1 /* Originally written by Bodo Moeller for the OpenSSL project.
2 * ====================================================================
3 * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in
14 * the documentation and/or other materials provided with the
15 * distribution.
16 *
17 * 3. All advertising materials mentioning features or use of this
18 * software must display the following acknowledgment:
19 * "This product includes software developed by the OpenSSL Project
20 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21 *
22 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23 * endorse or promote products derived from this software without
24 * prior written permission. For written permission, please contact
25 * openssl-core@openssl.org.
26 *
27 * 5. Products derived from this software may not be called "OpenSSL"
28 * nor may "OpenSSL" appear in their names without prior written
29 * permission of the OpenSSL Project.
30 *
31 * 6. Redistributions of any form whatsoever must retain the following
32 * acknowledgment:
33 * "This product includes software developed by the OpenSSL Project
34 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
40 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47 * OF THE POSSIBILITY OF SUCH DAMAGE.
48 * ====================================================================
49 *
50 * This product includes cryptographic software written by Eric Young
51 * (eay@cryptsoft.com). This product includes software written by Tim
52 * Hudson (tjh@cryptsoft.com).
53 *
54 */
55 /* ====================================================================
56 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57 *
58 * Portions of the attached software ("Contribution") are developed by
59 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60 *
61 * The Contribution is licensed pursuant to the OpenSSL open source
62 * license provided above.
63 *
64 * The elliptic curve binary polynomial software is originally written by
65 * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66 * Laboratories. */
67
68 #include <openssl/ec.h>
69
70 #include <string.h>
71
72 #include <openssl/bn.h>
73 #include <openssl/err.h>
74 #include <openssl/mem.h>
75
76 #include "internal.h"
77 #include "../../internal.h"
78
79
80 // Most method functions in this file are designed to work with non-trivial
81 // representations of field elements if necessary (see ecp_mont.c): while
82 // standard modular addition and subtraction are used, the field_mul and
83 // field_sqr methods will be used for multiplication, and field_encode and
84 // field_decode (if defined) will be used for converting between
85 // representations.
86 //
87 // Functions here specifically assume that if a non-trivial representation is
88 // used, it is a Montgomery representation (i.e. 'encoding' means multiplying
89 // by some factor R).
90
ec_GFp_simple_group_init(EC_GROUP * group)91 int ec_GFp_simple_group_init(EC_GROUP *group) {
92 BN_init(&group->field);
93 group->a_is_minus3 = 0;
94 return 1;
95 }
96
ec_GFp_simple_group_finish(EC_GROUP * group)97 void ec_GFp_simple_group_finish(EC_GROUP *group) {
98 BN_free(&group->field);
99 }
100
ec_GFp_simple_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)101 int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p,
102 const BIGNUM *a, const BIGNUM *b,
103 BN_CTX *ctx) {
104 // p must be a prime > 3
105 if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
106 OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
107 return 0;
108 }
109
110 int ret = 0;
111 BN_CTX_start(ctx);
112 BIGNUM *tmp = BN_CTX_get(ctx);
113 if (tmp == NULL) {
114 goto err;
115 }
116
117 // group->field
118 if (!BN_copy(&group->field, p)) {
119 goto err;
120 }
121 BN_set_negative(&group->field, 0);
122 // Store the field in minimal form, so it can be used with |BN_ULONG| arrays.
123 bn_set_minimal_width(&group->field);
124
125 if (!ec_bignum_to_felem(group, &group->a, a) ||
126 !ec_bignum_to_felem(group, &group->b, b) ||
127 !ec_bignum_to_felem(group, &group->one, BN_value_one())) {
128 goto err;
129 }
130
131 // group->a_is_minus3
132 if (!BN_copy(tmp, a) ||
133 !BN_add_word(tmp, 3)) {
134 goto err;
135 }
136 group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field));
137
138 ret = 1;
139
140 err:
141 BN_CTX_end(ctx);
142 return ret;
143 }
144
ec_GFp_simple_group_get_curve(const EC_GROUP * group,BIGNUM * p,BIGNUM * a,BIGNUM * b)145 int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
146 BIGNUM *b) {
147 if ((p != NULL && !BN_copy(p, &group->field)) ||
148 (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) ||
149 (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) {
150 return 0;
151 }
152 return 1;
153 }
154
ec_GFp_simple_point_init(EC_RAW_POINT * point)155 void ec_GFp_simple_point_init(EC_RAW_POINT *point) {
156 OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM));
157 OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM));
158 OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM));
159 }
160
ec_GFp_simple_point_copy(EC_RAW_POINT * dest,const EC_RAW_POINT * src)161 void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) {
162 OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM));
163 OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM));
164 OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM));
165 }
166
ec_GFp_simple_point_set_to_infinity(const EC_GROUP * group,EC_RAW_POINT * point)167 void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
168 EC_RAW_POINT *point) {
169 // Although it is strictly only necessary to zero Z, we zero the entire point
170 // in case |point| was stack-allocated and yet to be initialized.
171 ec_GFp_simple_point_init(point);
172 }
173
ec_GFp_simple_invert(const EC_GROUP * group,EC_RAW_POINT * point)174 void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) {
175 ec_felem_neg(group, &point->Y, &point->Y);
176 }
177
ec_GFp_simple_is_at_infinity(const EC_GROUP * group,const EC_RAW_POINT * point)178 int ec_GFp_simple_is_at_infinity(const EC_GROUP *group,
179 const EC_RAW_POINT *point) {
180 return ec_felem_non_zero_mask(group, &point->Z) == 0;
181 }
182
ec_GFp_simple_is_on_curve(const EC_GROUP * group,const EC_RAW_POINT * point)183 int ec_GFp_simple_is_on_curve(const EC_GROUP *group,
184 const EC_RAW_POINT *point) {
185 // We have a curve defined by a Weierstrass equation
186 // y^2 = x^3 + a*x + b.
187 // The point to consider is given in Jacobian projective coordinates
188 // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
189 // Substituting this and multiplying by Z^6 transforms the above equation
190 // into
191 // Y^2 = X^3 + a*X*Z^4 + b*Z^6.
192 // To test this, we add up the right-hand side in 'rh'.
193 //
194 // This function may be used when double-checking the secret result of a point
195 // multiplication, so we proceed in constant-time.
196
197 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
198 const EC_FELEM *b) = group->meth->felem_mul;
199 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
200 group->meth->felem_sqr;
201
202 // rh := X^2
203 EC_FELEM rh;
204 felem_sqr(group, &rh, &point->X);
205
206 EC_FELEM tmp, Z4, Z6;
207 felem_sqr(group, &tmp, &point->Z);
208 felem_sqr(group, &Z4, &tmp);
209 felem_mul(group, &Z6, &Z4, &tmp);
210
211 // rh := rh + a*Z^4
212 if (group->a_is_minus3) {
213 ec_felem_add(group, &tmp, &Z4, &Z4);
214 ec_felem_add(group, &tmp, &tmp, &Z4);
215 ec_felem_sub(group, &rh, &rh, &tmp);
216 } else {
217 felem_mul(group, &tmp, &Z4, &group->a);
218 ec_felem_add(group, &rh, &rh, &tmp);
219 }
220
221 // rh := (rh + a*Z^4)*X
222 felem_mul(group, &rh, &rh, &point->X);
223
224 // rh := rh + b*Z^6
225 felem_mul(group, &tmp, &group->b, &Z6);
226 ec_felem_add(group, &rh, &rh, &tmp);
227
228 // 'lh' := Y^2
229 felem_sqr(group, &tmp, &point->Y);
230
231 ec_felem_sub(group, &tmp, &tmp, &rh);
232 BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp);
233
234 // If Z = 0, the point is infinity, which is always on the curve.
235 BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z);
236
237 return 1 & ~(not_infinity & not_equal);
238 }
239
ec_GFp_simple_points_equal(const EC_GROUP * group,const EC_RAW_POINT * a,const EC_RAW_POINT * b)240 int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_RAW_POINT *a,
241 const EC_RAW_POINT *b) {
242 // This function is implemented in constant-time for two reasons. First,
243 // although EC points are usually public, their Jacobian Z coordinates may be
244 // secret, or at least are not obviously public. Second, more complex
245 // protocols will sometimes manipulate secret points.
246 //
247 // This does mean that we pay a 6M+2S Jacobian comparison when comparing two
248 // publicly affine points costs no field operations at all. If needed, we can
249 // restore this optimization by keeping better track of affine vs. Jacobian
250 // forms. See https://crbug.com/boringssl/326.
251
252 // If neither |a| or |b| is infinity, we have to decide whether
253 // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
254 // or equivalently, whether
255 // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
256
257 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
258 const EC_FELEM *b) = group->meth->felem_mul;
259 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
260 group->meth->felem_sqr;
261
262 EC_FELEM tmp1, tmp2, Za23, Zb23;
263 felem_sqr(group, &Zb23, &b->Z); // Zb23 = Z_b^2
264 felem_mul(group, &tmp1, &a->X, &Zb23); // tmp1 = X_a * Z_b^2
265 felem_sqr(group, &Za23, &a->Z); // Za23 = Z_a^2
266 felem_mul(group, &tmp2, &b->X, &Za23); // tmp2 = X_b * Z_a^2
267 ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
268 const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1);
269
270 felem_mul(group, &Zb23, &Zb23, &b->Z); // Zb23 = Z_b^3
271 felem_mul(group, &tmp1, &a->Y, &Zb23); // tmp1 = Y_a * Z_b^3
272 felem_mul(group, &Za23, &Za23, &a->Z); // Za23 = Z_a^3
273 felem_mul(group, &tmp2, &b->Y, &Za23); // tmp2 = Y_b * Z_a^3
274 ec_felem_sub(group, &tmp1, &tmp1, &tmp2);
275 const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1);
276 const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);
277
278 const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z);
279 const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);
280 const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity);
281
282 const BN_ULONG equal =
283 a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal);
284 return equal & 1;
285 }
286
ec_affine_jacobian_equal(const EC_GROUP * group,const EC_AFFINE * a,const EC_RAW_POINT * b)287 int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a,
288 const EC_RAW_POINT *b) {
289 // If |b| is not infinity, we have to decide whether
290 // (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3),
291 // or equivalently, whether
292 // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b).
293
294 void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
295 const EC_FELEM *b) = group->meth->felem_mul;
296 void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) =
297 group->meth->felem_sqr;
298
299 EC_FELEM tmp, Zb2;
300 felem_sqr(group, &Zb2, &b->Z); // Zb2 = Z_b^2
301 felem_mul(group, &tmp, &a->X, &Zb2); // tmp = X_a * Z_b^2
302 ec_felem_sub(group, &tmp, &tmp, &b->X);
303 const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp);
304
305 felem_mul(group, &tmp, &a->Y, &Zb2); // tmp = Y_a * Z_b^2
306 felem_mul(group, &tmp, &tmp, &b->Z); // tmp = Y_a * Z_b^3
307 ec_felem_sub(group, &tmp, &tmp, &b->Y);
308 const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp);
309 const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal);
310
311 const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z);
312
313 const BN_ULONG equal = b_not_infinity & x_and_y_equal;
314 return equal & 1;
315 }
316
ec_GFp_simple_cmp_x_coordinate(const EC_GROUP * group,const EC_RAW_POINT * p,const EC_SCALAR * r)317 int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
318 const EC_SCALAR *r) {
319 if (ec_GFp_simple_is_at_infinity(group, p)) {
320 // |ec_get_x_coordinate_as_scalar| will check this internally, but this way
321 // we do not push to the error queue.
322 return 0;
323 }
324
325 EC_SCALAR x;
326 return ec_get_x_coordinate_as_scalar(group, &x, p) &&
327 ec_scalar_equal_vartime(group, &x, r);
328 }
329
ec_GFp_simple_felem_to_bytes(const EC_GROUP * group,uint8_t * out,size_t * out_len,const EC_FELEM * in)330 void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out,
331 size_t *out_len, const EC_FELEM *in) {
332 size_t len = BN_num_bytes(&group->field);
333 bn_words_to_big_endian(out, len, in->words, group->field.width);
334 *out_len = len;
335 }
336
ec_GFp_simple_felem_from_bytes(const EC_GROUP * group,EC_FELEM * out,const uint8_t * in,size_t len)337 int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out,
338 const uint8_t *in, size_t len) {
339 if (len != BN_num_bytes(&group->field)) {
340 OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
341 return 0;
342 }
343
344 bn_big_endian_to_words(out->words, group->field.width, in, len);
345
346 if (!bn_less_than_words(out->words, group->field.d, group->field.width)) {
347 OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR);
348 return 0;
349 }
350
351 return 1;
352 }
353