1# Copyright © 2020 Arm Ltd. All rights reserved. 2# SPDX-License-Identifier: MIT 3import os 4 5import pytest 6import pyarmnn as ann 7import numpy as np 8from typing import List 9 10 11@pytest.fixture() 12def parser(shared_data_folder): 13 """ 14 Parse and setup the test network to be used for the tests below 15 """ 16 17 # create onnx parser 18 parser = ann.IOnnxParser() 19 20 # path to model 21 path_to_model = os.path.join(shared_data_folder, 'mock_model.onnx') 22 23 # parse onnx binary & create network 24 parser.CreateNetworkFromBinaryFile(path_to_model) 25 26 yield parser 27 28 29def test_onnx_parser_swig_destroy(): 30 assert ann.IOnnxParser.__swig_destroy__, "There is a swig python destructor defined" 31 assert ann.IOnnxParser.__swig_destroy__.__name__ == "delete_IOnnxParser" 32 33 34def test_check_onnx_parser_swig_ownership(parser): 35 # Check to see that SWIG has ownership for parser. This instructs SWIG to take 36 # ownership of the return value. This allows the value to be automatically 37 # garbage-collected when it is no longer in use 38 assert parser.thisown 39 40 41def test_onnx_parser_get_network_input_binding_info(parser): 42 input_binding_info = parser.GetNetworkInputBindingInfo("input") 43 44 tensor = input_binding_info[1] 45 assert tensor.GetDataType() == 1 46 assert tensor.GetNumDimensions() == 4 47 assert tensor.GetNumElements() == 784 48 assert tensor.GetQuantizationOffset() == 0 49 assert tensor.GetQuantizationScale() == 0 50 51 52def test_onnx_parser_get_network_output_binding_info(parser): 53 output_binding_info = parser.GetNetworkOutputBindingInfo("output") 54 55 tensor = output_binding_info[1] 56 assert tensor.GetDataType() == 1 57 assert tensor.GetNumDimensions() == 4 58 assert tensor.GetNumElements() == 10 59 assert tensor.GetQuantizationOffset() == 0 60 assert tensor.GetQuantizationScale() == 0 61 62 63def test_onnx_filenotfound_exception(shared_data_folder): 64 parser = ann.IOnnxParser() 65 66 # path to model 67 path_to_model = os.path.join(shared_data_folder, 'some_unknown_model.onnx') 68 69 # parse onnx binary & create network 70 71 with pytest.raises(RuntimeError) as err: 72 parser.CreateNetworkFromBinaryFile(path_to_model) 73 74 # Only check for part of the exception since the exception returns 75 # absolute path which will change on different machines. 76 assert 'Invalid (null) filename' in str(err.value) 77 78 79def test_onnx_parser_end_to_end(shared_data_folder): 80 parser = ann.IOnnxParser = ann.IOnnxParser() 81 82 network = parser.CreateNetworkFromBinaryFile(os.path.join(shared_data_folder, 'mock_model.onnx')) 83 84 # load test image data stored in input_onnx.npy 85 input_binding_info = parser.GetNetworkInputBindingInfo("input") 86 input_tensor_data = np.load(os.path.join(shared_data_folder, 'onnx_parser/input_onnx.npy')).astype(np.float32) 87 88 options = ann.CreationOptions() 89 runtime = ann.IRuntime(options) 90 91 preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')] 92 opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions()) 93 94 assert 0 == len(messages) 95 96 net_id, messages = runtime.LoadNetwork(opt_network) 97 98 assert "" == messages 99 100 input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data]) 101 output_tensors = ann.make_output_tensors([parser.GetNetworkOutputBindingInfo("output")]) 102 103 runtime.EnqueueWorkload(net_id, input_tensors, output_tensors) 104 105 output = ann.workload_tensors_to_ndarray(output_tensors) 106 107 # Load golden output file for result comparison. 108 golden_output = np.load(os.path.join(shared_data_folder, 'onnx_parser/golden_output_onnx.npy')) 109 110 # Check that output matches golden output to 4 decimal places (there are slight rounding differences after this) 111 np.testing.assert_almost_equal(output[0], golden_output, decimal=4) 112