• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2019 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include "CommonTestUtils.hpp"
8 
9 #include <ResolveType.hpp>
10 
11 #include <armnn/INetwork.hpp>
12 
13 #include <armnn/utility/NumericCast.hpp>
14 
15 #include <boost/test/unit_test.hpp>
16 
17 #include <vector>
18 
19 namespace
20 {
21 
22 template<armnn::DataType ArmnnTypeInput>
CreateElementwiseUnaryNetwork(const TensorShape & inputShape,const TensorShape & outputShape,UnaryOperation operation,const float qScale=1.0f,const int32_t qOffset=0)23 INetworkPtr CreateElementwiseUnaryNetwork(const TensorShape& inputShape,
24                                           const TensorShape& outputShape,
25                                           UnaryOperation operation,
26                                           const float qScale = 1.0f,
27                                           const int32_t qOffset = 0)
28 {
29     using namespace armnn;
30 
31     INetworkPtr net(INetwork::Create());
32 
33     ElementwiseUnaryDescriptor descriptor(operation);
34     IConnectableLayer* elementwiseUnaryLayer = net->AddElementwiseUnaryLayer(descriptor, "elementwiseUnary");
35 
36     TensorInfo inputTensorInfo(inputShape, ArmnnTypeInput, qScale, qOffset);
37     IConnectableLayer* input = net->AddInputLayer(armnn::numeric_cast<LayerBindingId>(0));
38     Connect(input, elementwiseUnaryLayer, inputTensorInfo, 0, 0);
39 
40     TensorInfo outputTensorInfo(outputShape, ArmnnTypeInput, qScale, qOffset);
41     IConnectableLayer* output = net->AddOutputLayer(0, "output");
42     Connect(elementwiseUnaryLayer, output, outputTensorInfo, 0, 0);
43 
44     return net;
45 }
46 
47 template<armnn::DataType ArmnnInType,
48          typename TInput = armnn::ResolveType<ArmnnInType>>
ElementwiseUnarySimpleEndToEnd(const std::vector<BackendId> & backends,UnaryOperation operation,const std::vector<float> expectedOutput)49 void ElementwiseUnarySimpleEndToEnd(const std::vector<BackendId>& backends,
50                                     UnaryOperation operation,
51                                     const std::vector<float> expectedOutput)
52 {
53     using namespace armnn;
54 
55     const float   qScale  = IsQuantizedType<TInput>() ? 0.25f : 1.0f;
56     const int32_t qOffset = IsQuantizedType<TInput>() ? 50    : 0;
57 
58     const TensorShape& inputShape  = { 2, 2, 2, 2 };
59     const TensorShape& outputShape = { 2, 2, 2, 2 };
60 
61     // Builds up the structure of the network
62     INetworkPtr net = CreateElementwiseUnaryNetwork<ArmnnInType>(inputShape, outputShape, operation, qScale, qOffset);
63 
64     BOOST_TEST_CHECKPOINT("create a network");
65 
66     const std::vector<float> input({ 1, -1, 1, 1,  5, -5, 5, 5,
67                                        -3, 3, 3, 3,  4, 4, -4, 4 });
68 
69     // quantize data
70     std::vector<TInput> qInputData      = armnnUtils::QuantizedVector<TInput>(input, qScale, qOffset);
71     std::vector<TInput> qExpectedOutput = armnnUtils::QuantizedVector<TInput>(expectedOutput, qScale, qOffset);
72 
73     std::map<int, std::vector<TInput>> inputTensorData    = {{ 0, qInputData }};
74     std::map<int, std::vector<TInput>> expectedOutputData = {{ 0, qExpectedOutput }};
75 
76     EndToEndLayerTestImpl<ArmnnInType, ArmnnInType>(move(net), inputTensorData, expectedOutputData, backends);
77 }
78 
79 } // anonymous namespace
80