• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include "armnnOnnxParser/IOnnxParser.hpp"
8 #include "google/protobuf/repeated_field.h"
9 #include <unordered_map>
10 
11 #include <onnx/onnx.pb.h>
12 
13 
14 namespace armnn
15 {
16 class TensorInfo;
17 enum class ActivationFunction;
18 }
19 
20 namespace armnnOnnxParser
21 {
22 
23 using ModelPtr = std::unique_ptr<onnx::ModelProto>;
24 
25 class OnnxParser : public IOnnxParser
26 {
27 
28 using OperationParsingFunction = void(OnnxParser::*)(const onnx::NodeProto& NodeProto);
29 
30 public:
31 
32     using GraphPtr = std::unique_ptr<onnx::GraphProto>;
33 
34     /// Create the network from a protobuf binary file on disk
35     virtual armnn::INetworkPtr CreateNetworkFromBinaryFile(const char* graphFile) override;
36 
37     /// Create the network from a protobuf text file on disk
38     virtual armnn::INetworkPtr CreateNetworkFromTextFile(const char* graphFile) override;
39 
40     /// Create the network directly from protobuf text in a string. Useful for debugging/testing
41     virtual armnn::INetworkPtr CreateNetworkFromString(const std::string& protoText) override;
42 
43     /// Retrieve binding info (layer id and tensor info) for the network input identified by the given layer name
44     virtual BindingPointInfo GetNetworkInputBindingInfo(const std::string& name) const override;
45 
46     /// Retrieve binding info (layer id and tensor info) for the network output identified by the given layer name
47     virtual BindingPointInfo GetNetworkOutputBindingInfo(const std::string& name) const override;
48 
49 public:
50 
51     OnnxParser();
52 
53     static ModelPtr LoadModelFromBinaryFile(const char * fileName);
54     static ModelPtr LoadModelFromTextFile(const char * fileName);
55     static ModelPtr LoadModelFromString(const std::string& inputString);
56 
57     /// Retrieve inputs names
58     static std::vector<std::string> GetInputs(ModelPtr& model);
59 
60     /// Retrieve outputs names
61     static std::vector<std::string> GetOutputs(ModelPtr& model);
62 
63 private:
64 
65     /// Parses a ModelProto loaded into memory from one of the other CreateNetwork*
66     armnn::INetworkPtr CreateNetworkFromModel(onnx::ModelProto& model);
67 
68     /// Parse every node and make the connection between the resulting tensors
69     void LoadGraph();
70 
71     void SetupInfo(const google::protobuf::RepeatedPtrField<onnx::ValueInfoProto >* list);
72 
73     std::vector<armnn::TensorInfo> ComputeOutputInfo(std::vector<std::string> outNames,
74                                                      const armnn::IConnectableLayer* layer,
75                                                      std::vector<armnn::TensorShape> inputShapes);
76 
77     void DetectFullyConnected();
78 
79     template <typename Location>
80     void GetInputAndParam(const onnx::NodeProto& node,
81                           std::string* inputName,
82                           std::string* constName,
83                           const Location& location);
84 
85     template <typename Location>
86     void To1DTensor(const std::string &name, const Location& location);
87 
88     //Broadcast Preparation functions
89     std::pair<std::string, std::string> AddPrepareBroadcast(const std::string& input0, const std::string& input1);
90     void PrependForBroadcast(const std::string& outputName, const std::string& input0, const std::string& input1);
91 
92     void AddConvLayerWithDepthwiseConv(const onnx::NodeProto& node, const armnn::Convolution2dDescriptor& convDesc);
93     void AddFullyConnected(const onnx::NodeProto& matmulNode, const onnx::NodeProto* addNode = nullptr);
94     void AddPoolingLayer(const onnx::NodeProto& nodeProto, armnn::Pooling2dDescriptor& desc);
95 
96     void CreateConstantLayer(const std::string& tensorName, const std::string& layerName);
97     void CreateReshapeLayer(const std::string& inputName,
98                             const std::string& outputName,
99                             const std::string& layerName);
100 
101     void ParseActivation(const onnx::NodeProto& nodeProto, const armnn::ActivationFunction func);
102     void ParseClip(const onnx::NodeProto& nodeProto);
103     void ParseSigmoid(const onnx::NodeProto& nodeProto);
104     void ParseTanh(const onnx::NodeProto& nodeProto);
105     void ParseRelu(const onnx::NodeProto& nodeProto);
106     void ParseLeakyRelu(const onnx::NodeProto& nodeProto);
107 
108     void ParseAdd(const onnx::NodeProto& nodeProto);
109     void ParseAveragePool(const onnx::NodeProto& nodeProto);
110     void ParseBatchNormalization(const onnx::NodeProto& node);
111     void ParseConstant(const onnx::NodeProto& nodeProto);
112     void ParseConv(const onnx::NodeProto& nodeProto);
113     void ParseFlatten(const onnx::NodeProto& node);
114     void ParseGlobalAveragePool(const onnx::NodeProto& node);
115     void ParseMaxPool(const onnx::NodeProto& nodeProto);
116     void ParseReshape(const onnx::NodeProto& nodeProto);
117 
118     void RegisterInputSlots(armnn::IConnectableLayer* layer, const std::vector<std::string>& tensorIndexes);
119     void RegisterOutputSlots(armnn::IConnectableLayer* layer, const std::vector<std::string>& tensorIndexes);
120 
121     void SetupInputLayers();
122     void SetupOutputLayers();
123 
124     void ResetParser();
125     void Cleanup();
126 
127     std::pair<armnn::ConstTensor, std::unique_ptr<float[]>> CreateConstTensor(const std::string name);
128 
129     template <typename TypeList, typename Location>
130     void ValidateInputs(const onnx::NodeProto& node,
131                         TypeList validInputs,
132                         const Location& location);
133 
134     /// The network we're building. Gets cleared after it is passed to the user
135     armnn::INetworkPtr m_Network;
136 
137     /// Ptr to the graph we're building the network from
138     GraphPtr m_Graph;
139 
140     /// Map of the information for every tensor
141     struct OnnxTensor
142     {
143         std::unique_ptr<armnn::TensorInfo>          m_info;
144         std::unique_ptr<const onnx::TensorProto>    m_tensor;
145         onnx::TensorProto::DataType                 m_dtype;
146 
OnnxTensorarmnnOnnxParser::OnnxParser::OnnxTensor147         OnnxTensor() : m_info(nullptr), m_tensor(nullptr), m_dtype(onnx::TensorProto::FLOAT) { }
isConstantarmnnOnnxParser::OnnxParser::OnnxTensor148         bool isConstant() { return m_tensor != nullptr; }
149     };
150 
151     std::unordered_map<std::string, OnnxTensor> m_TensorsInfo;
152 
153     /// map of onnx operation names to parsing member functions
154     static const std::map<std::string, OperationParsingFunction> m_ParserFunctions;
155 
156     /// A mapping of an output slot to each of the input slots it should be connected to
157     /// The outputSlot is from the layer that creates this tensor as one of its ouputs
158     /// The inputSlots are from the layers that use this tensor as one of their inputs
159     struct TensorSlots
160     {
161         armnn::IOutputSlot* outputSlot;
162         std::vector<armnn::IInputSlot*> inputSlots;
163 
TensorSlotsarmnnOnnxParser::OnnxParser::TensorSlots164         TensorSlots() : outputSlot(nullptr) { }
165     };
166     /// Map of the tensor names to their connections for the connections of the layers of the graph
167     std::unordered_map<std::string, TensorSlots> m_TensorConnections;
168 
169     /// Map of the tensor names to their node and index in graph.node()
170     std::unordered_map<std::string, std::pair<const onnx::NodeProto*, int>> m_OutputsMap;
171 
172     /// Number of times a specific node (identified by his index number) was used as input
173     /// and list of the nodes it was fused with
174     struct UsageSummary
175     {
176         std::vector<size_t> fusedWithNodes;
177         size_t inputForNodes;
178 
UsageSummaryarmnnOnnxParser::OnnxParser::UsageSummary179         UsageSummary() : fusedWithNodes({}), inputForNodes(0) { }
180 
181     };
182 
183     std::vector<UsageSummary> m_OutputsFusedAndUsed;
184 
185 };
186 }
187