• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #pragma once
6 
7 #include <ResolveType.hpp>
8 
9 #include <armnn/INetwork.hpp>
10 
11 #include <backendsCommon/test/CommonTestUtils.hpp>
12 
13 namespace
14 {
15 template<typename armnn::DataType DataType>
CreatePreluNetwork(const armnn::TensorInfo & inputInfo,const armnn::TensorInfo & alphaInfo,const armnn::TensorInfo & outputInfo)16 INetworkPtr CreatePreluNetwork(const armnn::TensorInfo& inputInfo,
17                                const armnn::TensorInfo& alphaInfo,
18                                const armnn::TensorInfo& outputInfo)
19 {
20     using namespace armnn;
21 
22     INetworkPtr net(INetwork::Create());
23 
24     IConnectableLayer* input = net->AddInputLayer(0, "input");
25     IConnectableLayer* alpha = net->AddInputLayer(1, "alpha");
26     IConnectableLayer* prelu = net->AddPreluLayer("Prelu");
27     IConnectableLayer* output = net->AddOutputLayer(0, "output");
28 
29     Connect(input, prelu, inputInfo, 0, 0);
30     Connect(alpha, prelu, alphaInfo, 0, 1);
31     Connect(prelu, output, outputInfo, 0, 0);
32 
33     return net;
34 }
35 
36 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
PreluEndToEnd(const std::vector<BackendId> & backends,const std::vector<T> & inputData,const std::vector<T> & alphaData,const std::vector<T> & expectedOutputData,const float qScale,const int32_t qOffset)37 void PreluEndToEnd(const std::vector<BackendId>& backends,
38                    const std::vector<T>& inputData,
39                    const std::vector<T>& alphaData,
40                    const std::vector<T>& expectedOutputData,
41                    const float qScale ,
42                    const int32_t qOffset)
43 {
44     using namespace armnn;
45 
46     armnn::TensorInfo inputInfo({ 2, 2, 2, 1 }, ArmnnType);
47     armnn::TensorInfo alphaInfo({ 1, 2, 2, 1 }, ArmnnType);
48     armnn::TensorInfo outputInfo({ 2, 2, 2, 1 }, ArmnnType);
49 
50     inputInfo.SetQuantizationOffset(qOffset);
51     inputInfo.SetQuantizationScale(qScale);
52     alphaInfo.SetQuantizationOffset(qOffset);
53     alphaInfo.SetQuantizationScale(qScale);
54     outputInfo.SetQuantizationOffset(qOffset);
55     outputInfo.SetQuantizationScale(qScale);
56 
57     INetworkPtr net = CreatePreluNetwork<ArmnnType>(inputInfo, alphaInfo, outputInfo);
58 
59     BOOST_TEST_CHECKPOINT("Create a network");
60 
61     std::map<int, std::vector<T>> inputTensorData          = { { 0, inputData }, { 1, alphaData} };
62     std::map<int, std::vector<T>> expectedOutputTensorData = { { 0, expectedOutputData } };
63 
64     EndToEndLayerTestImpl<ArmnnType, ArmnnType>(move(net),
65                                                 inputTensorData,
66                                                 expectedOutputTensorData,
67                                                 backends);
68 }
69 
70 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
PreluEndToEndPositiveTest(const std::vector<BackendId> & backends,const float qScale=1.0f,const int32_t qOffset=2)71 void PreluEndToEndPositiveTest(const std::vector<BackendId>& backends, const float qScale = 1.0f,
72                                const int32_t qOffset = 2)
73 {
74     std::vector<T> inputData{ 1, 2, 3, 4, 5, 6, 7, 8 };
75     std::vector<T> alphaData{ 2, 1, 1, 1 };
76 
77     std::vector<T> expectedOutputData{ 2, 2, 3, 4, 5, 6, 7, 8 };
78 
79     PreluEndToEnd<ArmnnType>(backends, inputData, alphaData, expectedOutputData, qScale, qOffset);
80 }
81 
82 template<armnn::DataType ArmnnType, typename T = armnn::ResolveType<ArmnnType>>
PreluEndToEndNegativeTest(const std::vector<BackendId> & backends,const float qScale=1.0f,const int32_t qOffset=0)83 void PreluEndToEndNegativeTest(const std::vector<BackendId>& backends, const float qScale = 1.0f,
84                                const int32_t qOffset = 0)
85 {
86     std::vector<T> inputData{ 1, -2, 3, 4, 5, 6, 7, 8 };
87     std::vector<T> alphaData{ 1, 2, 1, 1 };
88 
89     std::vector<T> expectedOutputData{ 1, -4, 3, 4, 5, 6, 7, 8 };
90 
91     PreluEndToEnd<ArmnnType>(backends, inputData, alphaData, expectedOutputData, qScale, qOffset);
92 }
93 
94 } // anonymous namespace