• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include "CommonTestUtils.hpp"
8 
9 #include <ResolveType.hpp>
10 
11 #include <armnn/INetwork.hpp>
12 
13 #include <armnn/utility/NumericCast.hpp>
14 
15 #include <boost/test/unit_test.hpp>
16 
17 #include <vector>
18 
19 namespace
20 {
21 
22 template<armnn::DataType ArmnnTypeInput>
CreateComparisonNetwork(const std::vector<TensorShape> & inputShapes,const TensorShape & outputShape,ComparisonOperation operation,const float qScale=1.0f,const int32_t qOffset=0)23 INetworkPtr CreateComparisonNetwork(const std::vector<TensorShape>& inputShapes,
24                                     const TensorShape& outputShape,
25                                     ComparisonOperation operation,
26                                     const float qScale = 1.0f,
27                                     const int32_t qOffset = 0)
28 {
29     using namespace armnn;
30 
31     INetworkPtr net(INetwork::Create());
32 
33     ComparisonDescriptor descriptor(operation);
34     IConnectableLayer* comparisonLayer = net->AddComparisonLayer(descriptor, "comparison");
35 
36     for (unsigned int i = 0; i < inputShapes.size(); ++i)
37     {
38         TensorInfo inputTensorInfo(inputShapes[i], ArmnnTypeInput, qScale, qOffset);
39         IConnectableLayer* input = net->AddInputLayer(armnn::numeric_cast<LayerBindingId>(i));
40         Connect(input, comparisonLayer, inputTensorInfo, 0, i);
41     }
42 
43     TensorInfo outputTensorInfo(outputShape, DataType::Boolean, qScale, qOffset);
44     IConnectableLayer* output = net->AddOutputLayer(0, "output");
45     Connect(comparisonLayer, output, outputTensorInfo, 0, 0);
46 
47     return net;
48 }
49 
50 template<armnn::DataType ArmnnInType,
51          typename TInput = armnn::ResolveType<ArmnnInType>>
ComparisonSimpleEndToEnd(const std::vector<BackendId> & backends,ComparisonOperation operation,const std::vector<uint8_t> expectedOutput)52 void ComparisonSimpleEndToEnd(const std::vector<BackendId>& backends,
53                               ComparisonOperation operation,
54                               const std::vector<uint8_t> expectedOutput)
55 {
56     using namespace armnn;
57 
58     const std::vector<TensorShape> inputShapes{{ 2, 2, 2, 2 }, { 2, 2, 2, 2 }};
59     const TensorShape& outputShape = { 2, 2, 2, 2 };
60 
61     // Builds up the structure of the network
62     INetworkPtr net = CreateComparisonNetwork<ArmnnInType>(inputShapes, outputShape, operation);
63 
64     BOOST_TEST_CHECKPOINT("create a network");
65 
66     const std::vector<TInput> input0({ 1, 1, 1, 1,  5, 5, 5, 5,
67                                        3, 3, 3, 3,  4, 4, 4, 4 });
68 
69     const std::vector<TInput> input1({ 1, 1, 1, 1,  3, 3, 3, 3,
70                                        5, 5, 5, 5,  4, 4, 4, 4 });
71 
72     std::map<int, std::vector<TInput>>  inputTensorData    = {{ 0, input0 }, { 1, input1 }};
73     std::map<int, std::vector<uint8_t>> expectedOutputData = {{ 0, expectedOutput }};
74 
75     EndToEndLayerTestImpl<ArmnnInType, DataType::Boolean>(move(net), inputTensorData, expectedOutputData, backends);
76 }
77 
78 template<armnn::DataType ArmnnInType,
79          typename TInput = armnn::ResolveType<ArmnnInType>>
ComparisonBroadcastEndToEnd(const std::vector<BackendId> & backends,ComparisonOperation operation,const std::vector<uint8_t> expectedOutput)80 void ComparisonBroadcastEndToEnd(const std::vector<BackendId>& backends,
81                                  ComparisonOperation operation,
82                                  const std::vector<uint8_t> expectedOutput)
83 {
84     using namespace armnn;
85 
86     const std::vector<TensorShape> inputShapes{{ 1, 2, 2, 3 }, { 1, 1, 1, 3 }};
87     const TensorShape& outputShape = { 1, 2, 2, 3 };
88 
89     // Builds up the structure of the network
90     INetworkPtr net = CreateComparisonNetwork<ArmnnInType>(inputShapes, outputShape, operation);
91 
92     BOOST_TEST_CHECKPOINT("create a network");
93 
94     const std::vector<TInput> input0({ 1, 2, 3, 1, 0, 6,
95                                        7, 8, 9, 10, 11, 12 });
96 
97     const std::vector<TInput> input1({ 1, 1, 3 });
98 
99     std::map<int, std::vector<TInput>>  inputTensorData    = {{ 0, input0 }, { 1, input1 }};
100     std::map<int, std::vector<uint8_t>> expectedOutputData = {{ 0, expectedOutput }};
101 
102     EndToEndLayerTestImpl<ArmnnInType, DataType::Boolean>(move(net), inputTensorData, expectedOutputData, backends);
103 }
104 
105 } // anonymous namespace
106