• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# bcc Reference Guide
2
3Intended for search (Ctrl-F) and reference. For tutorials, start with [tutorial.md](tutorial.md).
4
5This guide is incomplete. If something feels missing, check the bcc and kernel source. And if you confirm we're missing something, please send a pull request to fix it, and help out everyone.
6
7## Contents
8
9- [BPF C](#bpf-c)
10    - [Events & Arguments](#events--arguments)
11        - [1. kprobes](#1-kprobes)
12        - [2. kretprobes](#2-kretprobes)
13        - [3. Tracepoints](#3-tracepoints)
14        - [4. uprobes](#4-uprobes)
15        - [5. uretprobes](#5-uretprobes)
16        - [6. USDT probes](#6-usdt-probes)
17        - [7. Raw Tracepoints](#7-raw-tracepoints)
18        - [8. system call tracepoints](#8-system-call-tracepoints)
19        - [9. kfuncs](#9-kfuncs)
20        - [10. kretfuncs](#10-kretfuncs)
21        - [11. lsm probes](#11-lsm-probes)
22        - [12. bpf iterators](#12-bpf-iterators)
23    - [Data](#data)
24        - [1. bpf_probe_read_kernel()](#1-bpf_probe_read_kernel)
25        - [2. bpf_probe_read_kernel_str()](#2-bpf_probe_read_kernel_str)
26        - [3. bpf_ktime_get_ns()](#3-bpf_ktime_get_ns)
27        - [4. bpf_get_current_pid_tgid()](#4-bpf_get_current_pid_tgid)
28        - [5. bpf_get_current_uid_gid()](#5-bpf_get_current_uid_gid)
29        - [6. bpf_get_current_comm()](#6-bpf_get_current_comm)
30        - [7. bpf_get_current_task()](#7-bpf_get_current_task)
31        - [8. bpf_log2l()](#8-bpf_log2l)
32        - [9. bpf_get_prandom_u32()](#9-bpf_get_prandom_u32)
33        - [10. bpf_probe_read_user()](#10-bpf_probe_read_user)
34        - [11. bpf_probe_read_user_str()](#11-bpf_probe_read_user_str)
35        - [12. bpf_get_ns_current_pid_tgid()](#12-bpf_get_ns_current_pid_tgid)
36    - [Debugging](#debugging)
37        - [1. bpf_override_return()](#1-bpf_override_return)
38    - [Output](#output)
39        - [1. bpf_trace_printk()](#1-bpf_trace_printk)
40        - [2. BPF_PERF_OUTPUT](#2-bpf_perf_output)
41        - [3. perf_submit()](#3-perf_submit)
42        - [4. perf_submit_skb()](#4-perf_submit_skb)
43        - [5. BPF_RINGBUF_OUTPUT](#5-bpf_ringbuf_output)
44        - [6. ringbuf_output()](#6-ringbuf_output)
45        - [7. ringbuf_reserve()](#7-ringbuf_reserve)
46        - [8. ringbuf_submit()](#8-ringbuf_submit)
47        - [9. ringbuf_discard()](#9-ringbuf_discard)
48    - [Maps](#maps)
49        - [1. BPF_TABLE](#1-bpf_table)
50        - [2. BPF_HASH](#2-bpf_hash)
51        - [3. BPF_ARRAY](#3-bpf_array)
52        - [4. BPF_HISTOGRAM](#4-bpf_histogram)
53        - [5. BPF_STACK_TRACE](#5-bpf_stack_trace)
54        - [6. BPF_PERF_ARRAY](#6-bpf_perf_array)
55        - [7. BPF_PERCPU_HASH](#7-bpf_percpu_hash)
56        - [8. BPF_PERCPU_ARRAY](#8-bpf_percpu_array)
57        - [9. BPF_LPM_TRIE](#9-bpf_lpm_trie)
58        - [10. BPF_PROG_ARRAY](#10-bpf_prog_array)
59        - [11. BPF_DEVMAP](#11-bpf_devmap)
60        - [12. BPF_CPUMAP](#12-bpf_cpumap)
61        - [13. BPF_XSKMAP](#13-bpf_xskmap)
62        - [14. BPF_ARRAY_OF_MAPS](#14-bpf_array_of_maps)
63        - [15. BPF_HASH_OF_MAPS](#15-bpf_hash_of_maps)
64        - [16. BPF_STACK](#16-bpf_stack)
65        - [17. BPF_QUEUE](#17-bpf_queue)
66        - [18. BPF_SOCKHASH](#18-bpf_sockhash)
67        - [19. map.lookup()](#19-maplookup)
68        - [20. map.lookup_or_try_init()](#20-maplookup_or_try_init)
69        - [21. map.delete()](#21-mapdelete)
70        - [22. map.update()](#22-mapupdate)
71        - [23. map.insert()](#23-mapinsert)
72        - [24. map.increment()](#24-mapincrement)
73        - [25. map.get_stackid()](#25-mapget_stackid)
74        - [26. map.perf_read()](#26-mapperf_read)
75        - [27. map.call()](#27-mapcall)
76        - [28. map.redirect_map()](#28-mapredirect_map)
77        - [29. map.push()](#29-mappush)
78        - [30. map.pop()](#30-mappop)
79        - [31. map.peek()](#31-mappeek)
80        - [32. map.sock_hash_update()](#32-mapsock_hash_update)
81        - [33. map.msg_redirect_hash()](#33-mapmsg_redirect_hash)
82        - [34. map.sk_redirect_hash()](#34-mapsk_redirect_hash)
83    - [Licensing](#licensing)
84    - [Rewriter](#rewriter)
85
86- [bcc Python](#bcc-python)
87    - [Initialization](#initialization)
88        - [1. BPF](#1-bpf)
89        - [2. USDT](#2-usdt)
90    - [Events](#events)
91        - [1. attach_kprobe()](#1-attach_kprobe)
92        - [2. attach_kretprobe()](#2-attach_kretprobe)
93        - [3. attach_tracepoint()](#3-attach_tracepoint)
94        - [4. attach_uprobe()](#4-attach_uprobe)
95        - [5. attach_uretprobe()](#5-attach_uretprobe)
96        - [6. USDT.enable_probe()](#6-usdtenable_probe)
97        - [7. attach_raw_tracepoint()](#7-attach_raw_tracepoint)
98        - [8. attach_raw_socket()](#8-attach_raw_socket)
99        - [9. attach_xdp()](#9-attach_xdp)
100        - [10. attach_func()](#10-attach_func)
101        - [11. detach_func()](#11-detach_func)
102        - [12. detach_kprobe()](#12-detach_kprobe)
103        - [13. detach_kretprobe()](#13-detach_kretprobe)
104    - [Debug Output](#debug-output)
105        - [1. trace_print()](#1-trace_print)
106        - [2. trace_fields()](#2-trace_fields)
107    - [Output APIs](#output-apis)
108        - [1. perf_buffer_poll()](#1-perf_buffer_poll)
109        - [2. ring_buffer_poll()](#2-ring_buffer_poll)
110        - [3. ring_buffer_consume()](#3-ring_buffer_consume)
111    - [Map APIs](#map-apis)
112        - [1. get_table()](#1-get_table)
113        - [2. open_perf_buffer()](#2-open_perf_buffer)
114        - [3. items()](#3-items)
115        - [4. values()](#4-values)
116        - [5. clear()](#5-clear)
117        - [6. items_lookup_and_delete_batch()](#6-items_lookup_and_delete_batch)
118        - [7. items_lookup_batch()](#7-items_lookup_batch)
119        - [8. items_delete_batch()](#8-items_delete_batch)
120        - [9. items_update_batch()](#9-items_update_batch)
121        - [10. print_log2_hist()](#10-print_log2_hist)
122        - [11. print_linear_hist()](#11-print_linear_hist)
123        - [12. open_ring_buffer()](#12-open_ring_buffer)
124        - [13. push()](#13-push)
125        - [14. pop()](#14-pop)
126        - [15. peek()](#15-peek)
127    - [Helpers](#helpers)
128        - [1. ksym()](#1-ksym)
129        - [2. ksymname()](#2-ksymname)
130        - [3. sym()](#3-sym)
131        - [4. num_open_kprobes()](#4-num_open_kprobes)
132        - [5. get_syscall_fnname()](#5-get_syscall_fnname)
133
134- [BPF Errors](#bpf-errors)
135    - [1. Invalid mem access](#1-invalid-mem-access)
136    - [2. Cannot call GPL only function from proprietary program](#2-cannot-call-gpl-only-function-from-proprietary-program)
137
138- [Environment Variables](#Environment-Variables)
139    - [1. kernel source directory](#1-kernel-source-directory)
140    - [2. kernel version overriding](#2-kernel-version-overriding)
141
142# BPF C
143
144This section describes the C part of a bcc program.
145
146## Events & Arguments
147
148### 1. kprobes
149
150Syntax: kprobe__*kernel_function_name*
151
152```kprobe__``` is a special prefix that creates a kprobe (dynamic tracing of a kernel function call) for the kernel function name provided as the remainder. You can also use kprobes by declaring a normal C function, then using the Python ```BPF.attach_kprobe()``` (covered later) to associate it with a kernel function.
153
154Arguments are specified on the function declaration: kprobe__*kernel_function_name*(struct pt_regs *ctx [, *argument1* ...])
155
156For example:
157
158```C
159int kprobe__tcp_v4_connect(struct pt_regs *ctx, struct sock *sk) {
160    [...]
161}
162```
163
164This instruments the tcp_v4_connect() kernel function using a kprobe, with the following arguments:
165
166- ```struct pt_regs *ctx```: Registers and BPF context.
167- ```struct sock *sk```: First argument to tcp_v4_connect().
168
169The first argument is always ```struct pt_regs *```, the remainder are the arguments to the function (they don't need to be specified, if you don't intend to use them).
170
171Examples in situ:
172[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/tcpv4connect.py#L28) ([output](https://github.com/iovisor/bcc/blob/5bd0eb21fd148927b078deb8ac29fff2fb044b66/examples/tracing/tcpv4connect_example.txt#L8)),
173[code](https://github.com/iovisor/bcc/commit/310ab53710cfd46095c1f6b3e44f1dbc8d1a41d8#diff-8cd1822359ffee26e7469f991ce0ef00R26) ([output](https://github.com/iovisor/bcc/blob/3b9679a3bd9b922c736f6061dc65cb56de7e0250/examples/tracing/bitehist_example.txt#L6))
174<!--- I can't add search links here, since github currently cannot handle partial-word searches needed for "kprobe__" --->
175
176### 2. kretprobes
177
178Syntax: kretprobe__*kernel_function_name*
179
180```kretprobe__``` is a special prefix that creates a kretprobe (dynamic tracing of a kernel function return) for the kernel function name provided as the remainder. You can also use kretprobes by declaring a normal C function, then using the Python ```BPF.attach_kretprobe()``` (covered later) to associate it with a kernel function.
181
182Return value is available as ```PT_REGS_RC(ctx)```, given a function declaration of: kretprobe__*kernel_function_name*(struct pt_regs *ctx)
183
184For example:
185
186```C
187int kretprobe__tcp_v4_connect(struct pt_regs *ctx)
188{
189    int ret = PT_REGS_RC(ctx);
190    [...]
191}
192```
193
194This instruments the return of the tcp_v4_connect() kernel function using a kretprobe, and stores the return value in ```ret```.
195
196Examples in situ:
197[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/tcpv4connect.py#L38) ([output](https://github.com/iovisor/bcc/blob/5bd0eb21fd148927b078deb8ac29fff2fb044b66/examples/tracing/tcpv4connect_example.txt#L8))
198
199### 3. Tracepoints
200
201Syntax: TRACEPOINT_PROBE(*category*, *event*)
202
203This is a macro that instruments the tracepoint defined by *category*:*event*.
204
205The tracepoint name is `<category>:<event>`.
206The probe function name is `tracepoint__<category>__<event>`.
207
208Arguments are available in an ```args``` struct, which are the tracepoint arguments. One way to list these is to cat the relevant format file under /sys/kernel/debug/tracing/events/*category*/*event*/format.
209
210The ```args``` struct can be used in place of ``ctx`` in each functions requiring a context as an argument. This includes notably [perf_submit()](#3-perf_submit).
211
212For example:
213
214```C
215TRACEPOINT_PROBE(random, urandom_read) {
216    // args is from /sys/kernel/debug/tracing/events/random/urandom_read/format
217    bpf_trace_printk("%d\\n", args->got_bits);
218    return 0;
219}
220```
221
222This instruments the tracepoint `random:urandom_read tracepoint`, and prints the tracepoint argument ```got_bits```.
223When using Python API, this probe is automatically attached to the right tracepoint target.
224For C++, this tracepoint probe can be attached by specifying the tracepoint target and function name explicitly:
225`BPF::attach_tracepoint("random:urandom_read", "tracepoint__random__urandom_read")`
226Note the name of the probe function defined above is `tracepoint__random__urandom_read`.
227
228Examples in situ:
229[code](https://github.com/iovisor/bcc/blob/a4159da8c4ea8a05a3c6e402451f530d6e5a8b41/examples/tracing/urandomread.py#L19) ([output](https://github.com/iovisor/bcc/commit/e422f5e50ecefb96579b6391a2ada7f6367b83c4#diff-41e5ecfae4a3b38de5f4e0887ed160e5R10)),
230[search /examples](https://github.com/iovisor/bcc/search?q=TRACEPOINT_PROBE+path%3Aexamples&type=Code),
231[search /tools](https://github.com/iovisor/bcc/search?q=TRACEPOINT_PROBE+path%3Atools&type=Code)
232
233### 4. uprobes
234
235These are instrumented by declaring a normal function in C, then associating it as a uprobe probe in Python via ```BPF.attach_uprobe()``` (covered later).
236
237Arguments can be examined using ```PT_REGS_PARM``` macros.
238
239For example:
240
241```C
242int count(struct pt_regs *ctx) {
243    char buf[64];
244    bpf_probe_read_user(&buf, sizeof(buf), (void *)PT_REGS_PARM1(ctx));
245    bpf_trace_printk("%s %d", buf, PT_REGS_PARM2(ctx));
246    return(0);
247}
248```
249
250This reads the first argument as a string, and then prints it with the second argument as an integer.
251
252Examples in situ:
253[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_count.py#L26)
254
255### 5. uretprobes
256
257These are instrumented by declaring a normal function in C, then associating it as a uretprobe probe in Python via ```BPF.attach_uretprobe()``` (covered later).
258
259Return value is available as ```PT_REGS_RC(ctx)```, given a function declaration of: *function_name*(struct pt_regs *ctx)
260
261For example:
262
263```C
264BPF_HISTOGRAM(dist);
265int count(struct pt_regs *ctx) {
266    dist.increment(PT_REGS_RC(ctx));
267    return 0;
268}
269```
270
271This increments the bucket in the ```dist``` histogram that is indexed by the return value.
272
273Examples in situ:
274[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_hist.py#L39) ([output](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/examples/tracing/strlen_hist.py#L15)),
275[code](https://github.com/iovisor/bcc/blob/4afa96a71c5dbfc4c507c3355e20baa6c184a3a8/tools/bashreadline.py) ([output](https://github.com/iovisor/bcc/commit/aa87997d21e5c1a6a20e2c96dd25eb92adc8e85d#diff-2fd162f9e594206f789246ce97d62cf0R7))
276
277### 6. USDT probes
278
279These are User Statically-Defined Tracing (USDT) probes, which may be placed in some applications or libraries to provide a user-level equivalent of tracepoints. The primary BPF method provided for USDT support method is ```enable_probe()```. USDT probes are instrumented by declaring a normal function in C, then associating it as a USDT probe in Python via ```USDT.enable_probe()```.
280
281Arguments can be read via: bpf_usdt_readarg(*index*, ctx, &addr)
282
283For example:
284
285```C
286int do_trace(struct pt_regs *ctx) {
287    uint64_t addr;
288    char path[128];
289    bpf_usdt_readarg(6, ctx, &addr);
290    bpf_probe_read_user(&path, sizeof(path), (void *)addr);
291    bpf_trace_printk("path:%s\\n", path);
292    return 0;
293};
294```
295
296This reads the sixth USDT argument, and then pulls it in as a string to ```path```.
297
298When initializing USDTs via the third argument of ```BPF::init``` in the C API, if any USDT fails to ```init```, entire ```BPF::init``` will fail. If you're OK with some USDTs failing to ```init```, use ```BPF::init_usdt``` before calling ```BPF::init```.
299
300Examples in situ:
301[code](https://github.com/iovisor/bcc/commit/4f88a9401357d7b75e917abd994aa6ea97dda4d3#diff-04a7cad583be5646080970344c48c1f4R24),
302[search /examples](https://github.com/iovisor/bcc/search?q=bpf_usdt_readarg+path%3Aexamples&type=Code),
303[search /tools](https://github.com/iovisor/bcc/search?q=bpf_usdt_readarg+path%3Atools&type=Code)
304
305### 7. Raw Tracepoints
306
307Syntax: RAW_TRACEPOINT_PROBE(*event*)
308
309This is a macro that instruments the raw tracepoint defined by *event*.
310
311The argument is a pointer to struct ```bpf_raw_tracepoint_args```, which is defined in [bpf.h](https://github.com/iovisor/bcc/blob/master/src/cc/compat/linux/virtual_bpf.h).  The struct field ```args``` contains all parameters of the raw tracepoint where you can found at linux tree [include/trace/events](https://github.com/torvalds/linux/tree/master/include/trace/events)
312directory.
313
314For example:
315```C
316RAW_TRACEPOINT_PROBE(sched_switch)
317{
318    // TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next)
319    struct task_struct *prev = (struct task_struct *)ctx->args[1];
320    struct task_struct *next= (struct task_struct *)ctx->args[2];
321    s32 prev_tgid, next_tgid;
322
323    bpf_probe_read_kernel(&prev_tgid, sizeof(prev->tgid), &prev->tgid);
324    bpf_probe_read_kernel(&next_tgid, sizeof(next->tgid), &next->tgid);
325    bpf_trace_printk("%d -> %d\\n", prev_tgid, next_tgid);
326}
327```
328
329This instruments the sched:sched_switch tracepoint, and prints the prev and next tgid.
330
331Examples in situ:
332[search /tools](https://github.com/iovisor/bcc/search?q=RAW_TRACEPOINT_PROBE+path%3Atools&type=Code)
333
334### 8. system call tracepoints
335
336Syntax: ```syscall__SYSCALLNAME```
337
338```syscall__``` is a special prefix that creates a kprobe for the system call name provided as the remainder. You can use it by declaring a normal C function, then using the Python ```BPF.get_syscall_fnname(SYSCALLNAME)``` and ```BPF.attach_kprobe()``` to associate it.
339
340Arguments are specified on the function declaration: ```syscall__SYSCALLNAME(struct pt_regs *ctx, [, argument1 ...])```.
341
342For example:
343```C
344int syscall__execve(struct pt_regs *ctx,
345    const char __user *filename,
346    const char __user *const __user *__argv,
347    const char __user *const __user *__envp)
348{
349    [...]
350}
351```
352
353This instruments the execve system call.
354
355The first argument is always ```struct pt_regs *```, the remainder are the arguments to the function (they don't need to be specified, if you don't intend to use them).
356
357Corresponding Python code:
358```Python
359b = BPF(text=bpf_text)
360execve_fnname = b.get_syscall_fnname("execve")
361b.attach_kprobe(event=execve_fnname, fn_name="syscall__execve")
362```
363
364Examples in situ:
365[code](https://github.com/iovisor/bcc/blob/552658edda09298afdccc8a4b5e17311a2d8a771/tools/execsnoop.py#L101) ([output](https://github.com/iovisor/bcc/blob/552658edda09298afdccc8a4b5e17311a2d8a771/tools/execsnoop_example.txt#L8))
366
367### 9. kfuncs
368
369Syntax: KFUNC_PROBE(*function*, typeof(arg1) arg1, typeof(arg2) arge ...)
370
371This is a macro that instruments the kernel function via trampoline
372*before* the function is executed. It's defined by *function* name and
373the function arguments defined as *argX*.
374
375For example:
376```C
377KFUNC_PROBE(do_sys_open, int dfd, const char *filename, int flags, int mode)
378{
379    ...
380```
381
382This instruments the do_sys_open kernel function and make its arguments
383accessible as standard argument values.
384
385Examples in situ:
386[search /tools](https://github.com/iovisor/bcc/search?q=KFUNC_PROBE+path%3Atools&type=Code)
387
388### 10. kretfuncs
389
390Syntax: KRETFUNC_PROBE(*event*, typeof(arg1) arg1, typeof(arg2) arge ..., int ret)
391
392This is a macro that instruments the kernel function via trampoline
393*after* the function is executed. It's defined by *function* name and
394the function arguments defined as *argX*.
395
396The last argument of the probe is the return value of the instrumented function.
397
398For example:
399```C
400KRETFUNC_PROBE(do_sys_open, int dfd, const char *filename, int flags, int mode, int ret)
401{
402    ...
403```
404
405This instruments the do_sys_open kernel function and make its arguments
406accessible as standard argument values together with its return value.
407
408Examples in situ:
409[search /tools](https://github.com/iovisor/bcc/search?q=KRETFUNC_PROBE+path%3Atools&type=Code)
410
411
412### 11. LSM Probes
413
414Syntax: LSM_PROBE(*hook*, typeof(arg1) arg1, typeof(arg2) arg2 ...)
415
416This is a macro that instruments an LSM hook as a BPF program. It can be
417used to audit security events and implement MAC security policies in BPF.
418It is defined by specifying the hook name followed by its arguments.
419
420Hook names can be found in
421[include/linux/security.h](https://github.com/torvalds/linux/blob/v5.15/include/linux/security.h#L260)
422by taking functions like `security_hookname` and taking just the `hookname` part.
423For example, `security_bpf` would simply become `bpf`.
424
425Unlike other BPF program types, the return value specified in an LSM probe
426matters. A return value of 0 allows the hook to succeed, whereas
427any non-zero return value will cause the hook to fail and deny the
428security operation.
429
430The following example instruments a hook that denies all future BPF operations:
431```C
432LSM_PROBE(bpf, int cmd, union bpf_attr *attr, unsigned int size)
433{
434    return -EPERM;
435}
436```
437
438This instruments the `security_bpf` hook and causes it to return `-EPERM`.
439Changing `return -EPERM` to `return 0` would cause the BPF program
440to allow the operation instead.
441
442LSM probes require at least a 5.7+ kernel with the following configuation options set:
443- `CONFIG_BPF_LSM=y`
444- `CONFIG_LSM` comma separated string must contain "bpf" (for example,
445  `CONFIG_LSM="lockdown,yama,bpf"`)
446
447Examples in situ:
448[search /tests](https://github.com/iovisor/bcc/search?q=LSM_PROBE+path%3Atests&type=Code)
449
450### 12. BPF ITERATORS
451
452Syntax: BPF_ITER(target)
453
454This is a macro to define a program signature for a bpf iterator program. The argument *target* specifies what to iterate for the program.
455
456Currently, kernel does not have interface to discover what targets are supported. A good place to find what is supported is in [tools/testing/selftests/bpf/prog_test/bpf_iter.c](https://github.com/torvalds/linux/blob/master/tools/testing/selftests/bpf/prog_tests/bpf_iter.c) and some sample bpf iter programs are in [tools/testing/selftests/bpf/progs](https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf/progs) with file name prefix *bpf_iter*.
457
458The following example defines a program for target *task*, which traverses all tasks in the kernel.
459```C
460BPF_ITER(task)
461{
462  struct seq_file *seq = ctx->meta->seq;
463  struct task_struct *task = ctx->task;
464
465  if (task == (void *)0)
466    return 0;
467
468  ... task->pid, task->tgid, task->comm, ...
469  return 0;
470}
471```
472
473BPF iterators are introduced in 5.8 kernel for task, task_file, bpf_map, netlink_sock and ipv6_route . In 5.9, support is added to tcp/udp sockets and bpf map element (hashmap, arraymap and sk_local_storage_map) traversal.
474
475## Data
476
477### 1. bpf_probe_read_kernel()
478
479Syntax: ```int bpf_probe_read_kernel(void *dst, int size, const void *src)```
480
481Return: 0 on success
482
483This copies size bytes from kernel address space to the BPF stack, so that BPF can later operate on it. For safety, all kernel memory reads must pass through bpf_probe_read_kernel(). This happens automatically in some cases, such as dereferencing kernel variables, as bcc will rewrite the BPF program to include the necessary bpf_probe_read_kernel().
484
485Examples in situ:
486[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel+path%3Aexamples&type=Code),
487[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel+path%3Atools&type=Code)
488
489### 2. bpf_probe_read_kernel_str()
490
491Syntax: ```int bpf_probe_read_kernel_str(void *dst, int size, const void *src)```
492
493Return:
494  - \> 0 length of the string including the trailing NULL on success
495  - \< 0 error
496
497This copies a `NULL` terminated string from kernel address space to the BPF stack, so that BPF can later operate on it. In case the string length is smaller than size, the target is not padded with further `NULL` bytes. In case the string length is larger than size, just `size - 1` bytes are copied and the last byte is set to `NULL`.
498
499Examples in situ:
500[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel_str+path%3Aexamples&type=Code),
501[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_kernel_str+path%3Atools&type=Code)
502
503### 3. bpf_ktime_get_ns()
504
505Syntax: ```u64 bpf_ktime_get_ns(void)```
506
507Return: u64 number of nanoseconds. Starts at system boot time but stops during suspend.
508
509Examples in situ:
510[search /examples](https://github.com/iovisor/bcc/search?q=bpf_ktime_get_ns+path%3Aexamples&type=Code),
511[search /tools](https://github.com/iovisor/bcc/search?q=bpf_ktime_get_ns+path%3Atools&type=Code)
512
513### 4. bpf_get_current_pid_tgid()
514
515Syntax: ```u64 bpf_get_current_pid_tgid(void)```
516
517Return: ```current->tgid << 32 | current->pid```
518
519Returns the process ID in the lower 32 bits (kernel's view of the PID, which in user space is usually presented as the thread ID), and the thread group ID in the upper 32 bits (what user space often thinks of as the PID). By directly setting this to a u32, we discard the upper 32 bits.
520
521Examples in situ:
522[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_pid_tgid+path%3Aexamples&type=Code),
523[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_pid_tgid+path%3Atools&type=Code)
524
525### 5. bpf_get_current_uid_gid()
526
527Syntax: ```u64 bpf_get_current_uid_gid(void)```
528
529Return: ```current_gid << 32 | current_uid```
530
531Returns the user ID and group IDs.
532
533Examples in situ:
534[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_uid_gid+path%3Aexamples&type=Code),
535[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_uid_gid+path%3Atools&type=Code)
536
537### 6. bpf_get_current_comm()
538
539Syntax: ```bpf_get_current_comm(char *buf, int size_of_buf)```
540
541Return: 0 on success
542
543Populates the first argument address with the current process name. It should be a pointer to a char array of at least size TASK_COMM_LEN, which is defined in linux/sched.h. For example:
544
545```C
546#include <linux/sched.h>
547
548int do_trace(struct pt_regs *ctx) {
549    char comm[TASK_COMM_LEN];
550    bpf_get_current_comm(&comm, sizeof(comm));
551[...]
552```
553
554Examples in situ:
555[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_comm+path%3Aexamples&type=Code),
556[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_comm+path%3Atools&type=Code)
557
558### 7. bpf_get_current_task()
559
560Syntax: ```bpf_get_current_task()```
561
562Return: current task as a pointer to struct task_struct.
563
564Returns a pointer to the current task's task_struct object. This helper can be used to compute the on-CPU time for a process, identify kernel threads, get the current CPU's run queue, or retrieve many other pieces of information.
565
566With Linux 4.13, due to issues with field randomization, you may need two #define directives before the includes:
567```C
568#define randomized_struct_fields_start  struct {
569#define randomized_struct_fields_end    };
570#include <linux/sched.h>
571
572int do_trace(void *ctx) {
573    struct task_struct *t = (struct task_struct *)bpf_get_current_task();
574[...]
575```
576
577Examples in situ:
578[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_current_task+path%3Aexamples&type=Code),
579[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_current_task+path%3Atools&type=Code)
580
581### 8. bpf_log2l()
582
583Syntax: ```unsigned int bpf_log2l(unsigned long v)```
584
585Returns the log-2 of the provided value. This is often used to create indexes for histograms, to construct power-of-2 histograms.
586
587Examples in situ:
588[search /examples](https://github.com/iovisor/bcc/search?q=bpf_log2l+path%3Aexamples&type=Code),
589[search /tools](https://github.com/iovisor/bcc/search?q=bpf_log2l+path%3Atools&type=Code)
590
591### 9. bpf_get_prandom_u32()
592
593Syntax: ```u32 bpf_get_prandom_u32()```
594
595Returns a pseudo-random u32.
596
597Example in situ:
598[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_prandom_u32+path%3Aexamples&type=Code),
599[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_prandom_u32+path%3Atools&type=Code)
600
601### 10. bpf_probe_read_user()
602
603Syntax: ```int bpf_probe_read_user(void *dst, int size, const void *src)```
604
605Return: 0 on success
606
607This attempts to safely read size bytes from user address space to the BPF stack, so that BPF can later operate on it. For safety, all user address space memory reads must pass through bpf_probe_read_user().
608
609Examples in situ:
610[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user+path%3Aexamples&type=Code),
611[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user+path%3Atools&type=Code)
612
613### 11. bpf_probe_read_user_str()
614
615Syntax: ```int bpf_probe_read_user_str(void *dst, int size, const void *src)```
616
617Return:
618  - \> 0 length of the string including the trailing NULL on success
619  - \< 0 error
620
621This copies a `NULL` terminated string from user address space to the BPF stack, so that BPF can later operate on it. In case the string length is smaller than size, the target is not padded with further `NULL` bytes. In case the string length is larger than size, just `size - 1` bytes are copied and the last byte is set to `NULL`.
622
623Examples in situ:
624[search /examples](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user_str+path%3Aexamples&type=Code),
625[search /tools](https://github.com/iovisor/bcc/search?q=bpf_probe_read_user_str+path%3Atools&type=Code)
626
627
628### 12. bpf_get_ns_current_pid_tgid()
629
630Syntax: ```u32 bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info* nsdata, u32 size)```
631
632Values for *pid* and *tgid* as seen from the current *namespace* will be returned in *nsdata*.
633
634Return 0 on success, or one of the following in case of failure:
635
636- **-EINVAL** if dev and inum supplied don't match dev_t and inode number with nsfs of current task, or if dev conversion to dev_t lost high bits.
637
638- **-ENOENT** if pidns does not exists for the current task.
639
640Examples in situ:
641[search /examples](https://github.com/iovisor/bcc/search?q=bpf_get_ns_current_pid_tgid+path%3Aexamples&type=Code),
642[search /tools](https://github.com/iovisor/bcc/search?q=bpf_get_ns_current_pid_tgid+path%3Atools&type=Code)
643
644
645## Debugging
646
647### 1. bpf_override_return()
648
649Syntax: ```int bpf_override_return(struct pt_regs *, unsigned long rc)```
650
651Return: 0 on success
652
653When used in a program attached to a function entry kprobe, causes the
654execution of the function to be skipped, immediately returning `rc` instead.
655This is used for targeted error injection.
656
657bpf_override_return will only work when the kprobed function is whitelisted to
658allow error injections. Whitelisting entails tagging a function with
659`ALLOW_ERROR_INJECTION()` in the kernel source tree; see `io_ctl_init` for
660an example. If the kprobed function is not whitelisted, the bpf program will
661fail to attach with ` ioctl(PERF_EVENT_IOC_SET_BPF): Invalid argument`
662
663
664```C
665int kprobe__io_ctl_init(void *ctx) {
666	bpf_override_return(ctx, -ENOMEM);
667	return 0;
668}
669```
670
671## Output
672
673### 1. bpf_trace_printk()
674
675Syntax: ```int bpf_trace_printk(const char *fmt, ...)```
676
677Return: 0 on success
678
679A simple kernel facility for printf() to the common trace_pipe (/sys/kernel/debug/tracing/trace_pipe). This is ok for some quick examples, but has limitations: 3 args max, 1 %s only, and trace_pipe is globally shared, so concurrent programs will have clashing output. A better interface is via BPF_PERF_OUTPUT(). Note that calling this helper is made simpler than the original kernel version, which has ```fmt_size``` as the second parameter.
680
681Examples in situ:
682[search /examples](https://github.com/iovisor/bcc/search?q=bpf_trace_printk+path%3Aexamples&type=Code),
683[search /tools](https://github.com/iovisor/bcc/search?q=bpf_trace_printk+path%3Atools&type=Code)
684
685### 2. BPF_PERF_OUTPUT
686
687Syntax: ```BPF_PERF_OUTPUT(name)```
688
689Creates a BPF table for pushing out custom event data to user space via a perf ring buffer. This is the preferred method for pushing per-event data to user space.
690
691For example:
692
693```C
694struct data_t {
695    u32 pid;
696    u64 ts;
697    char comm[TASK_COMM_LEN];
698};
699BPF_PERF_OUTPUT(events);
700
701int hello(struct pt_regs *ctx) {
702    struct data_t data = {};
703
704    data.pid = bpf_get_current_pid_tgid();
705    data.ts = bpf_ktime_get_ns();
706    bpf_get_current_comm(&data.comm, sizeof(data.comm));
707
708    events.perf_submit(ctx, &data, sizeof(data));
709
710    return 0;
711}
712```
713
714The output table is named ```events```, and data is pushed to it via ```events.perf_submit()```.
715
716Examples in situ:
717[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERF_OUTPUT+path%3Aexamples&type=Code),
718[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERF_OUTPUT+path%3Atools&type=Code)
719
720### 3. perf_submit()
721
722Syntax: ```int perf_submit((void *)ctx, (void *)data, u32 data_size)```
723
724Return: 0 on success
725
726A method of a BPF_PERF_OUTPUT table, for submitting custom event data to user space. See the BPF_PERF_OUTPUT entry. (This ultimately calls bpf_perf_event_output().)
727
728The ```ctx``` parameter is provided in [kprobes](#1-kprobes) or [kretprobes](#2-kretprobes). For ```SCHED_CLS``` or ```SOCKET_FILTER``` programs, the ```struct __sk_buff *skb``` must be used instead.
729
730Examples in situ:
731[search /examples](https://github.com/iovisor/bcc/search?q=perf_submit+path%3Aexamples&type=Code),
732[search /tools](https://github.com/iovisor/bcc/search?q=perf_submit+path%3Atools&type=Code)
733
734### 4. perf_submit_skb()
735
736Syntax: ```int perf_submit_skb((void *)ctx, u32 packet_size, (void *)data, u32 data_size)```
737
738Return: 0 on success
739
740A method of a BPF_PERF_OUTPUT table available in networking program types, for submitting custom event data to user space, along with the first ```packet_size``` bytes of the packet buffer. See the BPF_PERF_OUTPUT entry. (This ultimately calls bpf_perf_event_output().)
741
742Examples in situ:
743[search /examples](https://github.com/iovisor/bcc/search?q=perf_submit_skb+path%3Aexamples&type=Code),
744[search /tools](https://github.com/iovisor/bcc/search?q=perf_submit_skb+path%3Atools&type=Code)
745
746### 5. BPF_RINGBUF_OUTPUT
747
748Syntax: ```BPF_RINGBUF_OUTPUT(name, page_cnt)```
749
750Creates a BPF table for pushing out custom event data to user space via a ringbuf ring buffer.
751```BPF_RINGBUF_OUTPUT``` has several advantages over ```BPF_PERF_OUTPUT```, summarized as follows:
752
753- Buffer is shared across all CPUs, meaning no per-CPU allocation
754- Supports two APIs for BPF programs
755    - ```map.ringbuf_output()``` works like ```map.perf_submit()``` (covered in [ringbuf_output](#6-ringbuf_output))
756    - ```map.ringbuf_reserve()```/```map.ringbuf_submit()```/```map.ringbuf_discard()```
757      split the process of reserving buffer space and submitting events into two steps
758      (covered in [ringbuf_reserve](#7-ringbuf_reserve), [ringbuf_submit](#8-ringbuf_submit), [ringbuf_discard](#9-ringbuf_discard))
759- BPF APIs do not require access to a CPU ctx argument
760- Superior performance and latency in userspace thanks to a shared ring buffer manager
761- Supports two ways of consuming data in userspace
762
763Starting in Linux 5.8, this should be the preferred method for pushing per-event data to user space.
764
765Example of both APIs:
766
767```C
768struct data_t {
769    u32 pid;
770    u64 ts;
771    char comm[TASK_COMM_LEN];
772};
773
774// Creates a ringbuf called events with 8 pages of space, shared across all CPUs
775BPF_RINGBUF_OUTPUT(events, 8);
776
777int first_api_example(struct pt_regs *ctx) {
778    struct data_t data = {};
779
780    data.pid = bpf_get_current_pid_tgid();
781    data.ts = bpf_ktime_get_ns();
782    bpf_get_current_comm(&data.comm, sizeof(data.comm));
783
784    events.ringbuf_output(&data, sizeof(data), 0 /* flags */);
785
786    return 0;
787}
788
789int second_api_example(struct pt_regs *ctx) {
790    struct data_t *data = events.ringbuf_reserve(sizeof(struct data_t));
791    if (!data) { // Failed to reserve space
792        return 1;
793    }
794
795    data->pid = bpf_get_current_pid_tgid();
796    data->ts = bpf_ktime_get_ns();
797    bpf_get_current_comm(&data->comm, sizeof(data->comm));
798
799    events.ringbuf_submit(data, 0 /* flags */);
800
801    return 0;
802}
803```
804
805The output table is named ```events```. Data is allocated via ```events.ringbuf_reserve()``` and pushed to it via ```events.ringbuf_submit()```.
806
807Examples in situ: <!-- TODO -->
808[search /examples](https://github.com/iovisor/bcc/search?q=BPF_RINGBUF_OUTPUT+path%3Aexamples&type=Code),
809
810### 6. ringbuf_output()
811
812Syntax: ```int ringbuf_output((void *)data, u64 data_size, u64 flags)```
813
814Return: 0 on success
815
816Flags:
817 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
818 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
819
820A method of the BPF_RINGBUF_OUTPUT table, for submitting custom event data to user space. This method works like ```perf_submit()```,
821although it does not require a ctx argument.
822
823Examples in situ: <!-- TODO -->
824[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_output+path%3Aexamples&type=Code),
825
826### 7. ringbuf_reserve()
827
828Syntax: ```void* ringbuf_reserve(u64 data_size)```
829
830Return: Pointer to data struct on success, NULL on failure
831
832A method of the BPF_RINGBUF_OUTPUT table, for reserving space in the ring buffer and simultaenously
833allocating a data struct for output. Must be used with one of ```ringbuf_submit``` or ```ringbuf_discard```.
834
835Examples in situ: <!-- TODO -->
836[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_reserve+path%3Aexamples&type=Code),
837
838### 8. ringbuf_submit()
839
840Syntax: ```void ringbuf_submit((void *)data, u64 flags)```
841
842Return: Nothing, always succeeds
843
844Flags:
845 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
846 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
847
848A method of the BPF_RINGBUF_OUTPUT table, for submitting custom event data to user space. Must be preceded by a call to
849```ringbuf_reserve()``` to reserve space for the data.
850
851Examples in situ: <!-- TODO -->
852[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_submit+path%3Aexamples&type=Code),
853
854### 9. ringbuf_discard()
855
856Syntax: ```void ringbuf_discard((void *)data, u64 flags)```
857
858Return: Nothing, always succeeds
859
860Flags:
861 - ```BPF_RB_NO_WAKEUP```: Do not sent notification of new data availability
862 - ```BPF_RB_FORCE_WAKEUP```: Send notification of new data availability unconditionally
863
864A method of the BPF_RINGBUF_OUTPUT table, for discarding custom event data; userspace
865ignores the data associated with the discarded event. Must be preceded by a call to
866```ringbuf_reserve()``` to reserve space for the data.
867
868Examples in situ: <!-- TODO -->
869[search /examples](https://github.com/iovisor/bcc/search?q=ringbuf_submit+path%3Aexamples&type=Code),
870
871## Maps
872
873Maps are BPF data stores, and are the basis for higher level object types including tables, hashes, and histograms.
874
875### 1. BPF_TABLE
876
877Syntax: ```BPF_TABLE(_table_type, _key_type, _leaf_type, _name, _max_entries)```
878
879Creates a map named ```_name```. Most of the time this will be used via higher-level macros, like BPF_HASH, BPF_ARRAY, BPF_HISTOGRAM, etc.
880
881`BPF_F_TABLE` is a variant that takes a flag in the last parameter. `BPF_TABLE(...)` is actually a wrapper to `BPF_F_TABLE(..., 0 /* flag */)`.
882
883Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
884
885Examples in situ:
886[search /examples](https://github.com/iovisor/bcc/search?q=BPF_TABLE+path%3Aexamples&type=Code),
887[search /tools](https://github.com/iovisor/bcc/search?q=BPF_TABLE+path%3Atools&type=Code)
888
889#### Pinned Maps
890
891Syntax: ```BPF_TABLE_PINNED(_table_type, _key_type, _leaf_type, _name, _max_entries, "/sys/fs/bpf/xyz")```
892
893Create a new map if it doesn't exist and pin it to the bpffs as a FILE, otherwise use the map that was pinned to the bpffs. The type information is not enforced and the actual map type depends on the map that got pinned to the location.
894
895For example:
896
897```C
898BPF_TABLE_PINNED("hash", u64, u64, ids, 1024, "/sys/fs/bpf/ids");
899```
900
901### 2. BPF_HASH
902
903Syntax: ```BPF_HASH(name [, key_type [, leaf_type [, size]]])```
904
905Creates a hash map (associative array) named ```name```, with optional parameters.
906
907Defaults: ```BPF_HASH(name, key_type=u64, leaf_type=u64, size=10240)```
908
909For example:
910
911```C
912BPF_HASH(start, struct request *);
913```
914
915This creates a hash named ```start``` where the key is a ```struct request *```, and the value defaults to u64. This hash is used by the disksnoop.py example for saving timestamps for each I/O request, where the key is the pointer to struct request, and the value is the timestamp.
916
917This is a wrapper macro for `BPF_TABLE("hash", ...)`.
918
919Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
920
921Examples in situ:
922[search /examples](https://github.com/iovisor/bcc/search?q=BPF_HASH+path%3Aexamples&type=Code),
923[search /tools](https://github.com/iovisor/bcc/search?q=BPF_HASH+path%3Atools&type=Code)
924
925### 3. BPF_ARRAY
926
927Syntax: ```BPF_ARRAY(name [, leaf_type [, size]])```
928
929Creates an int-indexed array which is optimized for fastest lookup and update, named ```name```, with optional parameters.
930
931Defaults: ```BPF_ARRAY(name, leaf_type=u64, size=10240)```
932
933For example:
934
935```C
936BPF_ARRAY(counts, u64, 32);
937```
938
939This creates an array named ```counts``` where with 32 buckets and 64-bit integer values. This array is used by the funccount.py example for saving call count of each function.
940
941This is a wrapper macro for `BPF_TABLE("array", ...)`.
942
943Methods (covered later): map.lookup(), map.update(), map.increment(). Note that all array elements are pre-allocated with zero values and can not be deleted.
944
945Examples in situ:
946[search /examples](https://github.com/iovisor/bcc/search?q=BPF_ARRAY+path%3Aexamples&type=Code),
947[search /tools](https://github.com/iovisor/bcc/search?q=BPF_ARRAY+path%3Atools&type=Code)
948
949### 4. BPF_HISTOGRAM
950
951Syntax: ```BPF_HISTOGRAM(name [, key_type [, size ]])```
952
953Creates a histogram map named ```name```, with optional parameters.
954
955Defaults: ```BPF_HISTOGRAM(name, key_type=int, size=64)```
956
957For example:
958
959```C
960BPF_HISTOGRAM(dist);
961```
962
963This creates a histogram named ```dist```, which defaults to 64 buckets indexed by keys of type int.
964
965This is a wrapper macro for `BPF_TABLE("histgram", ...)`.
966
967Methods (covered later): map.increment().
968
969Examples in situ:
970[search /examples](https://github.com/iovisor/bcc/search?q=BPF_HISTOGRAM+path%3Aexamples&type=Code),
971[search /tools](https://github.com/iovisor/bcc/search?q=BPF_HISTOGRAM+path%3Atools&type=Code)
972
973### 5. BPF_STACK_TRACE
974
975Syntax: ```BPF_STACK_TRACE(name, max_entries)```
976
977Creates stack trace map named ```name```, with a maximum entry count provided. These maps are used to store stack traces.
978
979For example:
980
981```C
982BPF_STACK_TRACE(stack_traces, 1024);
983```
984
985This creates stack trace map named ```stack_traces```, with a maximum number of stack trace entries of 1024.
986
987This is a wrapper macro for `BPF_TABLE("stacktrace", ...)`.
988
989Methods (covered later): map.get_stackid().
990
991Examples in situ:
992[search /examples](https://github.com/iovisor/bcc/search?q=BPF_STACK_TRACE+path%3Aexamples&type=Code),
993[search /tools](https://github.com/iovisor/bcc/search?q=BPF_STACK_TRACE+path%3Atools&type=Code)
994
995### 6. BPF_PERF_ARRAY
996
997Syntax: ```BPF_PERF_ARRAY(name, max_entries)```
998
999Creates perf array named ```name```, with a maximum entry count provided, which must be equal to the number of system cpus. These maps are used to fetch hardware performance counters.
1000
1001For example:
1002
1003```C
1004text="""
1005BPF_PERF_ARRAY(cpu_cycles, NUM_CPUS);
1006"""
1007b = bcc.BPF(text=text, cflags=["-DNUM_CPUS=%d" % multiprocessing.cpu_count()])
1008b["cpu_cycles"].open_perf_event(b["cpu_cycles"].HW_CPU_CYCLES)
1009```
1010
1011This creates a perf array named ```cpu_cycles```, with number of entries equal to the number of cpus/cores. The array is configured so that later calling map.perf_read() will return a hardware-calculated counter of the number of cycles elapsed from some point in the past. Only one type of hardware counter may be configured per table at a time.
1012
1013Methods (covered later): map.perf_read().
1014
1015Examples in situ:
1016[search /tests](https://github.com/iovisor/bcc/search?q=BPF_PERF_ARRAY+path%3Atests&type=Code)
1017
1018### 7. BPF_PERCPU_HASH
1019
1020Syntax: ```BPF_PERCPU_HASH(name [, key_type [, leaf_type [, size]]])```
1021
1022Creates NUM_CPU int-indexed hash maps (associative arrays) named ```name```, with optional parameters. Each CPU will have a separate copy of this array. The copies are not kept synchronized in any way.
1023
1024Note that due to limits defined in the kernel (in linux/mm/percpu.c), the ```leaf_type``` cannot have a size of more than 32KB.
1025In other words, ```BPF_PERCPU_HASH``` elements cannot be larger than 32KB in size.
1026
1027
1028Defaults: ```BPF_PERCPU_HASH(name, key_type=u64, leaf_type=u64, size=10240)```
1029
1030For example:
1031
1032```C
1033BPF_PERCPU_HASH(start, struct request *);
1034```
1035
1036This creates NUM_CPU hashes named ```start``` where the key is a ```struct request *```, and the value defaults to u64.
1037
1038This is a wrapper macro for `BPF_TABLE("percpu_hash", ...)`.
1039
1040Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
1041
1042Examples in situ:
1043[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_HASH+path%3Aexamples&type=Code),
1044[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_HASH+path%3Atools&type=Code)
1045
1046
1047### 8. BPF_PERCPU_ARRAY
1048
1049Syntax: ```BPF_PERCPU_ARRAY(name [, leaf_type [, size]])```
1050
1051Creates NUM_CPU int-indexed arrays which are optimized for fastest lookup and update, named ```name```, with optional parameters. Each CPU will have a separate copy of this array. The copies are not kept synchronized in any way.
1052
1053Note that due to limits defined in the kernel (in linux/mm/percpu.c), the ```leaf_type``` cannot have a size of more than 32KB.
1054In other words, ```BPF_PERCPU_ARRAY``` elements cannot be larger than 32KB in size.
1055
1056
1057Defaults: ```BPF_PERCPU_ARRAY(name, leaf_type=u64, size=10240)```
1058
1059For example:
1060
1061```C
1062BPF_PERCPU_ARRAY(counts, u64, 32);
1063```
1064
1065This creates NUM_CPU arrays named ```counts``` where with 32 buckets and 64-bit integer values.
1066
1067This is a wrapper macro for `BPF_TABLE("percpu_array", ...)`.
1068
1069Methods (covered later): map.lookup(), map.update(), map.increment(). Note that all array elements are pre-allocated with zero values and can not be deleted.
1070
1071Examples in situ:
1072[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_ARRAY+path%3Aexamples&type=Code),
1073[search /tools](https://github.com/iovisor/bcc/search?q=BPF_PERCPU_ARRAY+path%3Atools&type=Code)
1074
1075### 9. BPF_LPM_TRIE
1076
1077Syntax: `BPF_LPM_TRIE(name [, key_type [, leaf_type [, size]]])`
1078
1079Creates a longest prefix match trie map named `name`, with optional parameters.
1080
1081Defaults: `BPF_LPM_TRIE(name, key_type=u64, leaf_type=u64, size=10240)`
1082
1083For example:
1084
1085```c
1086BPF_LPM_TRIE(trie, struct key_v6);
1087```
1088
1089This creates an LPM trie map named `trie` where the key is a `struct key_v6`, and the value defaults to u64.
1090
1091This is a wrapper macro to `BPF_F_TABLE("lpm_trie", ..., BPF_F_NO_PREALLOC)`.
1092
1093Methods (covered later): map.lookup(), map.lookup_or_try_init(), map.delete(), map.update(), map.insert(), map.increment().
1094
1095Examples in situ:
1096[search /examples](https://github.com/iovisor/bcc/search?q=BPF_LPM_TRIE+path%3Aexamples&type=Code),
1097[search /tools](https://github.com/iovisor/bcc/search?q=BPF_LPM_TRIE+path%3Atools&type=Code)
1098
1099### 10. BPF_PROG_ARRAY
1100
1101Syntax: ```BPF_PROG_ARRAY(name, size)```
1102
1103This creates a program array named ```name``` with ```size``` entries. Each entry of the array is either a file descriptor to a bpf program or ```NULL```. The array acts as a jump table so that bpf programs can "tail-call" other bpf programs.
1104
1105This is a wrapper macro for `BPF_TABLE("prog", ...)`.
1106
1107Methods (covered later): map.call().
1108
1109Examples in situ:
1110[search /examples](https://github.com/iovisor/bcc/search?q=BPF_PROG_ARRAY+path%3Aexamples&type=Code),
1111[search /tests](https://github.com/iovisor/bcc/search?q=BPF_PROG_ARRAY+path%3Atests&type=Code),
1112[assign fd](https://github.com/iovisor/bcc/blob/master/examples/networking/tunnel_monitor/monitor.py#L24-L26)
1113
1114### 11. BPF_DEVMAP
1115
1116Syntax: ```BPF_DEVMAP(name, size)```
1117
1118This creates a device map named ```name``` with ```size``` entries. Each entry of the map is an `ifindex` to a network interface. This map is only used in XDP.
1119
1120For example:
1121```C
1122BPF_DEVMAP(devmap, 10);
1123```
1124
1125Methods (covered later): map.redirect_map().
1126
1127Examples in situ:
1128[search /examples](https://github.com/iovisor/bcc/search?q=BPF_DEVMAP+path%3Aexamples&type=Code),
1129
1130### 12. BPF_CPUMAP
1131
1132Syntax: ```BPF_CPUMAP(name, size)```
1133
1134This creates a cpu map named ```name``` with ```size``` entries. The index of the map represents the CPU id and each entry is the size of the ring buffer allocated for the CPU. This map is only used in XDP.
1135
1136For example:
1137```C
1138BPF_CPUMAP(cpumap, 16);
1139```
1140
1141Methods (covered later): map.redirect_map().
1142
1143Examples in situ:
1144[search /examples](https://github.com/iovisor/bcc/search?q=BPF_CPUMAP+path%3Aexamples&type=Code),
1145
1146### 13. BPF_XSKMAP
1147
1148Syntax: ```BPF_XSKMAP(name, size)```
1149
1150This creates a xsk map named ```name``` with ```size``` entries. Each entry represents one NIC's queue id. This map is only used in XDP to redirect packet to an AF_XDP socket. If the AF_XDP socket is binded to a queue which is different than the current packet's queue id, the packet will be dropped. For kernel v5.3 and latter, `lookup` method is available and can be used to check whether and AF_XDP socket is available for the current packet's queue id. More details at [AF_XDP](https://www.kernel.org/doc/html/latest/networking/af_xdp.html).
1151
1152For example:
1153```C
1154BPF_XSKMAP(xsks_map, 8);
1155```
1156
1157Methods (covered later): map.redirect_map(). map.lookup()
1158
1159Examples in situ:
1160[search /examples](https://github.com/iovisor/bcc/search?q=BPF_XSKMAP+path%3Aexamples&type=Code),
1161
1162### 14. BPF_ARRAY_OF_MAPS
1163
1164Syntax: ```BPF_ARRAY_OF_MAPS(name, inner_map_name, size)```
1165
1166This creates an array map with a map-in-map type (BPF_MAP_TYPE_HASH_OF_MAPS) map named ```name``` with ```size``` entries. The inner map meta data is provided by map ```inner_map_name``` and can be most of array or hash maps except ```BPF_MAP_TYPE_PROG_ARRAY```, ```BPF_MAP_TYPE_CGROUP_STORAGE``` and ```BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE```.
1167
1168For example:
1169```C
1170BPF_TABLE("hash", int, int, ex1, 1024);
1171BPF_TABLE("hash", int, int, ex2, 1024);
1172BPF_ARRAY_OF_MAPS(maps_array, "ex1", 10);
1173```
1174
1175### 15. BPF_HASH_OF_MAPS
1176
1177Syntax: ```BPF_HASH_OF_MAPS(name, key_type, inner_map_name, size)```
1178
1179This creates a hash map with a map-in-map type (BPF_MAP_TYPE_HASH_OF_MAPS) map named ```name``` with ```size``` entries. The inner map meta data is provided by map ```inner_map_name``` and can be most of array or hash maps except ```BPF_MAP_TYPE_PROG_ARRAY```, ```BPF_MAP_TYPE_CGROUP_STORAGE``` and ```BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE```.
1180
1181For example:
1182```C
1183BPF_ARRAY(ex1, int, 1024);
1184BPF_ARRAY(ex2, int, 1024);
1185BPF_HASH_OF_MAPS(maps_hash, struct custom_key, "ex1", 10);
1186```
1187
1188### 16. BPF_STACK
1189
1190Syntax: ```BPF_STACK(name, leaf_type, max_entries[, flags])```
1191
1192Creates a stack named ```name``` with value type ```leaf_type``` and max entries ```max_entries```.
1193Stack and Queue maps are only available from Linux 4.20+.
1194
1195For example:
1196
1197```C
1198BPF_STACK(stack, struct event, 10240);
1199```
1200
1201This creates a stack named ```stack``` where the value type is ```struct event```, that holds up to 10240 entries.
1202
1203Methods (covered later): map.push(), map.pop(), map.peek().
1204
1205Examples in situ:
1206[search /tests](https://github.com/iovisor/bcc/search?q=BPF_STACK+path%3Atests&type=Code),
1207
1208### 17. BPF_QUEUE
1209
1210Syntax: ```BPF_QUEUE(name, leaf_type, max_entries[, flags])```
1211
1212Creates a queue named ```name``` with value type ```leaf_type``` and max entries ```max_entries```.
1213Stack and Queue maps are only available from Linux 4.20+.
1214
1215For example:
1216
1217```C
1218BPF_QUEUE(queue, struct event, 10240);
1219```
1220
1221This creates a queue named ```queue``` where the value type is ```struct event```, that holds up to 10240 entries.
1222
1223Methods (covered later): map.push(), map.pop(), map.peek().
1224
1225Examples in situ:
1226[search /tests](https://github.com/iovisor/bcc/search?q=BPF_QUEUE+path%3Atests&type=Code),
1227
1228### 18. BPF_SOCKHASH
1229
1230Syntax: ```BPF_SOCKHASH(name[, key_type [, max_entries)```
1231
1232Creates a hash named ```name```, with optional parameters. sockhash is only available from Linux 4.18+.
1233
1234Default: ```BPF_SOCKHASH(name, key_type=u32, max_entries=10240)```
1235
1236For example:
1237
1238```C
1239struct sock_key {
1240  u32 remote_ip4;
1241  u32 local_ip4;
1242  u32 remote_port;
1243  u32 local_port;
1244};
1245BPF_HASH(skh, struct sock_key, 65535);
1246```
1247
1248This creates a hash named ```skh``` where the key is a ```struct sock_key```.
1249
1250A sockhash is a BPF map type that holds references to sock structs. Then with a new sk/msg redirect bpf helper BPF programs can use the map to redirect skbs/msgs between sockets (```map.sk_redirect_hash()/map.msg_redirect_hash()```).
1251
1252The difference between ```BPF_SOCKHASH``` and ```BPF_SOCKMAP``` is that ```BPF_SOCKMAP``` is implemented based on an array, and enforces keys to be four bytes. While ```BPF_SOCKHASH``` is implemented based on hash table, and the type of key can be specified freely.
1253
1254Methods (covered later): map.sock_hash_update(), map.msg_redirect_hash(), map.sk_redirect_hash().
1255
1256[search /tests](https://github.com/iovisor/bcc/search?q=BPF_SOCKHASH+path%3Atests&type=Code)
1257
1258### 19. map.lookup()
1259
1260Syntax: ```*val map.lookup(&key)```
1261
1262Lookup the key in the map, and return a pointer to its value if it exists, else NULL. We pass the key in as an address to a pointer.
1263
1264Examples in situ:
1265[search /examples](https://github.com/iovisor/bcc/search?q=lookup+path%3Aexamples&type=Code),
1266[search /tools](https://github.com/iovisor/bcc/search?q=lookup+path%3Atools&type=Code)
1267
1268### 20. map.lookup_or_try_init()
1269
1270Syntax: ```*val map.lookup_or_try_init(&key, &zero)```
1271
1272Lookup the key in the map, and return a pointer to its value if it exists, else initialize the key's value to the second argument. This is often used to initialize values to zero. If the key cannot be inserted (e.g. the map is full) then NULL is returned.
1273
1274Examples in situ:
1275[search /examples](https://github.com/iovisor/bcc/search?q=lookup_or_try_init+path%3Aexamples&type=Code),
1276[search /tools](https://github.com/iovisor/bcc/search?q=lookup_or_try_init+path%3Atools&type=Code)
1277
1278Note: The old map.lookup_or_init() may cause return from the function, so lookup_or_try_init() is recommended as it
1279does not have this side effect.
1280
1281### 21. map.delete()
1282
1283Syntax: ```map.delete(&key)```
1284
1285Delete the key from the hash.
1286
1287Examples in situ:
1288[search /examples](https://github.com/iovisor/bcc/search?q=delete+path%3Aexamples&type=Code),
1289[search /tools](https://github.com/iovisor/bcc/search?q=delete+path%3Atools&type=Code)
1290
1291### 22. map.update()
1292
1293Syntax: ```map.update(&key, &val)```
1294
1295Associate the value in the second argument to the key, overwriting any previous value.
1296
1297Examples in situ:
1298[search /examples](https://github.com/iovisor/bcc/search?q=update+path%3Aexamples&type=Code),
1299[search /tools](https://github.com/iovisor/bcc/search?q=update+path%3Atools&type=Code)
1300
1301### 23. map.insert()
1302
1303Syntax: ```map.insert(&key, &val)```
1304
1305Associate the value in the second argument to the key, only if there was no previous value.
1306
1307Examples in situ:
1308[search /examples](https://github.com/iovisor/bcc/search?q=insert+path%3Aexamples&type=Code),
1309[search /tools](https://github.com/iovisor/bcc/search?q=insert+path%3Atools&type=Code)
1310
1311### 24. map.increment()
1312
1313Syntax: ```map.increment(key[, increment_amount])```
1314
1315Increments the key's value by `increment_amount`, which defaults to 1. Used for histograms.
1316
1317```map.increment()``` are not atomic. In the concurrency case. If you want more accurate results, use ```map.atomic_increment()``` instead of ```map.increment()```. The overhead of ```map.increment()``` and ```map.atomic_increment()``` is similar.
1318
1319Note. When using ```map.atomic_increment()``` to operate on a BPF map of type ```BPF_MAP_TYPE_HASH```, ```map.atomic_increment()``` does not guarantee the atomicity of the operation when the specified key does not exist.
1320
1321Examples in situ:
1322[search /examples](https://github.com/iovisor/bcc/search?q=increment+path%3Aexamples&type=Code),
1323[search /tools](https://github.com/iovisor/bcc/search?q=increment+path%3Atools&type=Code)
1324
1325### 25. map.get_stackid()
1326
1327Syntax: ```int map.get_stackid(void *ctx, u64 flags)```
1328
1329This walks the stack found via the struct pt_regs in ```ctx```, saves it in the stack trace map, and returns a unique ID for the stack trace.
1330
1331Examples in situ:
1332[search /examples](https://github.com/iovisor/bcc/search?q=get_stackid+path%3Aexamples&type=Code),
1333[search /tools](https://github.com/iovisor/bcc/search?q=get_stackid+path%3Atools&type=Code)
1334
1335### 26. map.perf_read()
1336
1337Syntax: ```u64 map.perf_read(u32 cpu)```
1338
1339This returns the hardware performance counter as configured in [5. BPF_PERF_ARRAY](#5-bpf_perf_array)
1340
1341Examples in situ:
1342[search /tests](https://github.com/iovisor/bcc/search?q=perf_read+path%3Atests&type=Code)
1343
1344### 27. map.call()
1345
1346Syntax: ```void map.call(void *ctx, int index)```
1347
1348This invokes ```bpf_tail_call()``` to tail-call the bpf program which the ```index``` entry in [BPF_PROG_ARRAY](#10-bpf_prog_array) points to. A tail-call is different from the normal call. It reuses the current stack frame after jumping to another bpf program and never goes back. If the ```index``` entry is empty, it won't jump anywhere and the program execution continues as normal.
1349
1350For example:
1351
1352```C
1353BPF_PROG_ARRAY(prog_array, 10);
1354
1355int tail_call(void *ctx) {
1356    bpf_trace_printk("Tail-call\n");
1357    return 0;
1358}
1359
1360int do_tail_call(void *ctx) {
1361    bpf_trace_printk("Original program\n");
1362    prog_array.call(ctx, 2);
1363    return 0;
1364}
1365```
1366
1367```Python
1368b = BPF(src_file="example.c")
1369tail_fn = b.load_func("tail_call", BPF.KPROBE)
1370prog_array = b.get_table("prog_array")
1371prog_array[c_int(2)] = c_int(tail_fn.fd)
1372b.attach_kprobe(event="some_kprobe_event", fn_name="do_tail_call")
1373```
1374
1375This assigns ```tail_call()``` to ```prog_array[2]```. In the end of ```do_tail_call()```, ```prog_array.call(ctx, 2)``` tail-calls ```tail_call()``` and executes it.
1376
1377**NOTE:** To prevent infinite loop, the maximum number of tail-calls is 32 ([```MAX_TAIL_CALL_CNT```](https://github.com/torvalds/linux/search?l=C&q=MAX_TAIL_CALL_CNT+path%3Ainclude%2Flinux&type=Code)).
1378
1379Examples in situ:
1380[search /examples](https://github.com/iovisor/bcc/search?l=C&q=call+path%3Aexamples&type=Code),
1381[search /tests](https://github.com/iovisor/bcc/search?l=C&q=call+path%3Atests&type=Code)
1382
1383### 28. map.redirect_map()
1384
1385Syntax: ```int map.redirect_map(int index, int flags)```
1386
1387This redirects the incoming packets based on the ```index``` entry. If the map is [BPF_DEVMAP](#11-bpf_devmap), the packet will be sent to the transmit queue of the network interface that the entry points to. If the map is [BPF_CPUMAP](#12-bpf_cpumap), the packet will be sent to the ring buffer of the ```index``` CPU and be processed by the CPU later. If the map is [BPF_XSKMAP](#13-bpf_xskmap), the packet will be sent to the AF_XDP socket attached to the queue.
1388
1389If the packet is redirected successfully, the function will return XDP_REDIRECT. Otherwise, it will return XDP_ABORTED to discard the packet.
1390
1391For example:
1392```C
1393BPF_DEVMAP(devmap, 1);
1394
1395int redirect_example(struct xdp_md *ctx) {
1396    return devmap.redirect_map(0, 0);
1397}
1398int xdp_dummy(struct xdp_md *ctx) {
1399    return XDP_PASS;
1400}
1401```
1402
1403```Python
1404ip = pyroute2.IPRoute()
1405idx = ip.link_lookup(ifname="eth1")[0]
1406
1407b = bcc.BPF(src_file="example.c")
1408
1409devmap = b.get_table("devmap")
1410devmap[c_uint32(0)] = c_int(idx)
1411
1412in_fn = b.load_func("redirect_example", BPF.XDP)
1413out_fn = b.load_func("xdp_dummy", BPF.XDP)
1414b.attach_xdp("eth0", in_fn, 0)
1415b.attach_xdp("eth1", out_fn, 0)
1416```
1417
1418Examples in situ:
1419[search /examples](https://github.com/iovisor/bcc/search?l=C&q=redirect_map+path%3Aexamples&type=Code),
1420
1421### 29. map.push()
1422
1423Syntax: ```int map.push(&val, int flags)```
1424
1425Push an element onto a Stack or Queue table.
1426Passing BPF_EXIST as a flag causes the Queue or Stack to discard the oldest element if it is full.
1427Returns 0 on success, negative error on failure.
1428
1429Examples in situ:
1430[search /tests](https://github.com/iovisor/bcc/search?q=push+path%3Atests&type=Code),
1431
1432### 30. map.pop()
1433
1434Syntax: ```int map.pop(&val)```
1435
1436Pop an element from a Stack or Queue table. ```*val``` is populated with the result.
1437Unlike peeking, popping removes the element.
1438Returns 0 on success, negative error on failure.
1439
1440Examples in situ:
1441[search /tests](https://github.com/iovisor/bcc/search?q=pop+path%3Atests&type=Code),
1442
1443### 31. map.peek()
1444
1445Syntax: ```int map.peek(&val)```
1446
1447Peek an element at the head of a Stack or Queue table. ```*val``` is populated with the result.
1448Unlike popping, peeking does not remove the element.
1449Returns 0 on success, negative error on failure.
1450
1451Examples in situ:
1452[search /tests](https://github.com/iovisor/bcc/search?q=peek+path%3Atests&type=Code),
1453
1454### 32. map.sock_hash_update()
1455
1456Syntax: ```int map.sock_hash_update(struct bpf_sock_ops *skops, &key, int flags)```
1457
1458Add an entry to, or update a sockhash map referencing sockets. The skops is used as a new value for the entry associated to key. flags is one of:
1459
1460```
1461BPF_NOEXIST: The entry for key must not exist in the map.
1462BPF_EXIST: The entry for key must already exist in the map.
1463BPF_ANY: No condition on the existence of the entry for key.
1464```
1465
1466If the map has eBPF programs (parser and verdict), those will be inherited by the socket being added. If the socket is already attached to eBPF programs, this results in an error.
1467
1468Return 0 on success, or a negative error in case of failure.
1469
1470Examples in situ:
1471[search /tests](https://github.com/iovisor/bcc/search?q=sock_hash_update+path%3Atests&type=Code),
1472
1473### 33. map.msg_redirect_hash()
1474
1475Syntax: ```int map.msg_redirect_hash(struct sk_msg_buff *msg, void *key, u64 flags)```
1476
1477This helper is used in programs implementing policies at the socket level. If the message msg is allowed to pass (i.e. if the verdict eBPF program returns SK_PASS), redirect it to the socket referenced by map (of type BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces can be used for redirection. The BPF_F_INGRESS value in flags is used to make the distinction (ingress path is selected if the flag is present, egress path otherwise). This is the only flag supported for now.
1478
1479Return SK_PASS on success, or SK_DROP on error.
1480
1481Examples in situ:
1482[search /tests](https://github.com/iovisor/bcc/search?q=msg_redirect_hash+path%3Atests&type=Code),
1483
1484### 34. map.sk_redirect_hash()
1485
1486Syntax: ```int map.sk_redirect_hash(struct sk_buff *skb, void *key, u64 flags)```
1487
1488This helper is used in programs implementing policies at the skb socket level. If the sk_buff skb is allowed to pass (i.e. if the verdict eBPF program returns SK_PASS), redirect it to the socket referenced by map (of  type  BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress and egress interfaces can be used for redirection. The BPF_F_INGRESS value in flags is used to make the distinction (ingress path is selected if the flag is present, egress otherwise). This is the only flag supported for now.
1489
1490Return SK_PASS on success, or SK_DROP on error.
1491
1492Examples in situ:
1493[search /tests](https://github.com/iovisor/bcc/search?q=sk_redirect_hash+path%3Atests&type=Code),
1494
1495## Licensing
1496
1497Depending on which [BPF helpers](kernel-versions.md#helpers) are used, a GPL-compatible license is required.
1498
1499The special BCC macro `BPF_LICENSE` specifies the license of the BPF program. You can set the license as a comment in your source code, but the kernel has a special interface to specify it programmatically. If you need to use GPL-only helpers, it is recommended to specify the macro in your C code so that the kernel can understand it:
1500
1501```C
1502// SPDX-License-Identifier: GPL-2.0+
1503#define BPF_LICENSE GPL
1504```
1505
1506Otherwise, the kernel may reject loading your program (see the [error description](#2-cannot-call-gpl-only-function-from-proprietary-program) below). Note that it supports multiple words and quotes are not necessary:
1507
1508```C
1509// SPDX-License-Identifier: GPL-2.0+ OR BSD-2-Clause
1510#define BPF_LICENSE Dual BSD/GPL
1511```
1512
1513Check the [BPF helpers reference](kernel-versions.md#helpers) to see which helpers are GPL-only and what the kernel understands as GPL-compatible.
1514
1515**If the macro is not specified, BCC will automatically define the license of the program as GPL.**
1516
1517## Rewriter
1518
1519One of jobs for rewriter is to turn implicit memory accesses to explicit ones using kernel helpers. Recent kernel introduced a config option ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE which will be set for architectures who user address space and kernel address are disjoint. x86 and arm has this config option set while s390 does not. If ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE is not set, the bpf old helper `bpf_probe_read()` will not be available. Some existing users may have implicit memory accesses to access user memory, so using `bpf_probe_read_kernel()` will cause their application to fail. Therefore, for non-s390, the rewriter will use `bpf_probe_read()` for these implicit memory accesses. For s390, `bpf_probe_read_kernel()` is used as default and users should use `bpf_probe_read_user()` explicitly when accessing user memories.
1520
1521# bcc Python
1522
1523## Initialization
1524
1525Constructors.
1526
1527### 1. BPF
1528
1529Syntax: ```BPF({text=BPF_program | src_file=filename} [, usdt_contexts=[USDT_object, ...]] [, cflags=[arg1, ...]] [, debug=int])```
1530
1531Creates a BPF object. This is the main object for defining a BPF program, and interacting with its output.
1532
1533Exactly one of `text` or `src_file` must be supplied (not both).
1534
1535The `cflags` specifies additional arguments to be passed to the compiler, for example `-DMACRO_NAME=value` or `-I/include/path`.  The arguments are passed as an array, with each element being an additional argument.  Note that strings are not split on whitespace, so each argument must be a different element of the array, e.g. `["-include", "header.h"]`.
1536
1537The `debug` flags control debug output, and can be or'ed together:
1538- `DEBUG_LLVM_IR = 0x1` compiled LLVM IR
1539- `DEBUG_BPF = 0x2` loaded BPF bytecode and register state on branches
1540- `DEBUG_PREPROCESSOR = 0x4` pre-processor result
1541- `DEBUG_SOURCE = 0x8` ASM instructions embedded with source
1542- `DEBUG_BPF_REGISTER_STATE = 0x10` register state on all instructions in addition to DEBUG_BPF
1543- `DEBUG_BTF = 0x20` print the messages from the `libbpf` library.
1544
1545Examples:
1546
1547```Python
1548# define entire BPF program in one line:
1549BPF(text='int do_trace(void *ctx) { bpf_trace_printk("hit!\\n"); return 0; }');
1550
1551# define program as a variable:
1552prog = """
1553int hello(void *ctx) {
1554    bpf_trace_printk("Hello, World!\\n");
1555    return 0;
1556}
1557"""
1558b = BPF(text=prog)
1559
1560# source a file:
1561b = BPF(src_file = "vfsreadlat.c")
1562
1563# include a USDT object:
1564u = USDT(pid=int(pid))
1565[...]
1566b = BPF(text=bpf_text, usdt_contexts=[u])
1567
1568# add include paths:
1569u = BPF(text=prog, cflags=["-I/path/to/include"])
1570```
1571
1572Examples in situ:
1573[search /examples](https://github.com/iovisor/bcc/search?q=BPF+path%3Aexamples+language%3Apython&type=Code),
1574[search /tools](https://github.com/iovisor/bcc/search?q=BPF+path%3Atools+language%3Apython&type=Code)
1575
1576### 2. USDT
1577
1578Syntax: ```USDT({pid=pid | path=path})```
1579
1580Creates an object to instrument User Statically-Defined Tracing (USDT) probes. Its primary method is ```enable_probe()```.
1581
1582Arguments:
1583
1584- pid: attach to this process ID.
1585- path: instrument USDT probes from this binary path.
1586
1587Examples:
1588
1589```Python
1590# include a USDT object:
1591u = USDT(pid=int(pid))
1592[...]
1593b = BPF(text=bpf_text, usdt_contexts=[u])
1594```
1595
1596Examples in situ:
1597[search /examples](https://github.com/iovisor/bcc/search?q=USDT+path%3Aexamples+language%3Apython&type=Code),
1598[search /tools](https://github.com/iovisor/bcc/search?q=USDT+path%3Atools+language%3Apython&type=Code)
1599
1600## Events
1601
1602### 1. attach_kprobe()
1603
1604Syntax: ```BPF.attach_kprobe(event="event", fn_name="name")```
1605
1606Instruments the kernel function ```event()``` using kernel dynamic tracing of the function entry, and attaches our C defined function ```name()``` to be called when the kernel function is called.
1607
1608For example:
1609
1610```Python
1611b.attach_kprobe(event="sys_clone", fn_name="do_trace")
1612```
1613
1614This will instrument the kernel ```sys_clone()``` function, which will then run our BPF defined ```do_trace()``` function each time it is called.
1615
1616You can call attach_kprobe() more than once, and attach your BPF function to multiple kernel functions.
1617You can also call attach_kprobe() more than once to attach multiple BPF functions to the same kernel function.
1618
1619See the previous kprobes section for how to instrument arguments from BPF.
1620
1621Examples in situ:
1622[search /examples](https://github.com/iovisor/bcc/search?q=attach_kprobe+path%3Aexamples+language%3Apython&type=Code),
1623[search /tools](https://github.com/iovisor/bcc/search?q=attach_kprobe+path%3Atools+language%3Apython&type=Code)
1624
1625### 2. attach_kretprobe()
1626
1627Syntax: ```BPF.attach_kretprobe(event="event", fn_name="name" [, maxactive=int])```
1628
1629Instruments the return of the kernel function ```event()``` using kernel dynamic tracing of the function return, and attaches our C defined function ```name()``` to be called when the kernel function returns.
1630
1631For example:
1632
1633```Python
1634b.attach_kretprobe(event="vfs_read", fn_name="do_return")
1635```
1636
1637This will instrument the kernel ```vfs_read()``` function, which will then run our BPF defined ```do_return()``` function each time it is called.
1638
1639You can call attach_kretprobe() more than once, and attach your BPF function to multiple kernel function returns.
1640You can also call attach_kretprobe() more than once to attach multiple BPF functions to the same kernel function return.
1641
1642When a kretprobe is installed on a kernel function, there is a limit on how many parallel calls it can catch. You can change that limit with ```maxactive```. See the kprobes documentation for its default value.
1643
1644See the previous kretprobes section for how to instrument the return value from BPF.
1645
1646Examples in situ:
1647[search /examples](https://github.com/iovisor/bcc/search?q=attach_kretprobe+path%3Aexamples+language%3Apython&type=Code),
1648[search /tools](https://github.com/iovisor/bcc/search?q=attach_kretprobe+path%3Atools+language%3Apython&type=Code)
1649
1650### 3. attach_tracepoint()
1651
1652Syntax: ```BPF.attach_tracepoint(tp="tracepoint", fn_name="name")```
1653
1654Instruments the kernel tracepoint described by ```tracepoint```, and when hit, runs the BPF function ```name()```.
1655
1656This is an explicit way to instrument tracepoints. The ```TRACEPOINT_PROBE``` syntax, covered in the earlier tracepoints section, is an alternate method with the advantage of auto-declaring an ```args``` struct containing the tracepoint arguments. With ```attach_tracepoint()```, the tracepoint arguments need to be declared in the BPF program.
1657
1658For example:
1659
1660```Python
1661# define BPF program
1662bpf_text = """
1663#include <uapi/linux/ptrace.h>
1664
1665struct urandom_read_args {
1666    // from /sys/kernel/debug/tracing/events/random/urandom_read/format
1667    u64 __unused__;
1668    u32 got_bits;
1669    u32 pool_left;
1670    u32 input_left;
1671};
1672
1673int printarg(struct urandom_read_args *args) {
1674    bpf_trace_printk("%d\\n", args->got_bits);
1675    return 0;
1676};
1677"""
1678
1679# load BPF program
1680b = BPF(text=bpf_text)
1681b.attach_tracepoint("random:urandom_read", "printarg")
1682```
1683
1684Notice how the first argument to ```printarg()``` is now our defined struct.
1685
1686Examples in situ:
1687[code](https://github.com/iovisor/bcc/blob/a4159da8c4ea8a05a3c6e402451f530d6e5a8b41/examples/tracing/urandomread-explicit.py#L41),
1688[search /examples](https://github.com/iovisor/bcc/search?q=attach_tracepoint+path%3Aexamples+language%3Apython&type=Code),
1689[search /tools](https://github.com/iovisor/bcc/search?q=attach_tracepoint+path%3Atools+language%3Apython&type=Code)
1690
1691### 4. attach_uprobe()
1692
1693Syntax: ```BPF.attach_uprobe(name="location", sym="symbol", fn_name="name" [, sym_off=int])```, ```BPF.attach_uprobe(name="location", sym_re="regex", fn_name="name")```, ```BPF.attach_uprobe(name="location", addr=int, fn_name="name")```
1694
1695
1696Instruments the user-level function ```symbol()``` from either the library or binary named by ```location``` using user-level dynamic tracing of the function entry, and attach our C defined function ```name()``` to be called whenever the user-level function is called. If ```sym_off``` is given, the function is attached to the offset within the symbol.
1697
1698The real address ```addr``` may be supplied in place of ```sym```, in which case ```sym``` must be set to its default value. If the file is a non-PIE executable, ```addr``` must be a virtual address, otherwise it must be an offset relative to the file load address.
1699
1700Instead of a symbol name, a regular expression can be provided in ```sym_re```. The uprobe will then attach to symbols that match the provided regular expression.
1701
1702Libraries can be given in the name argument without the lib prefix, or with the full path (/usr/lib/...). Binaries can be given only with the full path (/bin/sh).
1703
1704For example:
1705
1706```Python
1707b.attach_uprobe(name="c", sym="strlen", fn_name="count")
1708```
1709
1710This will instrument ```strlen()``` function from libc, and call our BPF function ```count()``` when it is called. Note how the "lib" in "libc" is not necessary to specify.
1711
1712Other examples:
1713
1714```Python
1715b.attach_uprobe(name="c", sym="getaddrinfo", fn_name="do_entry")
1716b.attach_uprobe(name="/usr/bin/python", sym="main", fn_name="do_main")
1717```
1718
1719You can call attach_uprobe() more than once, and attach your BPF function to multiple user-level functions.
1720
1721See the previous uprobes section for how to instrument arguments from BPF.
1722
1723Examples in situ:
1724[search /examples](https://github.com/iovisor/bcc/search?q=attach_uprobe+path%3Aexamples+language%3Apython&type=Code),
1725[search /tools](https://github.com/iovisor/bcc/search?q=attach_uprobe+path%3Atools+language%3Apython&type=Code)
1726
1727### 5. attach_uretprobe()
1728
1729Syntax: ```BPF.attach_uretprobe(name="location", sym="symbol", fn_name="name")```
1730
1731Instruments the return of the user-level function ```symbol()``` from either the library or binary named by ```location``` using user-level dynamic tracing of the function return, and attach our C defined function ```name()``` to be called whenever the user-level function returns.
1732
1733For example:
1734
1735```Python
1736b.attach_uretprobe(name="c", sym="strlen", fn_name="count")
1737```
1738
1739This will instrument ```strlen()``` function from libc, and call our BPF function ```count()``` when it returns.
1740
1741Other examples:
1742
1743```Python
1744b.attach_uretprobe(name="c", sym="getaddrinfo", fn_name="do_return")
1745b.attach_uretprobe(name="/usr/bin/python", sym="main", fn_name="do_main")
1746```
1747
1748You can call attach_uretprobe() more than once, and attach your BPF function to multiple user-level functions.
1749
1750See the previous uretprobes section for how to instrument the return value from BPF.
1751
1752Examples in situ:
1753[search /examples](https://github.com/iovisor/bcc/search?q=attach_uretprobe+path%3Aexamples+language%3Apython&type=Code),
1754[search /tools](https://github.com/iovisor/bcc/search?q=attach_uretprobe+path%3Atools+language%3Apython&type=Code)
1755
1756### 6. USDT.enable_probe()
1757
1758Syntax: ```USDT.enable_probe(probe=probe, fn_name=name)```
1759
1760Attaches a BPF C function ```name``` to the USDT probe ```probe```.
1761
1762Example:
1763
1764```Python
1765# enable USDT probe from given PID
1766u = USDT(pid=int(pid))
1767u.enable_probe(probe="http__server__request", fn_name="do_trace")
1768```
1769
1770To check if your binary has USDT probes, and what they are, you can run ```readelf -n binary``` and check the stap debug section.
1771
1772Examples in situ:
1773[search /examples](https://github.com/iovisor/bcc/search?q=enable_probe+path%3Aexamples+language%3Apython&type=Code),
1774[search /tools](https://github.com/iovisor/bcc/search?q=enable_probe+path%3Atools+language%3Apython&type=Code)
1775
1776### 7. attach_raw_tracepoint()
1777
1778Syntax: ```BPF.attach_raw_tracepoint(tp="tracepoint", fn_name="name")```
1779
1780Instruments the kernel raw tracepoint described by ```tracepoint``` (```event``` only, no ```category```), and when hit, runs the BPF function ```name()```.
1781
1782This is an explicit way to instrument tracepoints. The ```RAW_TRACEPOINT_PROBE``` syntax, covered in the earlier raw tracepoints section, is an alternate method.
1783
1784For example:
1785
1786```Python
1787b.attach_raw_tracepoint("sched_switch", "do_trace")
1788```
1789
1790Examples in situ:
1791[search /tools](https://github.com/iovisor/bcc/search?q=attach_raw_tracepoint+path%3Atools+language%3Apython&type=Code)
1792
1793### 8. attach_raw_socket()
1794
1795Syntax: ```BPF.attach_raw_socket(fn, dev)```
1796
1797Attaches a BPF function to the specified network interface.
1798
1799The ```fn``` must be the type of ```BPF.function``` and the bpf_prog type needs to be ```BPF_PROG_TYPE_SOCKET_FILTER```  (```fn=BPF.load_func(func_name, BPF.SOCKET_FILTER)```)
1800
1801```fn.sock``` is a non-blocking raw socket that was created and bound to ```dev```.
1802
1803All network packets processed by ```dev``` are copied to the ```recv-q``` of ```fn.sock``` after being processed by bpf_prog. Try to recv packet form ```fn.sock``` with rev/recvfrom/recvmsg. Note that if the ```recv-q``` is not read in time after the ```recv-q``` is full, the copied packets will be discarded.
1804
1805We can use this feature to capture network packets just like ```tcpdump```.
1806
1807We can use ```ss --bpf --packet -p``` to observe ```fn.sock```.
1808
1809Example:
1810
1811```Python
1812BPF.attach_raw_socket(bpf_func, ifname)
1813```
1814
1815Examples in situ:
1816[search /examples](https://github.com/iovisor/bcc/search?q=attach_raw_socket+path%3Aexamples+language%3Apython&type=Code)
1817### 9. attach_xdp()
1818Syntax: ```BPF.attach_xdp(dev="device", fn=b.load_func("fn_name",BPF.XDP), flags)```
1819
1820Instruments the network driver described by ```dev``` , and then receives the packet, run the BPF function ```fn_name()``` with flags.
1821
1822Here is a list of optional flags.
1823
1824```Python
1825# from xdp_flags uapi/linux/if_link.h
1826XDP_FLAGS_UPDATE_IF_NOEXIST = (1 << 0)
1827XDP_FLAGS_SKB_MODE = (1 << 1)
1828XDP_FLAGS_DRV_MODE = (1 << 2)
1829XDP_FLAGS_HW_MODE = (1 << 3)
1830XDP_FLAGS_REPLACE = (1 << 4)
1831```
1832
1833You can use flags like this ```BPF.attach_xdp(dev="device", fn=b.load_func("fn_name",BPF.XDP), flags=BPF.XDP_FLAGS_UPDATE_IF_NOEXIST)```
1834
1835The default value of flags is 0. This means if there is no xdp program with `device`, the fn will run with that device. If there is an xdp program running with device, the old program will be replaced with new fn program.
1836
1837Currently, bcc does not support XDP_FLAGS_REPLACE flag. The following are the descriptions of other flags.
1838
1839#### 1. XDP_FLAGS_UPDATE_IF_NOEXIST
1840If an XDP program is already attached to the specified driver, attaching the XDP program again will fail.
1841
1842#### 2. XDP_FLAGS_SKB_MODE
1843Driver doesn’t have support for XDP, but the kernel fakes it.
1844XDP program works, but there’s no real performance benefit because packets are handed to kernel stack anyways which then emulates XDP – this is usually supported with generic network drivers used in home computers, laptops, and virtualized HW.
1845
1846#### 3. XDP_FLAGS_DRV_MODE
1847A driver has XDP support and can hand then to XDP without kernel stack interaction – Few drivers can support it and those are usually for enterprise HW.
1848
1849#### 4. XDP_FLAGS_HW_MODE
1850XDP can be loaded and executed directly on the NIC – just a handful of NICs can do that.
1851
1852
1853For example:
1854
1855```Python
1856b.attach_xdp(dev="ens1", fn=b.load_func("do_xdp", BPF.XDP))
1857```
1858
1859This will instrument the network device ```ens1``` , which will then run our BPF defined ```do_xdp()``` function each time it receives packets.
1860
1861Don't forget to call ```b.remove_xdp("ens1")``` at the end!
1862
1863Examples in situ:
1864[search /examples](https://github.com/iovisor/bcc/search?q=attach_xdp+path%3Aexamples+language%3Apython&type=Code),
1865[search /tools](https://github.com/iovisor/bcc/search?q=attach_xdp+path%3Atools+language%3Apython&type=Code)
1866
1867### 10. attach_func()
1868
1869Syntax: ```BPF.attach_func(fn, attachable_fd, attach_type [, flags])```
1870
1871Attaches a BPF function of the specified type to a particular ```attachable_fd```. if the ```attach_type``` is ```BPF_FLOW_DISSECTOR```, the function is expected to attach to current net namespace and ```attachable_fd``` must be 0.
1872
1873For example:
1874
1875```Python
1876b.attach_func(fn, cgroup_fd, BPFAttachType.CGROUP_SOCK_OPS)
1877b.attach_func(fn, map_fd, BPFAttachType.SK_MSG_VERDICT)
1878```
1879
1880Note. When attached to "global" hooks (xdp, tc, lwt, cgroup). If the "BPF function" is no longer needed after the program terminates, be sure to call `detach_func` when the program exits.
1881
1882Examples in situ:
1883
1884[search /examples](https://github.com/iovisor/bcc/search?q=attach_func+path%3Aexamples+language%3Apython&type=Code),
1885
1886### 11. detach_func()
1887
1888Syntax: ```BPF.detach_func(fn, attachable_fd, attach_type)```
1889
1890Detaches a BPF function of the specified type.
1891
1892For example:
1893
1894```Python
1895b.detach_func(fn, cgroup_fd, BPFAttachType.CGROUP_SOCK_OPS)
1896b.detach_func(fn, map_fd, BPFAttachType.SK_MSG_VERDICT)
1897```
1898
1899Examples in situ:
1900
1901[search /examples](https://github.com/iovisor/bcc/search?q=detach_func+path%3Aexamples+language%3Apython&type=Code),
1902
1903### 12. detach_kprobe()
1904
1905Syntax: ```BPF.detach_kprobe(event="event", fn_name="name")```
1906
1907Detach a kprobe handler function of the specified event.
1908
1909For example:
1910
1911```Python
1912b.detach_kprobe(event="__page_cache_alloc", fn_name="trace_func_entry")
1913```
1914
1915### 13. detach_kretprobe()
1916
1917Syntax: ```BPF.detach_kretprobe(event="event", fn_name="name")```
1918
1919Detach a kretprobe handler function of the specified event.
1920
1921For example:
1922
1923```Python
1924b.detach_kretprobe(event="__page_cache_alloc", fn_name="trace_func_return")
1925```
1926
1927## Debug Output
1928
1929### 1. trace_print()
1930
1931Syntax: ```BPF.trace_print(fmt="fields")```
1932
1933This method continually reads the globally shared /sys/kernel/debug/tracing/trace_pipe file and prints its contents. This file can be written to via BPF and the bpf_trace_printk() function, however, that method has limitations, including a lack of concurrent tracing support. The BPF_PERF_OUTPUT mechanism, covered earlier, is preferred.
1934
1935Arguments:
1936
1937- ```fmt```: optional, and can contain a field formatting string. It defaults to ```None```.
1938
1939Examples:
1940
1941```Python
1942# print trace_pipe output as-is:
1943b.trace_print()
1944
1945# print PID and message:
1946b.trace_print(fmt="{1} {5}")
1947```
1948
1949Examples in situ:
1950[search /examples](https://github.com/iovisor/bcc/search?q=trace_print+path%3Aexamples+language%3Apython&type=Code),
1951[search /tools](https://github.com/iovisor/bcc/search?q=trace_print+path%3Atools+language%3Apython&type=Code)
1952
1953### 2. trace_fields()
1954
1955Syntax: ```BPF.trace_fields(nonblocking=False)```
1956
1957This method reads one line from the globally shared /sys/kernel/debug/tracing/trace_pipe file and returns it as fields. This file can be written to via BPF and the bpf_trace_printk() function, however, that method has limitations, including a lack of concurrent tracing support. The BPF_PERF_OUTPUT mechanism, covered earlier, is preferred.
1958
1959Arguments:
1960
1961- ```nonblocking```: optional, defaults to ```False```. When set to ```True```, the program will not block waiting for input.
1962
1963Examples:
1964
1965```Python
1966while 1:
1967    try:
1968        (task, pid, cpu, flags, ts, msg) = b.trace_fields()
1969    except ValueError:
1970        continue
1971    [...]
1972```
1973
1974Examples in situ:
1975[search /examples](https://github.com/iovisor/bcc/search?q=trace_fields+path%3Aexamples+language%3Apython&type=Code),
1976[search /tools](https://github.com/iovisor/bcc/search?q=trace_fields+path%3Atools+language%3Apython&type=Code)
1977
1978## Output APIs
1979
1980Normal output from a BPF program is either:
1981
1982- per-event: using PERF_EVENT_OUTPUT, open_perf_buffer(), and perf_buffer_poll().
1983- map summary: using items(), or print_log2_hist(), covered in the Maps section.
1984
1985### 1. perf_buffer_poll()
1986
1987Syntax: ```BPF.perf_buffer_poll(timeout=T)```
1988
1989This polls from all open perf ring buffers, calling the callback function that was provided when calling open_perf_buffer for each entry.
1990
1991The timeout parameter is optional and measured in milliseconds. In its absence, polling continues indefinitely.
1992
1993Example:
1994
1995```Python
1996# loop with callback to print_event
1997b["events"].open_perf_buffer(print_event)
1998while 1:
1999    try:
2000        b.perf_buffer_poll()
2001    except KeyboardInterrupt:
2002        exit();
2003```
2004
2005Examples in situ:
2006[code](https://github.com/iovisor/bcc/blob/v0.9.0/examples/tracing/hello_perf_output.py#L55),
2007[search /examples](https://github.com/iovisor/bcc/search?q=perf_buffer_poll+path%3Aexamples+language%3Apython&type=Code),
2008[search /tools](https://github.com/iovisor/bcc/search?q=perf_buffer_poll+path%3Atools+language%3Apython&type=Code)
2009
2010### 2. ring_buffer_poll()
2011
2012Syntax: ```BPF.ring_buffer_poll(timeout=T)```
2013
2014This polls from all open ringbuf ring buffers, calling the callback function that was provided when calling open_ring_buffer for each entry.
2015
2016The timeout parameter is optional and measured in milliseconds. In its absence, polling continues until
2017there is no more data or the callback returns a negative value.
2018
2019Example:
2020
2021```Python
2022# loop with callback to print_event
2023b["events"].open_ring_buffer(print_event)
2024while 1:
2025    try:
2026        b.ring_buffer_poll(30)
2027    except KeyboardInterrupt:
2028        exit();
2029```
2030
2031Examples in situ:
2032[search /examples](https://github.com/iovisor/bcc/search?q=ring_buffer_poll+path%3Aexamples+language%3Apython&type=Code),
2033
2034### 3. ring_buffer_consume()
2035
2036Syntax: ```BPF.ring_buffer_consume()```
2037
2038This consumes from all open ringbuf ring buffers, calling the callback function that was provided when calling open_ring_buffer for each entry.
2039
2040Unlike ```ring_buffer_poll```, this method **does not poll for data** before attempting to consume.
2041This reduces latency at the expense of higher CPU consumption. If you are unsure which to use,
2042use ```ring_buffer_poll```.
2043
2044Example:
2045
2046```Python
2047# loop with callback to print_event
2048b["events"].open_ring_buffer(print_event)
2049while 1:
2050    try:
2051        b.ring_buffer_consume()
2052    except KeyboardInterrupt:
2053        exit();
2054```
2055
2056Examples in situ:
2057[search /examples](https://github.com/iovisor/bcc/search?q=ring_buffer_consume+path%3Aexamples+language%3Apython&type=Code),
2058
2059## Map APIs
2060
2061Maps are BPF data stores, and are used in bcc to implement a table, and then higher level objects on top of tables, including hashes and histograms.
2062
2063### 1. get_table()
2064
2065Syntax: ```BPF.get_table(name)```
2066
2067Returns a table object. This is no longer used, as tables can now be read as items from BPF. Eg: ```BPF[name]```.
2068
2069Examples:
2070
2071```Python
2072counts = b.get_table("counts")
2073
2074counts = b["counts"]
2075```
2076
2077These are equivalent.
2078
2079### 2. open_perf_buffer()
2080
2081Syntax: ```table.open_perf_buffers(callback, page_cnt=N, lost_cb=None)```
2082
2083This operates on a table as defined in BPF as BPF_PERF_OUTPUT(), and associates the callback Python function ```callback``` to be called when data is available in the perf ring buffer. This is part of the recommended mechanism for transferring per-event data from kernel to user space. The size of the perf ring buffer can be specified via the ```page_cnt``` parameter, which must be a power of two number of pages and defaults to 8. If the callback is not processing data fast enough, some submitted data may be lost. ```lost_cb``` will be called to log / monitor the lost count. If ```lost_cb``` is the default ```None``` value, it will just print a line of message to ```stderr```.
2084
2085Example:
2086
2087```Python
2088# process event
2089def print_event(cpu, data, size):
2090    event = ct.cast(data, ct.POINTER(Data)).contents
2091    [...]
2092
2093# loop with callback to print_event
2094b["events"].open_perf_buffer(print_event)
2095while 1:
2096    try:
2097        b.perf_buffer_poll()
2098    except KeyboardInterrupt:
2099        exit()
2100```
2101
2102Note that the data structure transferred will need to be declared in C in the BPF program. For example:
2103
2104```C
2105// define output data structure in C
2106struct data_t {
2107    u32 pid;
2108    u64 ts;
2109    char comm[TASK_COMM_LEN];
2110};
2111BPF_PERF_OUTPUT(events);
2112[...]
2113```
2114
2115In Python, you can either let bcc generate the data structure from C declaration automatically (recommended):
2116
2117```Python
2118def print_event(cpu, data, size):
2119    event = b["events"].event(data)
2120[...]
2121```
2122
2123or define it manually:
2124
2125```Python
2126# define output data structure in Python
2127TASK_COMM_LEN = 16    # linux/sched.h
2128class Data(ct.Structure):
2129    _fields_ = [("pid", ct.c_ulonglong),
2130                ("ts", ct.c_ulonglong),
2131                ("comm", ct.c_char * TASK_COMM_LEN)]
2132
2133def print_event(cpu, data, size):
2134    event = ct.cast(data, ct.POINTER(Data)).contents
2135[...]
2136```
2137
2138Examples in situ:
2139[code](https://github.com/iovisor/bcc/blob/v0.9.0/examples/tracing/hello_perf_output.py#L52),
2140[search /examples](https://github.com/iovisor/bcc/search?q=open_perf_buffer+path%3Aexamples+language%3Apython&type=Code),
2141[search /tools](https://github.com/iovisor/bcc/search?q=open_perf_buffer+path%3Atools+language%3Apython&type=Code)
2142
2143### 3. items()
2144
2145Syntax: ```table.items()```
2146
2147Returns an array of the keys in a table. This can be used with BPF_HASH maps to fetch, and iterate, over the keys.
2148
2149Example:
2150
2151```Python
2152# print output
2153print("%10s %s" % ("COUNT", "STRING"))
2154counts = b.get_table("counts")
2155for k, v in sorted(counts.items(), key=lambda counts: counts[1].value):
2156    print("%10d \"%s\"" % (v.value, k.c.encode('string-escape')))
2157```
2158
2159This example also uses the ```sorted()``` method to sort by value.
2160
2161Examples in situ:
2162[search /examples](https://github.com/iovisor/bcc/search?q=items+path%3Aexamples+language%3Apython&type=Code),
2163[search /tools](https://github.com/iovisor/bcc/search?q=items+path%3Atools+language%3Apython&type=Code)
2164
2165### 4. values()
2166
2167Syntax: ```table.values()```
2168
2169Returns an array of the values in a table.
2170
2171### 5. clear()
2172
2173Syntax: ```table.clear()```
2174
2175Clears the table: deletes all entries.
2176
2177Example:
2178
2179```Python
2180# print map summary every second:
2181while True:
2182    time.sleep(1)
2183    print("%-8s\n" % time.strftime("%H:%M:%S"), end="")
2184    dist.print_log2_hist(sym + " return:")
2185    dist.clear()
2186```
2187
2188Examples in situ:
2189[search /examples](https://github.com/iovisor/bcc/search?q=clear+path%3Aexamples+language%3Apython&type=Code),
2190[search /tools](https://github.com/iovisor/bcc/search?q=clear+path%3Atools+language%3Apython&type=Code)
2191
2192### 6. items_lookup_and_delete_batch()
2193
2194Syntax: ```table.items_lookup_and_delete_batch()```
2195
2196Returns an array of the keys in a table with a single call to BPF syscall. This can be used with BPF_HASH maps to fetch, and iterate, over the keys. It also clears the table: deletes all entries.
2197You should rather use table.items_lookup_and_delete_batch() than table.items() followed by table.clear(). It requires kernel v5.6.
2198
2199Example:
2200
2201```Python
2202# print call rate per second:
2203print("%9s-%9s-%8s-%9s" % ("PID", "COMM", "fname", "counter"))
2204while True:
2205    for k, v in sorted(b['map'].items_lookup_and_delete_batch(), key=lambda kv: (kv[0]).pid):
2206        print("%9s-%9s-%8s-%9d" % (k.pid, k.comm, k.fname, v.counter))
2207    sleep(1)
2208```
2209
2210### 7. items_lookup_batch()
2211
2212Syntax: ```table.items_lookup_batch()```
2213
2214Returns an array of the keys in a table with a single call to BPF syscall. This can be used with BPF_HASH maps to fetch, and iterate, over the keys.
2215You should rather use table.items_lookup_batch() than table.items(). It requires kernel v5.6.
2216
2217Example:
2218
2219```Python
2220# print current value of map:
2221print("%9s-%9s-%8s-%9s" % ("PID", "COMM", "fname", "counter"))
2222while True:
2223    for k, v in sorted(b['map'].items_lookup_batch(), key=lambda kv: (kv[0]).pid):
2224        print("%9s-%9s-%8s-%9d" % (k.pid, k.comm, k.fname, v.counter))
2225```
2226
2227### 8. items_delete_batch()
2228
2229Syntax: ```table.items_delete_batch(keys)```
2230
2231It clears all entries of a BPF_HASH map when keys is None. It is more efficient than table.clear() since it generates only one system call. You can delete a subset of a map by giving an array of keys as parameter. Those keys and their associated values will be deleted. It requires kernel v5.6.
2232
2233Arguments:
2234
2235- keys is optional and by default is None.
2236
2237
2238
2239### 9. items_update_batch()
2240
2241Syntax: ```table.items_update_batch(keys, values)```
2242
2243Update all the provided keys with new values. The two arguments must be the same length and within the map limits (between 1 and the maximum entries). It requires kernel v5.6.
2244
2245Arguments:
2246
2247- keys is the list of keys to be updated
2248- values is the list containing the new values.
2249
2250
2251### 10. print_log2_hist()
2252
2253Syntax: ```table.print_log2_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None)```
2254
2255Prints a table as a log2 histogram in ASCII. The table must be stored as log2, which can be done using the BPF function ```bpf_log2l()```.
2256
2257Arguments:
2258
2259- val_type: optional, column header.
2260- section_header: if the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each.
2261- section_print_fn: if section_print_fn is not None, it will be passed the bucket value.
2262
2263Example:
2264
2265```Python
2266b = BPF(text="""
2267BPF_HISTOGRAM(dist);
2268
2269int kprobe__blk_account_io_done(struct pt_regs *ctx, struct request *req)
2270{
2271	dist.increment(bpf_log2l(req->__data_len / 1024));
2272	return 0;
2273}
2274""")
2275[...]
2276
2277b["dist"].print_log2_hist("kbytes")
2278```
2279
2280Output:
2281
2282```
2283     kbytes          : count     distribution
2284       0 -> 1        : 3        |                                      |
2285       2 -> 3        : 0        |                                      |
2286       4 -> 7        : 211      |**********                            |
2287       8 -> 15       : 0        |                                      |
2288      16 -> 31       : 0        |                                      |
2289      32 -> 63       : 0        |                                      |
2290      64 -> 127      : 1        |                                      |
2291     128 -> 255      : 800      |**************************************|
2292```
2293
2294This output shows a multi-modal distribution, with the largest mode of 128->255 kbytes and a count of 800.
2295
2296This is an efficient way to summarize data, as the summarization is performed in-kernel, and only the count column is passed to user space.
2297
2298Examples in situ:
2299[search /examples](https://github.com/iovisor/bcc/search?q=print_log2_hist+path%3Aexamples+language%3Apython&type=Code),
2300[search /tools](https://github.com/iovisor/bcc/search?q=print_log2_hist+path%3Atools+language%3Apython&type=Code)
2301
2302### 11. print_linear_hist()
2303
2304Syntax: ```table.print_linear_hist(val_type="value", section_header="Bucket ptr", section_print_fn=None)```
2305
2306Prints a table as a linear histogram in ASCII. This is intended to visualize small integer ranges, eg, 0 to 100.
2307
2308Arguments:
2309
2310- val_type: optional, column header.
2311- section_header: if the histogram has a secondary key, multiple tables will print and section_header can be used as a header description for each.
2312- section_print_fn: if section_print_fn is not None, it will be passed the bucket value.
2313
2314Example:
2315
2316```Python
2317b = BPF(text="""
2318BPF_HISTOGRAM(dist);
2319
2320int kprobe__blk_account_io_done(struct pt_regs *ctx, struct request *req)
2321{
2322	dist.increment(req->__data_len / 1024);
2323	return 0;
2324}
2325""")
2326[...]
2327
2328b["dist"].print_linear_hist("kbytes")
2329```
2330
2331Output:
2332
2333```
2334     kbytes        : count     distribution
2335        0          : 3        |******                                  |
2336        1          : 0        |                                        |
2337        2          : 0        |                                        |
2338        3          : 0        |                                        |
2339        4          : 19       |****************************************|
2340        5          : 0        |                                        |
2341        6          : 0        |                                        |
2342        7          : 0        |                                        |
2343        8          : 4        |********                                |
2344        9          : 0        |                                        |
2345        10         : 0        |                                        |
2346        11         : 0        |                                        |
2347        12         : 0        |                                        |
2348        13         : 0        |                                        |
2349        14         : 0        |                                        |
2350        15         : 0        |                                        |
2351        16         : 2        |****                                    |
2352[...]
2353```
2354
2355This is an efficient way to summarize data, as the summarization is performed in-kernel, and only the values in the count column are passed to user space.
2356
2357Examples in situ:
2358[search /examples](https://github.com/iovisor/bcc/search?q=print_linear_hist+path%3Aexamples+language%3Apython&type=Code),
2359[search /tools](https://github.com/iovisor/bcc/search?q=print_linear_hist+path%3Atools+language%3Apython&type=Code)
2360
2361### 12. open_ring_buffer()
2362
2363Syntax: ```table.open_ring_buffer(callback, ctx=None)```
2364
2365This operates on a table as defined in BPF as BPF_RINGBUF_OUTPUT(), and associates the callback Python function ```callback``` to be called when data is available in the ringbuf ring buffer. This is part of the new (Linux 5.8+) recommended mechanism for transferring per-event data from kernel to user space. Unlike perf buffers, ringbuf sizes are specified within the BPF program, as part of the ```BPF_RINGBUF_OUTPUT``` macro. If the callback is not processing data fast enough, some submitted data may be lost. In this case, the events should be polled more frequently and/or the size of the ring buffer should be increased.
2366
2367Example:
2368
2369```Python
2370# process event
2371def print_event(ctx, data, size):
2372    event = ct.cast(data, ct.POINTER(Data)).contents
2373    [...]
2374
2375# loop with callback to print_event
2376b["events"].open_ring_buffer(print_event)
2377while 1:
2378    try:
2379        b.ring_buffer_poll()
2380    except KeyboardInterrupt:
2381        exit()
2382```
2383
2384Note that the data structure transferred will need to be declared in C in the BPF program. For example:
2385
2386```C
2387// define output data structure in C
2388struct data_t {
2389    u32 pid;
2390    u64 ts;
2391    char comm[TASK_COMM_LEN];
2392};
2393BPF_RINGBUF_OUTPUT(events, 8);
2394[...]
2395```
2396
2397In Python, you can either let bcc generate the data structure from C declaration automatically (recommended):
2398
2399```Python
2400def print_event(ctx, data, size):
2401    event = b["events"].event(data)
2402[...]
2403```
2404
2405or define it manually:
2406
2407```Python
2408# define output data structure in Python
2409TASK_COMM_LEN = 16    # linux/sched.h
2410class Data(ct.Structure):
2411    _fields_ = [("pid", ct.c_ulonglong),
2412                ("ts", ct.c_ulonglong),
2413                ("comm", ct.c_char * TASK_COMM_LEN)]
2414
2415def print_event(ctx, data, size):
2416    event = ct.cast(data, ct.POINTER(Data)).contents
2417[...]
2418```
2419
2420Examples in situ:
2421[search /examples](https://github.com/iovisor/bcc/search?q=open_ring_buffer+path%3Aexamples+language%3Apython&type=Code),
2422
2423### 13. push()
2424
2425Syntax: ```table.push(leaf, flags=0)```
2426
2427Push an element onto a Stack or Queue table. Raises an exception if the operation does not succeed.
2428Passing QueueStack.BPF_EXIST as a flag causes the Queue or Stack to discard the oldest element if it is full.
2429
2430Examples in situ:
2431[search /tests](https://github.com/iovisor/bcc/search?q=push+path%3Atests+language%3Apython&type=Code),
2432
2433### 14. pop()
2434
2435Syntax: ```leaf = table.pop()```
2436
2437Pop an element from a Stack or Queue table. Unlike ```peek()```, ```pop()```
2438removes the element from the table before returning it.
2439Raises a KeyError exception if the operation does not succeed.
2440
2441Examples in situ:
2442[search /tests](https://github.com/iovisor/bcc/search?q=pop+path%3Atests+language%3Apython&type=Code),
2443
2444### 15. peek()
2445
2446Syntax: ```leaf = table.peek()```
2447
2448Peek the element at the head of a Stack or Queue table. Unlike ```pop()```, ```peek()```
2449does not remove the element from the table. Raises an exception if the operation does not succeed.
2450
2451Examples in situ:
2452[search /tests](https://github.com/iovisor/bcc/search?q=peek+path%3Atests+language%3Apython&type=Code),
2453
2454## Helpers
2455
2456Some helper methods provided by bcc. Note that since we're in Python, we can import any Python library and their methods, including, for example, the libraries: argparse, collections, ctypes, datetime, re, socket, struct, subprocess, sys, and time.
2457
2458### 1. ksym()
2459
2460Syntax: ```BPF.ksym(addr)```
2461
2462Translate a kernel memory address into a kernel function name, which is returned.
2463
2464Example:
2465
2466```Python
2467print("kernel function: " + b.ksym(addr))
2468```
2469
2470Examples in situ:
2471[search /examples](https://github.com/iovisor/bcc/search?q=ksym+path%3Aexamples+language%3Apython&type=Code),
2472[search /tools](https://github.com/iovisor/bcc/search?q=ksym+path%3Atools+language%3Apython&type=Code)
2473
2474### 2. ksymname()
2475
2476Syntax: ```BPF.ksymname(name)```
2477
2478Translate a kernel name into an address. This is the reverse of ksym. Returns -1 when the function name is unknown.
2479
2480Example:
2481
2482```Python
2483print("kernel address: %x" % b.ksymname("vfs_read"))
2484```
2485
2486Examples in situ:
2487[search /examples](https://github.com/iovisor/bcc/search?q=ksymname+path%3Aexamples+language%3Apython&type=Code),
2488[search /tools](https://github.com/iovisor/bcc/search?q=ksymname+path%3Atools+language%3Apython&type=Code)
2489
2490### 3. sym()
2491
2492Syntax: ```BPF.sym(addr, pid, show_module=False, show_offset=False)```
2493
2494Translate a memory address into a function name for a pid, which is returned. A pid of less than zero will access the kernel symbol cache. The `show_module` and `show_offset` parameters control whether the module in which the symbol lies should be displayed, and whether the instruction offset from the beginning of the symbol should be displayed. These extra parameters default to `False`.
2495
2496Example:
2497
2498```Python
2499print("function: " + b.sym(addr, pid))
2500```
2501
2502Examples in situ:
2503[search /examples](https://github.com/iovisor/bcc/search?q=sym+path%3Aexamples+language%3Apython&type=Code),
2504[search /tools](https://github.com/iovisor/bcc/search?q=sym+path%3Atools+language%3Apython&type=Code)
2505
2506### 4. num_open_kprobes()
2507
2508Syntax: ```BPF.num_open_kprobes()```
2509
2510Returns the number of open k[ret]probes. Can be useful for scenarios where event_re is used while attaching and detaching probes. Excludes perf_events readers.
2511
2512Example:
2513
2514```Python
2515b.attach_kprobe(event_re=pattern, fn_name="trace_count")
2516matched = b.num_open_kprobes()
2517if matched == 0:
2518    print("0 functions matched by \"%s\". Exiting." % args.pattern)
2519    exit()
2520```
2521
2522Examples in situ:
2523[search /examples](https://github.com/iovisor/bcc/search?q=num_open_kprobes+path%3Aexamples+language%3Apython&type=Code),
2524[search /tools](https://github.com/iovisor/bcc/search?q=num_open_kprobes+path%3Atools+language%3Apython&type=Code)
2525
2526### 5. get_syscall_fnname()
2527
2528Syntax: ```BPF.get_syscall_fnname(name : str)```
2529
2530Return the corresponding kernel function name of the syscall. This helper function will try different prefixes and use the right one to concatenate with the syscall name. Note that the return value may vary in different versions of linux kernel and sometimes it will causing trouble. (see [#2590](https://github.com/iovisor/bcc/issues/2590))
2531
2532Example:
2533
2534```Python
2535print("The function name of %s in kernel is %s" % ("clone", b.get_syscall_fnname("clone")))
2536# sys_clone or __x64_sys_clone or ...
2537```
2538
2539Examples in situ:
2540[search /examples](https://github.com/iovisor/bcc/search?q=get_syscall_fnname+path%3Aexamples+language%3Apython&type=Code),
2541[search /tools](https://github.com/iovisor/bcc/search?q=get_syscall_fnname+path%3Atools+language%3Apython&type=Code)
2542
2543# BPF Errors
2544
2545See the "Understanding eBPF verifier messages" section in the kernel source under Documentation/networking/filter.txt.
2546
2547## 1. Invalid mem access
2548
2549This can be due to trying to read memory directly, instead of operating on memory on the BPF stack. All kernel memory reads must be passed via bpf_probe_read_kernel() to copy kernel memory into the BPF stack, which can be automatic by the bcc rewriter in some cases of simple dereferencing. bpf_probe_read_kernel() does all the required checks.
2550
2551Example:
2552
2553```
2554bpf: Permission denied
25550: (bf) r6 = r1
25561: (79) r7 = *(u64 *)(r6 +80)
25572: (85) call 14
25583: (bf) r8 = r0
2559[...]
256023: (69) r1 = *(u16 *)(r7 +16)
2561R7 invalid mem access 'inv'
2562
2563Traceback (most recent call last):
2564  File "./tcpaccept", line 179, in <module>
2565    b = BPF(text=bpf_text)
2566  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 172, in __init__
2567    self._trace_autoload()
2568  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 612, in _trace_autoload
2569    fn = self.load_func(func_name, BPF.KPROBE)
2570  File "/usr/lib/python2.7/dist-packages/bcc/__init__.py", line 212, in load_func
2571    raise Exception("Failed to load BPF program %s" % func_name)
2572Exception: Failed to load BPF program kretprobe__inet_csk_accept
2573```
2574
2575## 2. Cannot call GPL only function from proprietary program
2576
2577This error happens when a GPL-only helper is called from a non-GPL BPF program. To fix this error, do not use GPL-only helpers from a proprietary BPF program, or relicense the BPF program under a GPL-compatible license. Check which [BPF helpers](https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#helpers) are GPL-only, and what licenses are considered GPL-compatible.
2578
2579Example calling `bpf_get_stackid()`, a GPL-only BPF helper, from a proprietary program (`#define BPF_LICENSE Proprietary`):
2580
2581```
2582bpf: Failed to load program: Invalid argument
2583[...]
25848: (85) call bpf_get_stackid#27
2585cannot call GPL only function from proprietary program
2586```
2587
2588# Environment Variables
2589
2590## 1. Kernel source directory
2591
2592eBPF program compilation needs kernel sources or kernel headers with headers
2593compiled. In case your kernel sources are at a non-standard location where BCC
2594cannot find then, its possible to provide BCC the absolute path of the location
2595by setting `BCC_KERNEL_SOURCE` to it.
2596
2597## 2. Kernel version overriding
2598
2599By default, BCC stores the `LINUX_VERSION_CODE` in the generated eBPF object
2600which is then passed along to the kernel when the eBPF program is loaded.
2601Sometimes this is quite inconvenient especially when the kernel is slightly
2602updated such as an LTS kernel release. Its extremely unlikely the slight
2603mismatch would cause any issues with the loaded eBPF program. By setting
2604`BCC_LINUX_VERSION_CODE` to the version of the kernel that's running, the check
2605for verifying the kernel version can be bypassed. This is needed for programs
2606that use kprobes. This needs to be encoded in the format: `(VERSION * 65536) +
2607(PATCHLEVEL * 256) + SUBLEVEL`. For example, if the running kernel is `4.9.10`,
2608then can set `export BCC_LINUX_VERSION_CODE=264458` to override the kernel
2609version check successfully.
2610