1 /*
2 * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <openssl/evp.h>
11
12 #include <assert.h>
13
14 #include <openssl/err.h>
15 #include <openssl/mem.h>
16 #include <openssl/type_check.h>
17
18 #include "../internal.h"
19
20
21 // This file implements scrypt, described in RFC 7914.
22 //
23 // Note scrypt refers to both "blocks" and a "block size" parameter, r. These
24 // are two different notions of blocks. A Salsa20 block is 64 bytes long,
25 // represented in this implementation by 16 |uint32_t|s. |r| determines the
26 // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
27 // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
28 // scrypt blocks, respectively.
29
30 // A block_t is a Salsa20 block.
31 typedef struct { uint32_t words[16]; } block_t;
32
33 OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding");
34
35 // salsa208_word_specification implements the Salsa20/8 core function, also
36 // described in RFC 7914, section 3. It modifies the block at |inout|
37 // in-place.
salsa208_word_specification(block_t * inout)38 static void salsa208_word_specification(block_t *inout) {
39 block_t x;
40 OPENSSL_memcpy(&x, inout, sizeof(x));
41
42 for (int i = 8; i > 0; i -= 2) {
43 x.words[4] ^= CRYPTO_rotl_u32(x.words[0] + x.words[12], 7);
44 x.words[8] ^= CRYPTO_rotl_u32(x.words[4] + x.words[0], 9);
45 x.words[12] ^= CRYPTO_rotl_u32(x.words[8] + x.words[4], 13);
46 x.words[0] ^= CRYPTO_rotl_u32(x.words[12] + x.words[8], 18);
47 x.words[9] ^= CRYPTO_rotl_u32(x.words[5] + x.words[1], 7);
48 x.words[13] ^= CRYPTO_rotl_u32(x.words[9] + x.words[5], 9);
49 x.words[1] ^= CRYPTO_rotl_u32(x.words[13] + x.words[9], 13);
50 x.words[5] ^= CRYPTO_rotl_u32(x.words[1] + x.words[13], 18);
51 x.words[14] ^= CRYPTO_rotl_u32(x.words[10] + x.words[6], 7);
52 x.words[2] ^= CRYPTO_rotl_u32(x.words[14] + x.words[10], 9);
53 x.words[6] ^= CRYPTO_rotl_u32(x.words[2] + x.words[14], 13);
54 x.words[10] ^= CRYPTO_rotl_u32(x.words[6] + x.words[2], 18);
55 x.words[3] ^= CRYPTO_rotl_u32(x.words[15] + x.words[11], 7);
56 x.words[7] ^= CRYPTO_rotl_u32(x.words[3] + x.words[15], 9);
57 x.words[11] ^= CRYPTO_rotl_u32(x.words[7] + x.words[3], 13);
58 x.words[15] ^= CRYPTO_rotl_u32(x.words[11] + x.words[7], 18);
59 x.words[1] ^= CRYPTO_rotl_u32(x.words[0] + x.words[3], 7);
60 x.words[2] ^= CRYPTO_rotl_u32(x.words[1] + x.words[0], 9);
61 x.words[3] ^= CRYPTO_rotl_u32(x.words[2] + x.words[1], 13);
62 x.words[0] ^= CRYPTO_rotl_u32(x.words[3] + x.words[2], 18);
63 x.words[6] ^= CRYPTO_rotl_u32(x.words[5] + x.words[4], 7);
64 x.words[7] ^= CRYPTO_rotl_u32(x.words[6] + x.words[5], 9);
65 x.words[4] ^= CRYPTO_rotl_u32(x.words[7] + x.words[6], 13);
66 x.words[5] ^= CRYPTO_rotl_u32(x.words[4] + x.words[7], 18);
67 x.words[11] ^= CRYPTO_rotl_u32(x.words[10] + x.words[9], 7);
68 x.words[8] ^= CRYPTO_rotl_u32(x.words[11] + x.words[10], 9);
69 x.words[9] ^= CRYPTO_rotl_u32(x.words[8] + x.words[11], 13);
70 x.words[10] ^= CRYPTO_rotl_u32(x.words[9] + x.words[8], 18);
71 x.words[12] ^= CRYPTO_rotl_u32(x.words[15] + x.words[14], 7);
72 x.words[13] ^= CRYPTO_rotl_u32(x.words[12] + x.words[15], 9);
73 x.words[14] ^= CRYPTO_rotl_u32(x.words[13] + x.words[12], 13);
74 x.words[15] ^= CRYPTO_rotl_u32(x.words[14] + x.words[13], 18);
75 }
76
77 for (int i = 0; i < 16; ++i) {
78 inout->words[i] += x.words[i];
79 }
80 }
81
82 // xor_block sets |*out| to be |*a| XOR |*b|.
xor_block(block_t * out,const block_t * a,const block_t * b)83 static void xor_block(block_t *out, const block_t *a, const block_t *b) {
84 for (size_t i = 0; i < 16; i++) {
85 out->words[i] = a->words[i] ^ b->words[i];
86 }
87 }
88
89 // scryptBlockMix implements the function described in RFC 7914, section 4. B'
90 // is written to |out|. |out| and |B| may not alias and must be each one scrypt
91 // block (2 * |r| Salsa20 blocks) long.
scryptBlockMix(block_t * out,const block_t * B,uint64_t r)92 static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
93 assert(out != B);
94
95 block_t X;
96 OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
97 for (uint64_t i = 0; i < r * 2; i++) {
98 xor_block(&X, &X, &B[i]);
99 salsa208_word_specification(&X);
100
101 // This implements the permutation in step 3.
102 OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
103 }
104 }
105
106 // scryptROMix implements the function described in RFC 7914, section 5. |B| is
107 // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
108 // |V| are scratch space allocated by the caller. |T| must have space for one
109 // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
110 // blocks (2 * |r| * |N| Salsa20 blocks).
scryptROMix(block_t * B,uint64_t r,uint64_t N,block_t * T,block_t * V)111 static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T,
112 block_t *V) {
113 // Steps 1 and 2.
114 OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
115 for (uint64_t i = 1; i < N; i++) {
116 scryptBlockMix(&V[2 * r * i /* scrypt block i */],
117 &V[2 * r * (i - 1) /* scrypt block i-1 */], r);
118 }
119 scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
120
121 // Step 3.
122 for (uint64_t i = 0; i < N; i++) {
123 // Note this assumes |N| <= 2^32 and is a power of 2.
124 uint32_t j = B[2 * r - 1].words[0] & (N - 1);
125 for (size_t k = 0; k < 2 * r; k++) {
126 xor_block(&T[k], &B[k], &V[2 * r * j + k]);
127 }
128 scryptBlockMix(B, T, r);
129 }
130 }
131
132 // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
133 // bounds on p in section 6:
134 //
135 // p <= ((2^32-1) * hLen) / MFLen iff
136 // p <= ((2^32-1) * 32) / (128 * r) iff
137 // p * r <= (2^30-1)
138 #define SCRYPT_PR_MAX ((1 << 30) - 1)
139
140 // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
141 // |EVP_PBE_scrypt|.
142 #define SCRYPT_MAX_MEM (1024 * 1024 * 32)
143
EVP_PBE_scrypt(const char * password,size_t password_len,const uint8_t * salt,size_t salt_len,uint64_t N,uint64_t r,uint64_t p,size_t max_mem,uint8_t * out_key,size_t key_len)144 int EVP_PBE_scrypt(const char *password, size_t password_len,
145 const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
146 uint64_t p, size_t max_mem, uint8_t *out_key,
147 size_t key_len) {
148 if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
149 // |N| must be a power of two.
150 N < 2 || (N & (N - 1)) ||
151 // We only support |N| <= 2^32 in |scryptROMix|.
152 N > UINT64_C(1) << 32 ||
153 // Check that |N| < 2^(128×r / 8).
154 (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
155 OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS);
156 return 0;
157 }
158
159 // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
160 // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
161 if (max_mem == 0) {
162 max_mem = SCRYPT_MAX_MEM;
163 }
164
165 size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
166 if (max_scrypt_blocks < p + 1 ||
167 max_scrypt_blocks - p - 1 < N) {
168 OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
169 return 0;
170 }
171
172 // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
173 // is no bigger than uint64_t, so none of these operations may overflow.
174 OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t");
175 size_t B_blocks = p * 2 * r;
176 size_t B_bytes = B_blocks * sizeof(block_t);
177 size_t T_blocks = 2 * r;
178 size_t V_blocks = N * 2 * r;
179 block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t));
180 if (B == NULL) {
181 OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
182 return 0;
183 }
184
185 int ret = 0;
186 block_t *T = B + B_blocks;
187 block_t *V = T + T_blocks;
188
189 // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure
190 // or |iterations| of 0 (we pass 1 here). This is consistent with
191 // the documented failure conditions of EVP_PBE_scrypt.
192 if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
193 EVP_sha256(), B_bytes, (uint8_t *)B)) {
194 goto err;
195 }
196
197 for (uint64_t i = 0; i < p; i++) {
198 scryptROMix(B + 2 * r * i, r, N, T, V);
199 }
200
201 if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
202 EVP_sha256(), key_len, out_key)) {
203 goto err;
204 }
205
206 ret = 1;
207
208 err:
209 OPENSSL_free(B);
210 return ret;
211 }
212