• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright © 2020 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonSpaceToBatchNdWorkload.hpp"
7 
8 #include "NeonWorkloadUtils.hpp"
9 
10 #include <armnn/utility/NumericCast.hpp>
11 #include <armnn/utility/PolymorphicDowncast.hpp>
12 
13 #include <ResolveType.hpp>
14 
15 namespace armnn
16 {
17 
18 using namespace armcomputetensorutils;
19 
NeonSpaceToBatchNdWorkloadValidate(const TensorInfo & input,const TensorInfo & output,const SpaceToBatchNdDescriptor & descriptor)20 arm_compute::Status NeonSpaceToBatchNdWorkloadValidate(const TensorInfo& input,
21                                                        const TensorInfo& output,
22                                                        const SpaceToBatchNdDescriptor& descriptor)
23 {
24     const arm_compute::TensorInfo aclInputInfo  = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
25     const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
26 
27     // ArmNN blockShape is [H, W] Cl asks for W, H
28     int32_t blockHeight = armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[0]);
29     int32_t blockWidth  = armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[1]);
30 
31     arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(
32             descriptor.m_PadList[1].first, descriptor.m_PadList[0].first);
33     arm_compute::Size2D paddingRightBottom  = BuildArmComputeSize2D(
34             descriptor.m_PadList[1].second, descriptor.m_PadList[0].second);
35 
36     return arm_compute::NESpaceToBatchLayer::validate(&aclInputInfo,
37                                                       blockWidth,
38                                                       blockHeight,
39                                                       paddingLeftTop,
40                                                       paddingRightBottom,
41                                                       &aclOutputInfo);
42 }
43 
NeonSpaceToBatchNdWorkload(const SpaceToBatchNdQueueDescriptor & desc,const WorkloadInfo & info)44 NeonSpaceToBatchNdWorkload::NeonSpaceToBatchNdWorkload(const SpaceToBatchNdQueueDescriptor& desc,
45                                                        const WorkloadInfo& info)
46         : BaseWorkload<SpaceToBatchNdQueueDescriptor>(desc, info)
47 {
48     m_Data.ValidateInputsOutputs("NESpaceToBatchNdWorkload", 1, 1);
49 
50     arm_compute::ITensor& input  =
51             PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Inputs[0])->GetTensor();
52     arm_compute::ITensor& output =
53             PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Outputs[0])->GetTensor();
54 
55     // ArmNN blockShape is [H, W] Cl asks for W, H
56     int32_t blockHeight = armnn::numeric_cast<int32_t>(m_Data.m_Parameters.m_BlockShape[0]);
57     int32_t blockWidth  = armnn::numeric_cast<int32_t>(m_Data.m_Parameters.m_BlockShape[1]);
58 
59     arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(
60             m_Data.m_Parameters.m_PadList[1].first, m_Data.m_Parameters.m_PadList[0].first);
61     arm_compute::Size2D paddingRightBottom  = BuildArmComputeSize2D(
62             m_Data.m_Parameters.m_PadList[1].second, m_Data.m_Parameters.m_PadList[0].second);
63 
64     arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
65     input.info()->set_data_layout(aclDataLayout);
66     output.info()->set_data_layout(aclDataLayout);
67 
68     m_Layer.reset(new arm_compute::NESpaceToBatchLayer());
69     m_Layer->configure(&input,
70                        blockWidth,
71                        blockHeight,
72                        paddingLeftTop,
73                        paddingRightBottom,
74                        &output);
75     m_Layer->prepare();
76 }
77 
Execute() const78 void NeonSpaceToBatchNdWorkload::Execute() const
79 {
80     if (m_Layer)
81     {
82         ARMNN_SCOPED_PROFILING_EVENT_NEON("NeonSpaceToBatchNdWorkload_Execute");
83         m_Layer->run();
84     }
85 }
86 
87 } //namespace armnn