• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/mem.h>
58 
59 #include <assert.h>
60 #include <stdarg.h>
61 #include <stdio.h>
62 
63 #include <openssl/err.h>
64 
65 #if defined(OPENSSL_WINDOWS)
66 OPENSSL_MSVC_PRAGMA(warning(push, 3))
67 #include <windows.h>
68 OPENSSL_MSVC_PRAGMA(warning(pop))
69 #endif
70 
71 #include "internal.h"
72 
73 
74 #define OPENSSL_MALLOC_PREFIX 8
75 OPENSSL_STATIC_ASSERT(OPENSSL_MALLOC_PREFIX >= sizeof(size_t),
76                       "size_t too large");
77 
78 #if defined(OPENSSL_ASAN)
79 void __asan_poison_memory_region(const volatile void *addr, size_t size);
80 void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
81 #else
__asan_poison_memory_region(const void * addr,size_t size)82 static void __asan_poison_memory_region(const void *addr, size_t size) {}
__asan_unpoison_memory_region(const void * addr,size_t size)83 static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
84 #endif
85 
86 // Windows doesn't really support weak symbols as of May 2019, and Clang on
87 // Windows will emit strong symbols instead. See
88 // https://bugs.llvm.org/show_bug.cgi?id=37598
89 #if defined(__ELF__) && defined(__GNUC__)
90 #define WEAK_SYMBOL_FUNC(rettype, name, args) \
91   rettype name args __attribute__((weak));
92 #else
93 #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
94 #endif
95 
96 // sdallocx is a sized |free| function. By passing the size (which we happen to
97 // always know in BoringSSL), the malloc implementation can save work. We cannot
98 // depend on |sdallocx| being available, however, so it's a weak symbol.
99 //
100 // This will always be safe, but will only be overridden if the malloc
101 // implementation is statically linked with BoringSSL. So, if |sdallocx| is
102 // provided in, say, libc.so, we still won't use it because that's dynamically
103 // linked. This isn't an ideal result, but its helps in some cases.
104 WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
105 
106 // The following three functions can be defined to override default heap
107 // allocation and freeing. If defined, it is the responsibility of
108 // |OPENSSL_memory_free| to zero out the memory before returning it to the
109 // system. |OPENSSL_memory_free| will not be passed NULL pointers.
110 //
111 // WARNING: These functions are called on every allocation and free in
112 // BoringSSL across the entire process. They may be called by any code in the
113 // process which calls BoringSSL, including in process initializers and thread
114 // destructors. When called, BoringSSL may hold pthreads locks. Any other code
115 // in the process which, directly or indirectly, calls BoringSSL may be on the
116 // call stack and may itself be using arbitrary synchronization primitives.
117 //
118 // As a result, these functions may not have the usual programming environment
119 // available to most C or C++ code. In particular, they may not call into
120 // BoringSSL, or any library which depends on BoringSSL. Any synchronization
121 // primitives used must tolerate every other synchronization primitive linked
122 // into the process, including pthreads locks. Failing to meet these constraints
123 // may result in deadlocks, crashes, or memory corruption.
124 WEAK_SYMBOL_FUNC(void*, OPENSSL_memory_alloc, (size_t size));
125 WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
126 WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
127 
128 // kBoringSSLBinaryTag is a distinctive byte sequence to identify binaries that
129 // are linking in BoringSSL and, roughly, what version they are using.
130 static const uint8_t kBoringSSLBinaryTag[18] = {
131     // 16 bytes of magic tag.
132     0x8c, 0x62, 0x20, 0x0b, 0xd2, 0xa0, 0x72, 0x58,
133     0x44, 0xa8, 0x96, 0x69, 0xad, 0x55, 0x7e, 0xec,
134     // Current source iteration. Incremented ~monthly.
135     3, 0,
136 };
137 
OPENSSL_malloc(size_t size)138 void *OPENSSL_malloc(size_t size) {
139   if (OPENSSL_memory_alloc != NULL) {
140     assert(OPENSSL_memory_free != NULL);
141     assert(OPENSSL_memory_get_size != NULL);
142     return OPENSSL_memory_alloc(size);
143   }
144 
145   if (size + OPENSSL_MALLOC_PREFIX < size) {
146     // |OPENSSL_malloc| is a central function in BoringSSL thus a reference to
147     // |kBoringSSLBinaryTag| is created here so that the tag isn't discarded by
148     // the linker. The following is sufficient to stop GCC, Clang, and MSVC
149     // optimising away the reference at the time of writing. Since this
150     // probably results in an actual memory reference, it is put in this very
151     // rare code path.
152     uint8_t unused = *(volatile uint8_t *)kBoringSSLBinaryTag;
153     (void) unused;
154     return NULL;
155   }
156 
157   void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
158   if (ptr == NULL) {
159     return NULL;
160   }
161 
162   *(size_t *)ptr = size;
163 
164   __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
165   return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
166 }
167 
OPENSSL_free(void * orig_ptr)168 void OPENSSL_free(void *orig_ptr) {
169   if (orig_ptr == NULL) {
170     return;
171   }
172 
173   if (OPENSSL_memory_free != NULL) {
174     OPENSSL_memory_free(orig_ptr);
175     return;
176   }
177 
178   void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
179   __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
180 
181   size_t size = *(size_t *)ptr;
182   OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
183 
184 // ASan knows to intercept malloc and free, but not sdallocx.
185 #if defined(OPENSSL_ASAN)
186   free(ptr);
187 #else
188   if (sdallocx) {
189     sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
190   } else {
191     free(ptr);
192   }
193 #endif
194 }
195 
OPENSSL_realloc(void * orig_ptr,size_t new_size)196 void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
197   if (orig_ptr == NULL) {
198     return OPENSSL_malloc(new_size);
199   }
200 
201   size_t old_size;
202   if (OPENSSL_memory_get_size != NULL) {
203     old_size = OPENSSL_memory_get_size(orig_ptr);
204   } else {
205     void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
206     __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
207     old_size = *(size_t *)ptr;
208     __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
209   }
210 
211   void *ret = OPENSSL_malloc(new_size);
212   if (ret == NULL) {
213     return NULL;
214   }
215 
216   size_t to_copy = new_size;
217   if (old_size < to_copy) {
218     to_copy = old_size;
219   }
220 
221   memcpy(ret, orig_ptr, to_copy);
222   OPENSSL_free(orig_ptr);
223 
224   return ret;
225 }
226 
OPENSSL_cleanse(void * ptr,size_t len)227 void OPENSSL_cleanse(void *ptr, size_t len) {
228 #if defined(OPENSSL_WINDOWS)
229   SecureZeroMemory(ptr, len);
230 #else
231   OPENSSL_memset(ptr, 0, len);
232 
233 #if !defined(OPENSSL_NO_ASM)
234   /* As best as we can tell, this is sufficient to break any optimisations that
235      might try to eliminate "superfluous" memsets. If there's an easy way to
236      detect memset_s, it would be better to use that. */
237   __asm__ __volatile__("" : : "r"(ptr) : "memory");
238 #endif
239 #endif  // !OPENSSL_NO_ASM
240 }
241 
OPENSSL_clear_free(void * ptr,size_t unused)242 void OPENSSL_clear_free(void *ptr, size_t unused) {
243   OPENSSL_free(ptr);
244 }
245 
CRYPTO_memcmp(const void * in_a,const void * in_b,size_t len)246 int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
247   const uint8_t *a = in_a;
248   const uint8_t *b = in_b;
249   uint8_t x = 0;
250 
251   for (size_t i = 0; i < len; i++) {
252     x |= a[i] ^ b[i];
253   }
254 
255   return x;
256 }
257 
OPENSSL_hash32(const void * ptr,size_t len)258 uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
259   // These are the FNV-1a parameters for 32 bits.
260   static const uint32_t kPrime = 16777619u;
261   static const uint32_t kOffsetBasis = 2166136261u;
262 
263   const uint8_t *in = ptr;
264   uint32_t h = kOffsetBasis;
265 
266   for (size_t i = 0; i < len; i++) {
267     h ^= in[i];
268     h *= kPrime;
269   }
270 
271   return h;
272 }
273 
OPENSSL_strhash(const char * s)274 uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
275 
OPENSSL_strnlen(const char * s,size_t len)276 size_t OPENSSL_strnlen(const char *s, size_t len) {
277   for (size_t i = 0; i < len; i++) {
278     if (s[i] == 0) {
279       return i;
280     }
281   }
282 
283   return len;
284 }
285 
OPENSSL_strdup(const char * s)286 char *OPENSSL_strdup(const char *s) {
287   if (s == NULL) {
288     return NULL;
289   }
290   const size_t len = strlen(s) + 1;
291   char *ret = OPENSSL_malloc(len);
292   if (ret == NULL) {
293     return NULL;
294   }
295   OPENSSL_memcpy(ret, s, len);
296   return ret;
297 }
298 
OPENSSL_tolower(int c)299 int OPENSSL_tolower(int c) {
300   if (c >= 'A' && c <= 'Z') {
301     return c + ('a' - 'A');
302   }
303   return c;
304 }
305 
OPENSSL_strcasecmp(const char * a,const char * b)306 int OPENSSL_strcasecmp(const char *a, const char *b) {
307   for (size_t i = 0;; i++) {
308     const int aa = OPENSSL_tolower(a[i]);
309     const int bb = OPENSSL_tolower(b[i]);
310 
311     if (aa < bb) {
312       return -1;
313     } else if (aa > bb) {
314       return 1;
315     } else if (aa == 0) {
316       return 0;
317     }
318   }
319 }
320 
OPENSSL_strncasecmp(const char * a,const char * b,size_t n)321 int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
322   for (size_t i = 0; i < n; i++) {
323     const int aa = OPENSSL_tolower(a[i]);
324     const int bb = OPENSSL_tolower(b[i]);
325 
326     if (aa < bb) {
327       return -1;
328     } else if (aa > bb) {
329       return 1;
330     } else if (aa == 0) {
331       return 0;
332     }
333   }
334 
335   return 0;
336 }
337 
BIO_snprintf(char * buf,size_t n,const char * format,...)338 int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
339   va_list args;
340   va_start(args, format);
341   int ret = BIO_vsnprintf(buf, n, format, args);
342   va_end(args);
343   return ret;
344 }
345 
BIO_vsnprintf(char * buf,size_t n,const char * format,va_list args)346 int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
347   return vsnprintf(buf, n, format, args);
348 }
349 
OPENSSL_strndup(const char * str,size_t size)350 char *OPENSSL_strndup(const char *str, size_t size) {
351   size = OPENSSL_strnlen(str, size);
352 
353   size_t alloc_size = size + 1;
354   if (alloc_size < size) {
355     // overflow
356     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
357     return NULL;
358   }
359   char *ret = OPENSSL_malloc(alloc_size);
360   if (ret == NULL) {
361     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
362     return NULL;
363   }
364 
365   OPENSSL_memcpy(ret, str, size);
366   ret[size] = '\0';
367   return ret;
368 }
369 
OPENSSL_strlcpy(char * dst,const char * src,size_t dst_size)370 size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
371   size_t l = 0;
372 
373   for (; dst_size > 1 && *src; dst_size--) {
374     *dst++ = *src++;
375     l++;
376   }
377 
378   if (dst_size) {
379     *dst = 0;
380   }
381 
382   return l + strlen(src);
383 }
384 
OPENSSL_strlcat(char * dst,const char * src,size_t dst_size)385 size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
386   size_t l = 0;
387   for (; dst_size > 0 && *dst; dst_size--, dst++) {
388     l++;
389   }
390   return l + OPENSSL_strlcpy(dst, src, dst_size);
391 }
392 
OPENSSL_memdup(const void * data,size_t size)393 void *OPENSSL_memdup(const void *data, size_t size) {
394   if (size == 0) {
395     return NULL;
396   }
397 
398   void *ret = OPENSSL_malloc(size);
399   if (ret == NULL) {
400     OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
401     return NULL;
402   }
403 
404   OPENSSL_memcpy(ret, data, size);
405   return ret;
406 }
407 
CRYPTO_malloc(size_t size,const char * file,int line)408 void *CRYPTO_malloc(size_t size, const char *file, int line) {
409   return OPENSSL_malloc(size);
410 }
411 
CRYPTO_realloc(void * ptr,size_t new_size,const char * file,int line)412 void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
413   return OPENSSL_realloc(ptr, new_size);
414 }
415 
CRYPTO_free(void * ptr,const char * file,int line)416 void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
417