameters(flatBufferBuilder,
46                                      0,
47                                      0,
48                                      flatBufferBuilder.CreateVector<float>({ quantScale }),
49                                      flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
50 
51     std::array<flatbuffers::Offset<Tensor>, 2> tensors;
52     tensors[0] = CreateTensor(flatBufferBuilder,
53                               flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(),
54                                                                       inputTensorShape.size()),
55                               tensorType,
56                               0,
57                               flatBufferBuilder.CreateString("input"),
58                               quantizationParameters);
59 
60     tensors[1] = CreateTensor(flatBufferBuilder,
61                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
62                                                                       outputTensorShape.size()),
63                               tensorType,
64                               0,
65                               flatBufferBuilder.CreateString("output"),
66                               quantizationParameters);
67 
68     // create operator
69     tflite::BuiltinOptions operatorBuiltinOptionsType = BuiltinOptions_Pool2DOptions;
70     flatbuffers::Offset<void> operatorBuiltinOptions = CreatePool2DOptions(flatBufferBuilder,
71                                                                            padding,
72                                                                            strideWidth,
73                                                                            strideHeight,
74                                                                            filterWidth,
75                                                                            filterHeight,
76                                                                            fusedActivation).Union();
77 
78     const std::vector<int32_t> operatorInputs{{0}};
79     const std::vector<int32_t> operatorOutputs{{1}};
80     flatbuffers::Offset <Operator> poolingOperator =
81         CreateOperator(flatBufferBuilder,
82                        0,
83                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
84                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
85                        operatorBuiltinOptionsType,
86                        operatorBuiltinOptions);
87 
88     const std::vector<int> subgraphInputs{{0}};
89     const std::vector<int> subgraphOutputs{{1}};
90     flatbuffers::Offset <SubGraph> subgraph =
91         CreateSubGraph(flatBufferBuilder,
92                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
93                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
94                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
95                        flatBufferBuilder.CreateVector(&poolingOperator, 1));
96 
97     flatbuffers::Offset <flatbuffers::String> modelDescription =
98         flatBufferBuilder.CreateString("ArmnnDelegate: Pooling2d Operator Model");
99     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, poolingOperatorCode);
100 
101     flatbuffers::Offset <Model> flatbufferModel =
102         CreateModel(flatBufferBuilder,
103                     TFLITE_SCHEMA_VERSION,
104                     flatBufferBuilder.CreateVector(&operatorCode, 1),
105                     flatBufferBuilder.CreateVector(&subgraph, 1),
106                     modelDescription,
107                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
108 
109     flatBufferBuilder.Finish(flatbufferModel);
110 
111     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
112                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
113 }
114 
115 template <typename T>
Pooling2dTest(tflite::BuiltinOperator poolingOperatorCode,tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & inputShape,std::vector<int32_t> & outputShape,std::vector<T> & inputValues,std::vector<T> & expectedOutputValues,tflite::Padding padding=tflite::Padding_SAME,int32_t strideWidth=0,int32_t strideHeight=0,int32_t filterWidth=0,int32_t filterHeight=0,tflite::ActivationFunctionType fusedActivation=tflite::ActivationFunctionType_NONE,float quantScale=1.0f,int quantOffset=0)116 void Pooling2dTest(tflite::BuiltinOperator poolingOperatorCode,
117                    tflite::TensorType tensorType,
118                    std::vector<armnn::BackendId>& backends,
119                    std::vector<int32_t>& inputShape,
120                    std::vector<int32_t>& outputShape,
121                    std::vector<T>& inputValues,
122                    std::vector<T>& expectedOutputValues,
123                    tflite::Padding padding = tflite::Padding_SAME,
124                    int32_t strideWidth = 0,
125                    int32_t strideHeight = 0,
126                    int32_t filterWidth = 0,
127                    int32_t filterHeight = 0,
128                    tflite::ActivationFunctionType fusedActivation = tflite::ActivationFunctionType_NONE,
129                    float quantScale = 1.0f,
130                    int quantOffset  = 0)
131 {
132     using namespace tflite;
133     std::vector<char> modelBuffer = CreatePooling2dTfLiteModel(poolingOperatorCode,
134                                                                tensorType,
135                                                                inputShape,
136                                                                outputShape,
137                                                                padding,
138                                                                strideWidth,
139                                                                strideHeight,
140                                                                filterWidth,
141                                                                filterHeight,
142                                                                fusedActivation,
143                                                                quantScale,
144                                                                quantOffset);
145 
146     const Model* tfLiteModel = GetModel(modelBuffer.data());
147     CHECK(tfLiteModel != nullptr);
148     // Create TfLite Interpreters
149     std::unique_ptr<Interpreter> armnnDelegateInterpreter;
150     CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
151               (&armnnDelegateInterpreter) == kTfLiteOk);
152     CHECK(armnnDelegateInterpreter != nullptr);
153     CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
154 
155     std::unique_ptr<Interpreter> tfLiteInterpreter;
156     CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
157               (&tfLiteInterpreter) == kTfLiteOk);
158     CHECK(tfLiteInterpreter != nullptr);
159     CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
160 
161     // Create the ArmNN Delegate
162     armnnDelegate::DelegateOptions delegateOptions(backends);
163     std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
164         theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
165                          armnnDelegate::TfLiteArmnnDelegateDelete);
166     CHECK(theArmnnDelegate != nullptr);
167     // Modify armnnDelegateInterpreter to use armnnDelegate
168     CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
169 
170     // Set input data
171     auto tfLiteDelegateInputId = tfLiteInterpreter->inputs()[0];
172     auto tfLiteDelegateInputData = tfLiteInterpreter->typed_tensor<T>(tfLiteDelegateInputId);
173     for (unsigned int i = 0; i < inputValues.size(); ++i)
174     {
175         tfLiteDelegateInputData[i] = inputValues[i];
176     }
177 
178     auto armnnDelegateInputId = armnnDelegateInterpreter->inputs()[0];
179     auto armnnDelegateInputData = armnnDelegateInterpreter->typed_tensor<T>(armnnDelegateInputId);
180     for (unsigned int i = 0; i < inputValues.size(); ++i)
181     {
182         armnnDelegateInputData[i] = inputValues[i];
183     }
184 
185     // Run EnqueueWorkload
186     CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
187     CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
188 
189     armnnDelegate::CompareOutputData(tfLiteInterpreter, armnnDelegateInterpreter, outputShape, expectedOutputValues);
190 }
191 
192 } // anonymous namespace
193 
194 
195 
196 
197