• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonNormalizationFloatWorkload.hpp"
7 
8 #include "NeonWorkloadUtils.hpp"
9 #include <aclCommon/ArmComputeUtils.hpp>
10 #include <aclCommon/ArmComputeTensorUtils.hpp>
11 #include <armnn/utility/PolymorphicDowncast.hpp>
12 
13 #include <arm_compute/runtime/NEON/functions/NENormalizationLayer.h>
14 
15 using namespace armnn::armcomputetensorutils;
16 
17 namespace armnn
18 {
19 
20 namespace
21 {
22 
IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor & parameters,Optional<std::string &> reasonIfUnsupported)23 bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters,
24                                             Optional<std::string&> reasonIfUnsupported)
25 {
26     if (parameters.m_NormMethodType != NormalizationAlgorithmMethod::LocalBrightness)
27     {
28         if (reasonIfUnsupported)
29         {
30             reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported";
31         }
32         return false;
33     }
34     if (parameters.m_NormSize % 2 == 0)
35     {
36         if (reasonIfUnsupported)
37         {
38             reasonIfUnsupported.value() = "Normalization size must be an odd number.";
39         }
40         return false;
41     }
42 
43     return true;
44 }
45 
46 } // anonymous namespace
47 
NeonNormalizationWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const NormalizationDescriptor & descriptor)48 arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input,
49                                                       const TensorInfo& output,
50                                                       const NormalizationDescriptor& descriptor)
51 {
52     const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
53     const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
54 
55     arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor);
56 
57     return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo);
58 }
59 
NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor & descriptor,const WorkloadInfo & info,std::shared_ptr<arm_compute::MemoryManagerOnDemand> & memoryManager)60 NeonNormalizationFloatWorkload::NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor& descriptor,
61                                                    const WorkloadInfo& info,
62                                                    std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager)
63     : FloatWorkload<NormalizationQueueDescriptor>(descriptor, info)
64 {
65     m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1);
66     std::string reasonIfUnsupported;
67     if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional<std::string&>(reasonIfUnsupported)))
68     {
69         throw UnimplementedException(reasonIfUnsupported);
70     }
71 
72     // Input and output tensors have to have the same dimensionality.
73     if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1]
74         || info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0]
75         || info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3]
76         || info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2])
77     {
78         throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality.");
79     }
80 
81     arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
82     arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
83     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
84     input.info()->set_data_layout(aclDataLayout);
85     output.info()->set_data_layout(aclDataLayout);
86 
87     const arm_compute::NormType normType =
88         ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType);
89     arm_compute::NormalizationLayerInfo normalizationInfo(normType,
90                                                           m_Data.m_Parameters.m_NormSize,
91                                                           m_Data.m_Parameters.m_Alpha,
92                                                           m_Data.m_Parameters.m_Beta,
93                                                           m_Data.m_Parameters.m_K,
94                                                           false);
95     auto layer = std::make_unique<arm_compute::NENormalizationLayer>(memoryManager);
96     layer->configure(&input, &output, normalizationInfo);
97     m_NormalizationLayer.reset(layer.release());
98 }
99 
Execute() const100 void NeonNormalizationFloatWorkload::Execute() const
101 {
102     ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonNormalizationFloatWorkload_Execute");
103     m_NormalizationLayer->run();
104 }
105 
106 } //namespace armnn
107