1 /* ====================================================================
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #include <openssl/cmac.h>
50
51 #include <assert.h>
52 #include <string.h>
53
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/mem.h>
57
58 #include "../../internal.h"
59 #include "../service_indicator/internal.h"
60
61
62 struct cmac_ctx_st {
63 EVP_CIPHER_CTX cipher_ctx;
64 // k1 and k2 are the CMAC subkeys. See
65 // https://tools.ietf.org/html/rfc4493#section-2.3
66 uint8_t k1[AES_BLOCK_SIZE];
67 uint8_t k2[AES_BLOCK_SIZE];
68 // Last (possibly partial) scratch
69 uint8_t block[AES_BLOCK_SIZE];
70 // block_used contains the number of valid bytes in |block|.
71 unsigned block_used;
72 };
73
CMAC_CTX_init(CMAC_CTX * ctx)74 static void CMAC_CTX_init(CMAC_CTX *ctx) {
75 EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
76 }
77
CMAC_CTX_cleanup(CMAC_CTX * ctx)78 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
79 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
80 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
81 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
82 OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
83 }
84
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)85 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
86 const uint8_t *in, size_t in_len) {
87 const EVP_CIPHER *cipher;
88 switch (key_len) {
89 // WARNING: this code assumes that all supported key sizes are FIPS
90 // Approved.
91 case 16:
92 cipher = EVP_aes_128_cbc();
93 break;
94 case 32:
95 cipher = EVP_aes_256_cbc();
96 break;
97 default:
98 return 0;
99 }
100
101 size_t scratch_out_len;
102 CMAC_CTX ctx;
103 CMAC_CTX_init(&ctx);
104
105 // We have to verify that all the CMAC services actually succeed before
106 // updating the indicator state, so we lock the state here.
107 FIPS_service_indicator_lock_state();
108 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
109 CMAC_Update(&ctx, in, in_len) &&
110 CMAC_Final(&ctx, out, &scratch_out_len);
111 FIPS_service_indicator_unlock_state();
112
113 if (ok) {
114 FIPS_service_indicator_update_state();
115 }
116 CMAC_CTX_cleanup(&ctx);
117 return ok;
118 }
119
CMAC_CTX_new(void)120 CMAC_CTX *CMAC_CTX_new(void) {
121 CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
122 if (ctx != NULL) {
123 CMAC_CTX_init(ctx);
124 }
125 return ctx;
126 }
127
CMAC_CTX_free(CMAC_CTX * ctx)128 void CMAC_CTX_free(CMAC_CTX *ctx) {
129 if (ctx == NULL) {
130 return;
131 }
132
133 CMAC_CTX_cleanup(ctx);
134 OPENSSL_free(ctx);
135 }
136
CMAC_CTX_copy(CMAC_CTX * out,const CMAC_CTX * in)137 int CMAC_CTX_copy(CMAC_CTX *out, const CMAC_CTX *in) {
138 if (!EVP_CIPHER_CTX_copy(&out->cipher_ctx, &in->cipher_ctx)) {
139 return 0;
140 }
141 OPENSSL_memcpy(out->k1, in->k1, AES_BLOCK_SIZE);
142 OPENSSL_memcpy(out->k2, in->k2, AES_BLOCK_SIZE);
143 OPENSSL_memcpy(out->block, in->block, AES_BLOCK_SIZE);
144 out->block_used = in->block_used;
145 return 1;
146 }
147
148 // binary_field_mul_x_128 treats the 128 bits at |in| as an element of GF(2¹²⁸)
149 // with a hard-coded reduction polynomial and sets |out| as x times the input.
150 //
151 // See https://tools.ietf.org/html/rfc4493#section-2.3
binary_field_mul_x_128(uint8_t out[16],const uint8_t in[16])152 static void binary_field_mul_x_128(uint8_t out[16], const uint8_t in[16]) {
153 unsigned i;
154
155 // Shift |in| to left, including carry.
156 for (i = 0; i < 15; i++) {
157 out[i] = (in[i] << 1) | (in[i+1] >> 7);
158 }
159
160 // If MSB set fixup with R.
161 const uint8_t carry = in[0] >> 7;
162 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
163 }
164
165 // binary_field_mul_x_64 behaves like |binary_field_mul_x_128| but acts on an
166 // element of GF(2⁶⁴).
167 //
168 // See https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
binary_field_mul_x_64(uint8_t out[8],const uint8_t in[8])169 static void binary_field_mul_x_64(uint8_t out[8], const uint8_t in[8]) {
170 unsigned i;
171
172 // Shift |in| to left, including carry.
173 for (i = 0; i < 7; i++) {
174 out[i] = (in[i] << 1) | (in[i+1] >> 7);
175 }
176
177 // If MSB set fixup with R.
178 const uint8_t carry = in[0] >> 7;
179 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x1b);
180 }
181
182 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
183
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)184 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
185 const EVP_CIPHER *cipher, ENGINE *engine) {
186 int ret = 0;
187 uint8_t scratch[AES_BLOCK_SIZE];
188
189 // We have to avoid the underlying AES-CBC |EVP_CIPHER| services updating the
190 // indicator state, so we lock the state here.
191 FIPS_service_indicator_lock_state();
192
193 size_t block_size = EVP_CIPHER_block_size(cipher);
194 if ((block_size != AES_BLOCK_SIZE && block_size != 8 /* 3-DES */) ||
195 EVP_CIPHER_key_length(cipher) != key_len ||
196 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
197 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, block_size) ||
198 // Reset context again ready for first data.
199 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
200 goto out;
201 }
202
203 if (block_size == AES_BLOCK_SIZE) {
204 binary_field_mul_x_128(ctx->k1, scratch);
205 binary_field_mul_x_128(ctx->k2, ctx->k1);
206 } else {
207 binary_field_mul_x_64(ctx->k1, scratch);
208 binary_field_mul_x_64(ctx->k2, ctx->k1);
209 }
210 ctx->block_used = 0;
211 ret = 1;
212
213 out:
214 FIPS_service_indicator_unlock_state();
215 return ret;
216 }
217
CMAC_Reset(CMAC_CTX * ctx)218 int CMAC_Reset(CMAC_CTX *ctx) {
219 ctx->block_used = 0;
220 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
221 }
222
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)223 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
224 int ret = 0;
225
226 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
227 // indicator state, so we lock the state here.
228 FIPS_service_indicator_lock_state();
229
230 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
231 assert(block_size <= AES_BLOCK_SIZE);
232 uint8_t scratch[AES_BLOCK_SIZE];
233
234 if (ctx->block_used > 0) {
235 size_t todo = block_size - ctx->block_used;
236 if (in_len < todo) {
237 todo = in_len;
238 }
239
240 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
241 in += todo;
242 in_len -= todo;
243 ctx->block_used += todo;
244
245 // If |in_len| is zero then either |ctx->block_used| is less than
246 // |block_size|, in which case we can stop here, or |ctx->block_used| is
247 // exactly |block_size| but there's no more data to process. In the latter
248 // case we don't want to process this block now because it might be the last
249 // block and that block is treated specially.
250 if (in_len == 0) {
251 ret = 1;
252 goto out;
253 }
254
255 assert(ctx->block_used == block_size);
256
257 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, block_size)) {
258 goto out;
259 }
260 }
261
262 // Encrypt all but one of the remaining blocks.
263 while (in_len > block_size) {
264 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, block_size)) {
265 goto out;
266 }
267 in += block_size;
268 in_len -= block_size;
269 }
270
271 OPENSSL_memcpy(ctx->block, in, in_len);
272 ctx->block_used = in_len;
273 ret = 1;
274
275 out:
276 FIPS_service_indicator_unlock_state();
277 return ret;
278 }
279
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)280 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
281 int ret = 0;
282 size_t block_size = EVP_CIPHER_CTX_block_size(&ctx->cipher_ctx);
283 assert(block_size <= AES_BLOCK_SIZE);
284
285 // We have to avoid the underlying AES-CBC |EVP_Cipher| services updating the
286 // indicator state, so we lock the state here.
287 FIPS_service_indicator_lock_state();
288
289 *out_len = block_size;
290 if (out == NULL) {
291 ret = 1;
292 goto out;
293 }
294
295 const uint8_t *mask = ctx->k1;
296
297 if (ctx->block_used != block_size) {
298 // If the last block is incomplete, terminate it with a single 'one' bit
299 // followed by zeros.
300 ctx->block[ctx->block_used] = 0x80;
301 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
302 block_size - (ctx->block_used + 1));
303
304 mask = ctx->k2;
305 }
306
307 for (unsigned i = 0; i < block_size; i++) {
308 out[i] = ctx->block[i] ^ mask[i];
309 }
310 ret = EVP_Cipher(&ctx->cipher_ctx, out, out, block_size);
311
312 out:
313 FIPS_service_indicator_unlock_state();
314 if (ret) {
315 FIPS_service_indicator_update_state();
316 }
317 return ret;
318 }
319