• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2020 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 
12 #include <flatbuffers/flatbuffers.h>
13 #include <tensorflow/lite/interpreter.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/model.h>
16 #include <tensorflow/lite/schema/schema_generated.h>
17 #include <tensorflow/lite/version.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
CreateResizeTfLiteModel(tflite::BuiltinOperator operatorCode,tflite::TensorType inputTensorType,const std::vector<int32_t> & inputTensorShape,const std::vector<int32_t> & sizeTensorData,const std::vector<int32_t> & sizeTensorShape,const std::vector<int32_t> & outputTensorShape)24 std::vector<char> CreateResizeTfLiteModel(tflite::BuiltinOperator operatorCode,
25                                           tflite::TensorType inputTensorType,
26                                           const std::vector <int32_t>& inputTensorShape,
27                                           const std::vector <int32_t>& sizeTensorData,
28                                           const std::vector <int32_t>& sizeTensorShape,
29                                           const std::vector <int32_t>& outputTensorShape)
30 {
31     using namespace tflite;
32     flatbuffers::FlatBufferBuilder flatBufferBuilder;
33 
34     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
35     buffers.push_back(CreateBuffer(flatBufferBuilder, flatBufferBuilder.CreateVector({})));
36     buffers.push_back(CreateBuffer(flatBufferBuilder,
37                                    flatBufferBuilder.CreateVector(
38                                            reinterpret_cast<const uint8_t*>(sizeTensorData.data()),
39                                            sizeof(int32_t) * sizeTensorData.size())));
40 
41     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
42     tensors[0] = CreateTensor(flatBufferBuilder,
43                               flatBufferBuilder.CreateVector<int32_t>(inputTensorShape.data(), inputTensorShape.size()),
44                               inputTensorType,
45                               0,
46                               flatBufferBuilder.CreateString("input_tensor"));
47 
48     tensors[1] = CreateTensor(flatBufferBuilder,
49                               flatBufferBuilder.CreateVector<int32_t>(sizeTensorShape.data(),
50                                                                       sizeTensorShape.size()),
51                               TensorType_INT32,
52                               1,
53                               flatBufferBuilder.CreateString("size_input_tensor"));
54 
55     tensors[2] = CreateTensor(flatBufferBuilder,
56                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
57                                                                       outputTensorShape.size()),
58                               inputTensorType,
59                               0,
60                               flatBufferBuilder.CreateString("output_tensor"));
61 
62     // Create Operator
63     tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
64     flatbuffers::Offset<void> operatorBuiltinOption = 0;
65     switch (operatorCode)
66     {
67         case BuiltinOperator_RESIZE_BILINEAR:
68         {
69             operatorBuiltinOption = CreateResizeBilinearOptions(flatBufferBuilder, false, false).Union();
70             operatorBuiltinOptionsType = tflite::BuiltinOptions_ResizeBilinearOptions;
71             break;
72         }
73         case BuiltinOperator_RESIZE_NEAREST_NEIGHBOR:
74         {
75             operatorBuiltinOption = CreateResizeNearestNeighborOptions(flatBufferBuilder, false, false).Union();
76             operatorBuiltinOptionsType = tflite::BuiltinOptions_ResizeNearestNeighborOptions;
77             break;
78         }
79         default:
80             break;
81     }
82 
83     const std::vector<int> operatorInputs{{0, 1}};
84     const std::vector<int> operatorOutputs{{2}};
85     flatbuffers::Offset <Operator> resizeOperator =
86         CreateOperator(flatBufferBuilder,
87                        0,
88                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
89                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
90                        operatorBuiltinOptionsType,
91                        operatorBuiltinOption);
92 
93     const std::vector<int> subgraphInputs{{0, 1}};
94     const std::vector<int> subgraphOutputs{{2}};
95     flatbuffers::Offset <SubGraph> subgraph =
96         CreateSubGraph(flatBufferBuilder,
97                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
98                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
99                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
100                        flatBufferBuilder.CreateVector(&resizeOperator, 1));
101 
102     flatbuffers::Offset <flatbuffers::String> modelDescription =
103         flatBufferBuilder.CreateString("ArmnnDelegate: Resize Biliniar Operator Model");
104     flatbuffers::Offset <OperatorCode> opCode = CreateOperatorCode(flatBufferBuilder, operatorCode);
105 
106     flatbuffers::Offset <Model> flatbufferModel =
107         CreateModel(flatBufferBuilder,
108                     TFLITE_SCHEMA_VERSION,
109                     flatBufferBuilder.CreateVector(&opCode, 1),
110                     flatBufferBuilder.CreateVector(&subgraph, 1),
111                     modelDescription,
112                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
113 
114     flatBufferBuilder.Finish(flatbufferModel);
115 
116     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
117                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
118 }
119 
ResizeFP32TestImpl(tflite::BuiltinOperator operatorCode,std::vector<armnn::BackendId> & backends,std::vector<float> & input1Values,std::vector<int32_t> input1Shape,std::vector<int32_t> input2NewShape,std::vector<int32_t> input2Shape,std::vector<float> & expectedOutputValues,std::vector<int32_t> expectedOutputShape)120 void ResizeFP32TestImpl(tflite::BuiltinOperator operatorCode,
121                         std::vector<armnn::BackendId>& backends,
122                         std::vector<float>& input1Values,
123                         std::vector<int32_t> input1Shape,
124                         std::vector<int32_t> input2NewShape,
125                         std::vector<int32_t> input2Shape,
126                         std::vector<float>& expectedOutputValues,
127                         std::vector<int32_t> expectedOutputShape)
128 {
129     using namespace tflite;
130 
131     std::vector<char> modelBuffer = CreateResizeTfLiteModel(operatorCode,
132                                                             ::tflite::TensorType_FLOAT32,
133                                                             input1Shape,
134                                                             input2NewShape,
135                                                             input2Shape,
136                                                             expectedOutputShape);
137 
138     const Model* tfLiteModel = GetModel(modelBuffer.data());
139 
140     // The model will be executed using tflite and using the armnn delegate so that the outputs
141     // can be compared.
142 
143     // Create TfLite Interpreter with armnn delegate
144     std::unique_ptr<Interpreter> armnnDelegateInterpreter;
145     CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
146               (&armnnDelegateInterpreter) == kTfLiteOk);
147     CHECK(armnnDelegateInterpreter != nullptr);
148     CHECK(armnnDelegateInterpreter->AllocateTensors() == kTfLiteOk);
149 
150     // Create TfLite Interpreter without armnn delegate
151     std::unique_ptr<Interpreter> tfLiteInterpreter;
152     CHECK(InterpreterBuilder(tfLiteModel, ::tflite::ops::builtin::BuiltinOpResolver())
153               (&tfLiteInterpreter) == kTfLiteOk);
154     CHECK(tfLiteInterpreter != nullptr);
155     CHECK(tfLiteInterpreter->AllocateTensors() == kTfLiteOk);
156 
157     // Create the ArmNN Delegate
158     armnnDelegate::DelegateOptions delegateOptions(backends);
159     std::unique_ptr<TfLiteDelegate, decltype(&armnnDelegate::TfLiteArmnnDelegateDelete)>
160                         theArmnnDelegate(armnnDelegate::TfLiteArmnnDelegateCreate(delegateOptions),
161                                          armnnDelegate::TfLiteArmnnDelegateDelete);
162     CHECK(theArmnnDelegate != nullptr);
163     // Modify armnnDelegateInterpreter to use armnnDelegate
164     CHECK(armnnDelegateInterpreter->ModifyGraphWithDelegate(theArmnnDelegate.get()) == kTfLiteOk);
165 
166     // Set input data for the armnn interpreter
167     armnnDelegate::FillInput(armnnDelegateInterpreter, 0, input1Values);
168     armnnDelegate::FillInput(armnnDelegateInterpreter, 1, input2NewShape);
169 
170     // Set input data for the tflite interpreter
171     armnnDelegate::FillInput(tfLiteInterpreter, 0, input1Values);
172     armnnDelegate::FillInput(tfLiteInterpreter, 1, input2NewShape);
173 
174     // Run EnqueWorkload
175     CHECK(armnnDelegateInterpreter->Invoke() == kTfLiteOk);
176     CHECK(tfLiteInterpreter->Invoke() == kTfLiteOk);
177 
178     // Compare output data
179     auto tfLiteDelegateOutputId = tfLiteInterpreter->outputs()[0];
180     auto tfLiteDelageOutputData = tfLiteInterpreter->typed_tensor<float>(tfLiteDelegateOutputId);
181     auto armnnDelegateOutputId = armnnDelegateInterpreter->outputs()[0];
182     auto armnnDelegateOutputData = armnnDelegateInterpreter->typed_tensor<float>(armnnDelegateOutputId);
183     for (size_t i = 0; i < expectedOutputValues.size(); i++)
184     {
185         CHECK(expectedOutputValues[i] == doctest::Approx(armnnDelegateOutputData[i]));
186         CHECK(armnnDelegateOutputData[i] == doctest::Approx(tfLiteDelageOutputData[i]));
187     }
188 
189     armnnDelegateInterpreter.reset(nullptr);
190 }
191 
192 } // anonymous namespace