• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonLstmFloatWorkload.hpp"
7 #include "NeonWorkloadUtils.hpp"
8 
9 #include "aclCommon/ArmComputeTensorUtils.hpp"
10 
11 #include <armnn/utility/NumericCast.hpp>
12 
13 #include "neon/NeonTensorHandle.hpp"
14 
15 namespace armnn
16 {
17 using namespace armcomputetensorutils;
18 
NeonLstmFloatWorkload(const LstmQueueDescriptor & descriptor,const WorkloadInfo & info)19 NeonLstmFloatWorkload::NeonLstmFloatWorkload(const LstmQueueDescriptor &descriptor, const WorkloadInfo &info)
20         : FloatWorkload<LstmQueueDescriptor>(descriptor, info)
21 {
22     arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
23 
24     // Basic parameters
25     m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
26     BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
27 
28     m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
29     BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
30 
31     m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
32     BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
33 
34     m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
35     BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
36 
37     m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
38     BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
39 
40     m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
41     BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
42 
43     m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
44     BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
45 
46     m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
47     BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
48 
49     m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
50     BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
51 
52     // for future reference: check the AndroidNN API for the logic here
53     if (!m_Data.m_Parameters.m_CifgEnabled)
54     {
55         m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
56         BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
57 
58         m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
59         BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
60 
61         m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
62         if (m_Data.m_CellToInputWeights != nullptr)
63         {
64             BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
65         }
66 
67         m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
68         BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
69 
70         lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
71                                    m_RecurrentToInputWeightsTensor.get(),
72                                    m_Data.m_CellToInputWeights != nullptr ? m_CellToInputWeightsTensor.get() : nullptr,
73                                    m_InputGateBiasTensor.get());
74     }
75 
76     if (m_Data.m_Parameters.m_ProjectionEnabled)
77     {
78         m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
79         BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
80 
81         m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
82         if (m_Data.m_ProjectionBias != nullptr)
83         {
84             BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
85         }
86 
87         lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
88                                          m_Data.m_ProjectionBias != nullptr ? m_ProjectionBiasTensor.get() : nullptr);
89     }
90 
91     if (m_Data.m_Parameters.m_PeepholeEnabled)
92     {
93         m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
94         BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
95 
96         m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
97         BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
98 
99         lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
100     }
101 
102     if (m_Data.m_Parameters.m_LayerNormEnabled)
103     {
104         m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
105         if (!m_Data.m_Parameters.m_CifgEnabled)
106         {
107             BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
108         }
109 
110         m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
111         BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
112 
113         m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
114         BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
115 
116         m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
117         BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
118 
119         lstm_param.set_layer_normalization_params(m_Data.m_Parameters.m_CifgEnabled ?
120                                                   nullptr : m_InputLayerNormWeightsTensor.get(),
121                                                   m_ForgetLayerNormWeightsTensor.get(),
122                                                   m_CellLayerNormWeightsTensor.get(),
123                                                   m_OutputLayerNormWeightsTensor.get());
124     }
125 
126     const arm_compute::ITensor& input           = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
127     const arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
128     const arm_compute::ITensor& cell_state_in   = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
129 
130     arm_compute::ITensor& output_state_out      = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[1])->GetTensor();
131     arm_compute::ITensor& cell_state_out        = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
132     arm_compute::ITensor& output                = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[3])->GetTensor();
133 
134     // Get the batch_size and the num_units from the cellStateIn dimensions
135     const TensorInfo& inputTensorInfo = info.m_InputTensorInfos[2];
136     const unsigned int batch_size = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[0]);
137     const unsigned int num_units  = armnn::numeric_cast<unsigned int>(inputTensorInfo.GetShape()[1]);
138 
139     m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
140     if (m_Data.m_Parameters.m_CifgEnabled)
141     {
142         // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
143         armnn::TensorInfo scratchBuffer1({ batch_size, num_units * 3 }, DataType::Float32);
144         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer1);
145     }
146     else
147     {
148         // scratch_buffer [num_units * 4, batch_size] without CIFG
149         armnn::TensorInfo scratchBuffer2({ batch_size, num_units * 4 }, DataType::Float32);
150         BuildArmComputeTensor(*m_ScratchBuffer, scratchBuffer2);
151     }
152 
153     float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
154     float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
155 
156     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
157     arm_compute::ActivationLayerInfo activationLayerInfo;
158     if (m_Data.m_Parameters.m_ActivationFunc == 0)
159     {
160         // no activation, do nothing
161     }
162     else if (m_Data.m_Parameters.m_ActivationFunc == 1)
163     {
164         activationLayerInfo = arm_compute::ActivationLayerInfo(
165                 arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
166     }
167     else if (m_Data.m_Parameters.m_ActivationFunc == 3)
168     {
169         activationLayerInfo = arm_compute::ActivationLayerInfo(
170                 arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
171     }
172     else if (m_Data.m_Parameters.m_ActivationFunc == 4)
173     {
174         activationLayerInfo = arm_compute::ActivationLayerInfo(
175                 arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
176     }
177     else if (m_Data.m_Parameters.m_ActivationFunc == 6)
178     {
179         activationLayerInfo = arm_compute::ActivationLayerInfo(
180                 arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
181     }
182     else
183     {
184         throw armnn::Exception("Wrong Type of Activation Function!");
185     }
186 
187 
188     m_LstmLayer.configure(&input, m_InputToForgetWeightsTensor.get(), m_InputToCellWeightsTensor.get(),
189                           m_InputToOutputWeightsTensor.get(), m_RecurrentToForgetWeightsTensor.get(),
190                           m_RecurrentToCellWeightsTensor.get(), m_RecurrentToOutputWeightsTensor.get(),
191                           m_ForgetGateBiasTensor.get(), m_CellBiasTensor.get(), m_OutputGateBiasTensor.get(),
192                           &output_state_in, &cell_state_in, m_ScratchBuffer.get(), &output_state_out,
193                           &cell_state_out, &output, lstm_param, activationLayerInfo,
194                           cell_threshold, projection_threshold);
195 
196     armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
197 
198     InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor,
199                                    m_Data.m_InputToForgetWeights);
200     InitializeArmComputeTensorData(*m_InputToCellWeightsTensor,
201                                    m_Data.m_InputToCellWeights);
202     InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor,
203                                    m_Data.m_InputToOutputWeights);
204     InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor,
205                                    m_Data.m_RecurrentToForgetWeights);
206     InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor,
207                                    m_Data.m_RecurrentToCellWeights);
208     InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor,
209                                    m_Data.m_RecurrentToOutputWeights);
210     InitializeArmComputeTensorData(*m_ForgetGateBiasTensor,
211                                    m_Data.m_ForgetGateBias);
212     InitializeArmComputeTensorData(*m_CellBiasTensor,
213                                    m_Data.m_CellBias);
214     InitializeArmComputeTensorData(*m_OutputGateBiasTensor,
215                                    m_Data.m_OutputGateBias);
216 
217     if (!m_Data.m_Parameters.m_CifgEnabled)
218     {
219         InitializeArmComputeTensorData(*m_InputToInputWeightsTensor,
220                                        m_Data.m_InputToInputWeights);
221         InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor,
222                                        m_Data.m_RecurrentToInputWeights);
223         if (m_Data.m_CellToInputWeights != nullptr)
224         {
225             InitializeArmComputeTensorData(*m_CellToInputWeightsTensor,
226                                            m_Data.m_CellToInputWeights);
227         }
228         InitializeArmComputeTensorData(*m_InputGateBiasTensor,
229                                        m_Data.m_InputGateBias);
230     }
231 
232     if (m_Data.m_Parameters.m_ProjectionEnabled)
233     {
234         InitializeArmComputeTensorData(*m_ProjectionWeightsTensor,
235                                        m_Data.m_ProjectionWeights);
236         if (m_Data.m_ProjectionBias != nullptr)
237         {
238             InitializeArmComputeTensorData(*m_ProjectionBiasTensor,
239                                            m_Data.m_ProjectionBias);
240         }
241     }
242 
243     if (m_Data.m_Parameters.m_PeepholeEnabled)
244     {
245         InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor,
246                                        m_Data.m_CellToForgetWeights);
247         InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor,
248                                        m_Data.m_CellToOutputWeights);
249     }
250 
251     if (m_Data.m_Parameters.m_LayerNormEnabled)
252     {
253         if (!m_Data.m_Parameters.m_CifgEnabled)
254         {
255             InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
256         }
257         InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
258         InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
259         InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
260     }
261 
262     // Force Compute Library to perform the necessary copying and reshaping, after which
263     // delete all the input tensors that will no longer be needed
264     m_LstmLayer.prepare();
265     FreeUnusedTensors();
266 }
267 
Execute() const268 void NeonLstmFloatWorkload::Execute() const
269 {
270     m_LstmLayer.run();
271 }
272 
NeonLstmFloatWorkloadValidate(const TensorInfo & input,const TensorInfo & outputStateIn,const TensorInfo & cellStateIn,const TensorInfo & scratchBuffer,const TensorInfo & outputStateOut,const TensorInfo & cellStateOut,const TensorInfo & output,const LstmDescriptor & descriptor,const LstmInputParamsInfo & paramsInfo)273 arm_compute::Status NeonLstmFloatWorkloadValidate(const TensorInfo& input,
274                                                   const TensorInfo& outputStateIn,
275                                                   const TensorInfo& cellStateIn,
276                                                   const TensorInfo& scratchBuffer,
277                                                   const TensorInfo& outputStateOut,
278                                                   const TensorInfo& cellStateOut,
279                                                   const TensorInfo& output,
280                                                   const LstmDescriptor& descriptor,
281                                                   const LstmInputParamsInfo& paramsInfo)
282 {
283     arm_compute::LSTMParams<arm_compute::ITensorInfo> lstm_params_info;
284 
285     // The inputs and outputs
286     const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input);
287     const arm_compute::TensorInfo aclOutputStateInInfo = BuildArmComputeTensorInfo(outputStateIn);
288     const arm_compute::TensorInfo aclCellStateInInfo = BuildArmComputeTensorInfo(cellStateIn);
289     const arm_compute::TensorInfo aclScratchBufferInfo = BuildArmComputeTensorInfo(scratchBuffer);
290     const arm_compute::TensorInfo aclOutputStateOutInfo = BuildArmComputeTensorInfo(outputStateOut);
291     const arm_compute::TensorInfo aclCellStateOutInfo = BuildArmComputeTensorInfo(cellStateOut);
292     const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output);
293 
294     // Basic parameters
295     const arm_compute::TensorInfo aclInputToForgetWeightsInfo
296                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToForgetWeights());
297     const arm_compute::TensorInfo aclInputToCellWeightsInfo
298                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToCellWeights());
299     const arm_compute::TensorInfo aclInputToOutputWeightsInfo
300                                   = BuildArmComputeTensorInfo(paramsInfo.GetInputToOutputWeights());
301     const arm_compute::TensorInfo aclRecurrentToForgetWeightsInfo
302                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToForgetWeights());
303     const arm_compute::TensorInfo aclRecurrentToCellWeightsInfo
304                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToCellWeights());
305     const arm_compute::TensorInfo aclRecurrentToOutputWeightsInfo
306                                   = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToOutputWeights());
307     const arm_compute::TensorInfo aclForgetGateBiasInfo
308                                   = BuildArmComputeTensorInfo(paramsInfo.GetForgetGateBias());
309     const arm_compute::TensorInfo aclCellBiasInfo
310                                   = BuildArmComputeTensorInfo(paramsInfo.GetCellBias());
311     const arm_compute::TensorInfo aclOutputGateBiasInfo
312                                   = BuildArmComputeTensorInfo(paramsInfo.GetOutputGateBias());
313 
314     arm_compute::TensorInfo aclInputToInputWeightsInfo;
315     arm_compute::TensorInfo aclRecurrentToInputWeightsInfo;
316     arm_compute::TensorInfo aclCellToInputWeightsInfo;
317     arm_compute::TensorInfo aclInputGateBiasInfo;
318     arm_compute::TensorInfo aclProjectionWeightsInfo;
319     arm_compute::TensorInfo aclProjectionBiasInfo;
320     arm_compute::TensorInfo aclCellToForgetWeightsInfo;
321     arm_compute::TensorInfo aclCellToOutputWeightsInfo;
322 
323     arm_compute::TensorInfo aclInputLayerNormWeightsInfo;
324     arm_compute::TensorInfo aclForgetLayerNormWeightsInfo;
325     arm_compute::TensorInfo aclCellLayerNormWeightsInfo;
326     arm_compute::TensorInfo aclOutputLayerNormWeightsInfo;
327 
328 
329     if (!descriptor.m_CifgEnabled)
330     {
331         if (descriptor.m_PeepholeEnabled)
332         {
333             aclCellToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToInputWeights());
334         }
335         aclInputToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputToInputWeights());
336         aclRecurrentToInputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetRecurrentToInputWeights());
337         aclInputGateBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputGateBias());
338 
339         lstm_params_info.set_cifg_params(&aclInputToInputWeightsInfo, &aclRecurrentToInputWeightsInfo,
340                                          descriptor.m_PeepholeEnabled ? &aclCellToInputWeightsInfo : nullptr,
341                                          &aclInputGateBiasInfo);
342     }
343 
344     if (descriptor.m_ProjectionEnabled)
345     {
346         if (paramsInfo.m_ProjectionBias != nullptr)
347         {
348             aclProjectionBiasInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionBias());
349         }
350         aclProjectionWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetProjectionWeights());
351 
352         lstm_params_info.set_projection_params(&aclProjectionWeightsInfo,
353                                                paramsInfo.m_ProjectionBias != nullptr ?
354                                                &aclProjectionBiasInfo : nullptr);
355     }
356 
357     if (descriptor.m_PeepholeEnabled)
358     {
359         aclCellToForgetWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToForgetWeights());
360         aclCellToOutputWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellToOutputWeights());
361 
362         lstm_params_info.set_peephole_params(&aclCellToForgetWeightsInfo, &aclCellToOutputWeightsInfo);
363     }
364 
365     if (descriptor.m_LayerNormEnabled)
366     {
367         if (!descriptor.m_CifgEnabled)
368         {
369             aclInputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetInputLayerNormWeights());
370         }
371         aclForgetLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetForgetLayerNormWeights());
372         aclCellLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetCellLayerNormWeights());
373         aclOutputLayerNormWeightsInfo = BuildArmComputeTensorInfo(paramsInfo.GetOutputLayerNormWeights());
374 
375         lstm_params_info.set_layer_normalization_params(descriptor.m_CifgEnabled ?
376                                                         nullptr : &aclInputLayerNormWeightsInfo,
377                                                         &aclForgetLayerNormWeightsInfo,
378                                                         &aclCellLayerNormWeightsInfo,
379                                                         &aclOutputLayerNormWeightsInfo);
380     }
381 
382     float cell_threshold = descriptor.m_ClippingThresCell;
383     float projection_threshold = descriptor.m_ClippingThresProj;
384 
385     // for preparing the object for the class ActivationLayerInfo, we need to consider 5 situations
386     arm_compute::ActivationLayerInfo activationLayerInfo;
387     switch (descriptor.m_ActivationFunc)
388     {
389         case 0:
390             // no activation, do nothing
391             break;
392         case 1:
393             activationLayerInfo = arm_compute::ActivationLayerInfo(
394                     arm_compute::ActivationLayerInfo::ActivationFunction::RELU);
395             break;
396         case 3:
397             activationLayerInfo = arm_compute::ActivationLayerInfo(
398                     arm_compute::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 6.0);
399             break;
400         case 4:
401             activationLayerInfo = arm_compute::ActivationLayerInfo(
402                     arm_compute::ActivationLayerInfo::ActivationFunction::TANH, 1.0, 1.0);
403             break;
404         case 6:
405             activationLayerInfo = arm_compute::ActivationLayerInfo(
406                     arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC);
407             break;
408         default:
409             throw armnn::Exception("Wrong Type of Activation Function!");
410     }
411 
412     return arm_compute::NELSTMLayer::validate(&aclInputInfo,
413                                               &aclInputToForgetWeightsInfo,
414                                               &aclInputToCellWeightsInfo,
415                                               &aclInputToOutputWeightsInfo,
416                                               &aclRecurrentToForgetWeightsInfo,
417                                               &aclRecurrentToCellWeightsInfo,
418                                               &aclRecurrentToOutputWeightsInfo,
419                                               &aclForgetGateBiasInfo,
420                                               &aclCellBiasInfo,
421                                               &aclOutputGateBiasInfo,
422                                               &aclOutputStateInInfo,
423                                               &aclCellStateInInfo,
424                                               &aclScratchBufferInfo,
425                                               &aclOutputStateOutInfo,
426                                               &aclCellStateOutInfo,
427                                               &aclOutputInfo,
428                                               lstm_params_info,
429                                               activationLayerInfo,
430                                               cell_threshold,
431                                               projection_threshold);
432 }
433 
FreeUnusedTensors()434 void NeonLstmFloatWorkload::FreeUnusedTensors()
435 {
436     FreeTensorIfUnused(m_InputToInputWeightsTensor);
437     FreeTensorIfUnused(m_InputToForgetWeightsTensor);
438     FreeTensorIfUnused(m_InputToCellWeightsTensor);
439     FreeTensorIfUnused(m_InputToOutputWeightsTensor);
440     FreeTensorIfUnused(m_RecurrentToInputWeightsTensor);
441     FreeTensorIfUnused(m_RecurrentToForgetWeightsTensor);
442     FreeTensorIfUnused(m_RecurrentToCellWeightsTensor);
443     FreeTensorIfUnused(m_RecurrentToOutputWeightsTensor);
444     FreeTensorIfUnused(m_CellToInputWeightsTensor);
445     FreeTensorIfUnused(m_CellToForgetWeightsTensor);
446     FreeTensorIfUnused(m_CellToOutputWeightsTensor);
447     FreeTensorIfUnused(m_InputGateBiasTensor);
448     FreeTensorIfUnused(m_ForgetGateBiasTensor);
449     FreeTensorIfUnused(m_CellBiasTensor);
450     FreeTensorIfUnused(m_OutputGateBiasTensor);
451     FreeTensorIfUnused(m_ProjectionWeightsTensor);
452     FreeTensorIfUnused(m_ProjectionBiasTensor);
453     FreeTensorIfUnused(m_ScratchBuffer);
454     FreeTensorIfUnused(m_InputLayerNormWeightsTensor);
455     FreeTensorIfUnused(m_ForgetLayerNormWeightsTensor);
456     FreeTensorIfUnused(m_CellLayerNormWeightsTensor);
457     FreeTensorIfUnused(m_OutputLayerNormWeightsTensor);
458 }
459 
460 } //namespace armnn
461