1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/ssl.h>
58
59 #include <assert.h>
60 #include <limits.h>
61
62 #include <openssl/ec.h>
63 #include <openssl/ec_key.h>
64 #include <openssl/err.h>
65 #include <openssl/evp.h>
66 #include <openssl/mem.h>
67
68 #include "internal.h"
69 #include "../crypto/internal.h"
70
71
72 BSSL_NAMESPACE_BEGIN
73
ssl_is_key_type_supported(int key_type)74 bool ssl_is_key_type_supported(int key_type) {
75 return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
76 key_type == EVP_PKEY_ED25519;
77 }
78
ssl_set_pkey(CERT * cert,EVP_PKEY * pkey)79 static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
80 if (!ssl_is_key_type_supported(pkey->type)) {
81 OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
82 return false;
83 }
84
85 if (cert->chain != nullptr &&
86 sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
87 // Sanity-check that the private key and the certificate match.
88 !ssl_cert_check_private_key(cert, pkey)) {
89 return false;
90 }
91
92 cert->privatekey = UpRef(pkey);
93 return true;
94 }
95
96 typedef struct {
97 uint16_t sigalg;
98 int pkey_type;
99 int curve;
100 const EVP_MD *(*digest_func)(void);
101 bool is_rsa_pss;
102 } SSL_SIGNATURE_ALGORITHM;
103
104 static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
105 {SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
106 false},
107 {SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
108 {SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
109 {SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
110 {SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
111
112 {SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
113 {SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
114 {SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
115
116 {SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
117 {SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
118 &EVP_sha256, false},
119 {SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
120 false},
121 {SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
122 false},
123
124 {SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
125 };
126
get_signature_algorithm(uint16_t sigalg)127 static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
128 for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
129 if (kSignatureAlgorithms[i].sigalg == sigalg) {
130 return &kSignatureAlgorithms[i];
131 }
132 }
133 return NULL;
134 }
135
ssl_has_private_key(const SSL_HANDSHAKE * hs)136 bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
137 if (hs->config->cert->privatekey != nullptr ||
138 hs->config->cert->key_method != nullptr ||
139 ssl_signing_with_dc(hs)) {
140 return true;
141 }
142
143 return false;
144 }
145
pkey_supports_algorithm(const SSL * ssl,EVP_PKEY * pkey,uint16_t sigalg)146 static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
147 uint16_t sigalg) {
148 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
149 if (alg == NULL ||
150 EVP_PKEY_id(pkey) != alg->pkey_type) {
151 return false;
152 }
153
154 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
155 // RSA keys may only be used with RSA-PSS.
156 if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
157 return false;
158 }
159
160 // EC keys have a curve requirement.
161 if (alg->pkey_type == EVP_PKEY_EC &&
162 (alg->curve == NID_undef ||
163 EC_GROUP_get_curve_name(
164 EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
165 return false;
166 }
167 }
168
169 return true;
170 }
171
setup_ctx(SSL * ssl,EVP_MD_CTX * ctx,EVP_PKEY * pkey,uint16_t sigalg,bool is_verify)172 static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
173 uint16_t sigalg, bool is_verify) {
174 if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
175 OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
176 return false;
177 }
178
179 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
180 const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
181 EVP_PKEY_CTX *pctx;
182 if (is_verify) {
183 if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
184 return false;
185 }
186 } else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
187 return false;
188 }
189
190 if (alg->is_rsa_pss) {
191 if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
192 !EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
193 return false;
194 }
195 }
196
197 return true;
198 }
199
ssl_private_key_sign(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,uint16_t sigalg,Span<const uint8_t> in)200 enum ssl_private_key_result_t ssl_private_key_sign(
201 SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
202 uint16_t sigalg, Span<const uint8_t> in) {
203 SSL *const ssl = hs->ssl;
204 const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
205 EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
206 assert(!hs->can_release_private_key);
207 if (ssl_signing_with_dc(hs)) {
208 key_method = hs->config->cert->dc_key_method;
209 privatekey = hs->config->cert->dc_privatekey.get();
210 }
211
212 if (key_method != NULL) {
213 enum ssl_private_key_result_t ret;
214 if (hs->pending_private_key_op) {
215 ret = key_method->complete(ssl, out, out_len, max_out);
216 } else {
217 ret = key_method->sign(ssl, out, out_len, max_out,
218 sigalg, in.data(), in.size());
219 }
220 if (ret == ssl_private_key_failure) {
221 OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
222 }
223 hs->pending_private_key_op = ret == ssl_private_key_retry;
224 return ret;
225 }
226
227 *out_len = max_out;
228 ScopedEVP_MD_CTX ctx;
229 if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
230 !EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
231 return ssl_private_key_failure;
232 }
233 return ssl_private_key_success;
234 }
235
ssl_public_key_verify(SSL * ssl,Span<const uint8_t> signature,uint16_t sigalg,EVP_PKEY * pkey,Span<const uint8_t> in)236 bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
237 uint16_t sigalg, EVP_PKEY *pkey,
238 Span<const uint8_t> in) {
239 ScopedEVP_MD_CTX ctx;
240 if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
241 return false;
242 }
243 bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
244 in.data(), in.size());
245 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
246 ok = true;
247 ERR_clear_error();
248 #endif
249 return ok;
250 }
251
ssl_private_key_decrypt(SSL_HANDSHAKE * hs,uint8_t * out,size_t * out_len,size_t max_out,Span<const uint8_t> in)252 enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
253 uint8_t *out,
254 size_t *out_len,
255 size_t max_out,
256 Span<const uint8_t> in) {
257 SSL *const ssl = hs->ssl;
258 assert(!hs->can_release_private_key);
259 if (hs->config->cert->key_method != NULL) {
260 enum ssl_private_key_result_t ret;
261 if (hs->pending_private_key_op) {
262 ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
263 } else {
264 ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
265 in.data(), in.size());
266 }
267 if (ret == ssl_private_key_failure) {
268 OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
269 }
270 hs->pending_private_key_op = ret == ssl_private_key_retry;
271 return ret;
272 }
273
274 RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
275 if (rsa == NULL) {
276 // Decrypt operations are only supported for RSA keys.
277 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
278 return ssl_private_key_failure;
279 }
280
281 // Decrypt with no padding. PKCS#1 padding will be removed as part of the
282 // timing-sensitive code by the caller.
283 if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
284 RSA_NO_PADDING)) {
285 return ssl_private_key_failure;
286 }
287 return ssl_private_key_success;
288 }
289
ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE * hs,uint16_t sigalg)290 bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
291 uint16_t sigalg) {
292 SSL *const ssl = hs->ssl;
293 if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
294 return false;
295 }
296
297 // Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
298 // emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
299 // hash in TLS. Reasonable RSA key sizes are large enough for the largest
300 // defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
301 // SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
302 // size so that we can fall back to another algorithm in that case.
303 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
304 if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
305 2 * EVP_MD_size(alg->digest_func()) + 2) {
306 return false;
307 }
308
309 return true;
310 }
311
312 BSSL_NAMESPACE_END
313
314 using namespace bssl;
315
SSL_use_RSAPrivateKey(SSL * ssl,RSA * rsa)316 int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
317 if (rsa == NULL || ssl->config == NULL) {
318 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
319 return 0;
320 }
321
322 UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
323 if (!pkey ||
324 !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
325 OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
326 return 0;
327 }
328
329 return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
330 }
331
SSL_use_RSAPrivateKey_ASN1(SSL * ssl,const uint8_t * der,size_t der_len)332 int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
333 UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
334 if (!rsa) {
335 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
336 return 0;
337 }
338
339 return SSL_use_RSAPrivateKey(ssl, rsa.get());
340 }
341
SSL_use_PrivateKey(SSL * ssl,EVP_PKEY * pkey)342 int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
343 if (pkey == NULL || ssl->config == NULL) {
344 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
345 return 0;
346 }
347
348 return ssl_set_pkey(ssl->config->cert.get(), pkey);
349 }
350
SSL_use_PrivateKey_ASN1(int type,SSL * ssl,const uint8_t * der,size_t der_len)351 int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
352 size_t der_len) {
353 if (der_len > LONG_MAX) {
354 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
355 return 0;
356 }
357
358 const uint8_t *p = der;
359 UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
360 if (!pkey || p != der + der_len) {
361 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
362 return 0;
363 }
364
365 return SSL_use_PrivateKey(ssl, pkey.get());
366 }
367
SSL_CTX_use_RSAPrivateKey(SSL_CTX * ctx,RSA * rsa)368 int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
369 if (rsa == NULL) {
370 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
371 return 0;
372 }
373
374 UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
375 if (!pkey ||
376 !EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
377 OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
378 return 0;
379 }
380
381 return ssl_set_pkey(ctx->cert.get(), pkey.get());
382 }
383
SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX * ctx,const uint8_t * der,size_t der_len)384 int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
385 size_t der_len) {
386 UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
387 if (!rsa) {
388 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
389 return 0;
390 }
391
392 return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
393 }
394
SSL_CTX_use_PrivateKey(SSL_CTX * ctx,EVP_PKEY * pkey)395 int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
396 if (pkey == NULL) {
397 OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
398 return 0;
399 }
400
401 return ssl_set_pkey(ctx->cert.get(), pkey);
402 }
403
SSL_CTX_use_PrivateKey_ASN1(int type,SSL_CTX * ctx,const uint8_t * der,size_t der_len)404 int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
405 size_t der_len) {
406 if (der_len > LONG_MAX) {
407 OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
408 return 0;
409 }
410
411 const uint8_t *p = der;
412 UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
413 if (!pkey || p != der + der_len) {
414 OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
415 return 0;
416 }
417
418 return SSL_CTX_use_PrivateKey(ctx, pkey.get());
419 }
420
SSL_set_private_key_method(SSL * ssl,const SSL_PRIVATE_KEY_METHOD * key_method)421 void SSL_set_private_key_method(SSL *ssl,
422 const SSL_PRIVATE_KEY_METHOD *key_method) {
423 if (!ssl->config) {
424 return;
425 }
426 ssl->config->cert->key_method = key_method;
427 }
428
SSL_CTX_set_private_key_method(SSL_CTX * ctx,const SSL_PRIVATE_KEY_METHOD * key_method)429 void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
430 const SSL_PRIVATE_KEY_METHOD *key_method) {
431 ctx->cert->key_method = key_method;
432 }
433
434 static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
435
436 // This was "constexpr" rather than "const", but that triggered a bug in MSVC
437 // where it didn't pad the strings to the correct length.
438 static const struct {
439 uint16_t signature_algorithm;
440 const char name[kMaxSignatureAlgorithmNameLen];
441 } kSignatureAlgorithmNames[] = {
442 {SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
443 {SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
444 {SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
445 {SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
446 {SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
447 {SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
448 {SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
449 {SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
450 {SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
451 {SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
452 {SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
453 {SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
454 {SSL_SIGN_ED25519, "ed25519"},
455 };
456
SSL_get_signature_algorithm_name(uint16_t sigalg,int include_curve)457 const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
458 int include_curve) {
459 if (!include_curve) {
460 switch (sigalg) {
461 case SSL_SIGN_ECDSA_SECP256R1_SHA256:
462 return "ecdsa_sha256";
463 case SSL_SIGN_ECDSA_SECP384R1_SHA384:
464 return "ecdsa_sha384";
465 case SSL_SIGN_ECDSA_SECP521R1_SHA512:
466 return "ecdsa_sha512";
467 }
468 }
469
470 for (const auto &candidate : kSignatureAlgorithmNames) {
471 if (candidate.signature_algorithm == sigalg) {
472 return candidate.name;
473 }
474 }
475
476 return NULL;
477 }
478
SSL_get_signature_algorithm_key_type(uint16_t sigalg)479 int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
480 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
481 return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
482 }
483
SSL_get_signature_algorithm_digest(uint16_t sigalg)484 const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
485 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
486 if (alg == nullptr || alg->digest_func == nullptr) {
487 return nullptr;
488 }
489 return alg->digest_func();
490 }
491
SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg)492 int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
493 const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
494 return alg != nullptr && alg->is_rsa_pss;
495 }
496
SSL_CTX_set_signing_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)497 int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
498 size_t num_prefs) {
499 return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
500 }
501
SSL_set_signing_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)502 int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
503 size_t num_prefs) {
504 if (!ssl->config) {
505 return 0;
506 }
507 return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
508 }
509
510 static constexpr struct {
511 int pkey_type;
512 int hash_nid;
513 uint16_t signature_algorithm;
514 } kSignatureAlgorithmsMapping[] = {
515 {EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
516 {EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
517 {EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
518 {EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
519 {EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
520 {EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
521 {EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
522 {EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
523 {EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
524 {EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
525 {EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
526 {EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
527 };
528
parse_sigalg_pairs(Array<uint16_t> * out,const int * values,size_t num_values)529 static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
530 size_t num_values) {
531 if ((num_values & 1) == 1) {
532 return false;
533 }
534
535 const size_t num_pairs = num_values / 2;
536 if (!out->Init(num_pairs)) {
537 return false;
538 }
539
540 for (size_t i = 0; i < num_values; i += 2) {
541 const int hash_nid = values[i];
542 const int pkey_type = values[i+1];
543
544 bool found = false;
545 for (const auto &candidate : kSignatureAlgorithmsMapping) {
546 if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
547 (*out)[i / 2] = candidate.signature_algorithm;
548 found = true;
549 break;
550 }
551 }
552
553 if (!found) {
554 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
555 ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
556 return false;
557 }
558 }
559
560 return true;
561 }
562
compare_uint16_t(const void * p1,const void * p2)563 static int compare_uint16_t(const void *p1, const void *p2) {
564 uint16_t u1 = *((const uint16_t *)p1);
565 uint16_t u2 = *((const uint16_t *)p2);
566 if (u1 < u2) {
567 return -1;
568 } else if (u1 > u2) {
569 return 1;
570 } else {
571 return 0;
572 }
573 }
574
sigalgs_unique(Span<const uint16_t> in_sigalgs)575 static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
576 if (in_sigalgs.size() < 2) {
577 return true;
578 }
579
580 Array<uint16_t> sigalgs;
581 if (!sigalgs.CopyFrom(in_sigalgs)) {
582 return false;
583 }
584
585 qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
586
587 for (size_t i = 1; i < sigalgs.size(); i++) {
588 if (sigalgs[i - 1] == sigalgs[i]) {
589 OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
590 return false;
591 }
592 }
593
594 return true;
595 }
596
SSL_CTX_set1_sigalgs(SSL_CTX * ctx,const int * values,size_t num_values)597 int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
598 Array<uint16_t> sigalgs;
599 if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
600 !sigalgs_unique(sigalgs)) {
601 return 0;
602 }
603
604 if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
605 sigalgs.size()) ||
606 !ctx->verify_sigalgs.CopyFrom(sigalgs)) {
607 return 0;
608 }
609
610 return 1;
611 }
612
SSL_set1_sigalgs(SSL * ssl,const int * values,size_t num_values)613 int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
614 if (!ssl->config) {
615 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
616 return 0;
617 }
618
619 Array<uint16_t> sigalgs;
620 if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
621 !sigalgs_unique(sigalgs)) {
622 return 0;
623 }
624
625 if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
626 !ssl->config->verify_sigalgs.CopyFrom(sigalgs)) {
627 return 0;
628 }
629
630 return 1;
631 }
632
parse_sigalgs_list(Array<uint16_t> * out,const char * str)633 static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
634 // str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
635
636 // Count colons to give the number of output elements from any successful
637 // parse.
638 size_t num_elements = 1;
639 size_t len = 0;
640 for (const char *p = str; *p; p++) {
641 len++;
642 if (*p == ':') {
643 num_elements++;
644 }
645 }
646
647 if (!out->Init(num_elements)) {
648 return false;
649 }
650 size_t out_i = 0;
651
652 enum {
653 pkey_or_name,
654 hash_name,
655 } state = pkey_or_name;
656
657 char buf[kMaxSignatureAlgorithmNameLen];
658 // buf_used is always < sizeof(buf). I.e. it's always safe to write
659 // buf[buf_used] = 0.
660 size_t buf_used = 0;
661
662 int pkey_type = 0, hash_nid = 0;
663
664 // Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
665 for (size_t offset = 0; offset < len+1; offset++) {
666 const unsigned char c = str[offset];
667
668 switch (c) {
669 case '+':
670 if (state == hash_name) {
671 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
672 ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
673 return false;
674 }
675 if (buf_used == 0) {
676 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
677 ERR_add_error_dataf("empty public key type at offset %zu", offset);
678 return false;
679 }
680 buf[buf_used] = 0;
681
682 if (strcmp(buf, "RSA") == 0) {
683 pkey_type = EVP_PKEY_RSA;
684 } else if (strcmp(buf, "RSA-PSS") == 0 ||
685 strcmp(buf, "PSS") == 0) {
686 pkey_type = EVP_PKEY_RSA_PSS;
687 } else if (strcmp(buf, "ECDSA") == 0) {
688 pkey_type = EVP_PKEY_EC;
689 } else {
690 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
691 ERR_add_error_dataf("unknown public key type '%s'", buf);
692 return false;
693 }
694
695 state = hash_name;
696 buf_used = 0;
697 break;
698
699 case ':':
700 OPENSSL_FALLTHROUGH;
701 case 0:
702 if (buf_used == 0) {
703 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
704 ERR_add_error_dataf("empty element at offset %zu", offset);
705 return false;
706 }
707
708 buf[buf_used] = 0;
709
710 if (state == pkey_or_name) {
711 // No '+' was seen thus this is a TLS 1.3-style name.
712 bool found = false;
713 for (const auto &candidate : kSignatureAlgorithmNames) {
714 if (strcmp(candidate.name, buf) == 0) {
715 assert(out_i < num_elements);
716 (*out)[out_i++] = candidate.signature_algorithm;
717 found = true;
718 break;
719 }
720 }
721
722 if (!found) {
723 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
724 ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
725 return false;
726 }
727 } else {
728 if (strcmp(buf, "SHA1") == 0) {
729 hash_nid = NID_sha1;
730 } else if (strcmp(buf, "SHA256") == 0) {
731 hash_nid = NID_sha256;
732 } else if (strcmp(buf, "SHA384") == 0) {
733 hash_nid = NID_sha384;
734 } else if (strcmp(buf, "SHA512") == 0) {
735 hash_nid = NID_sha512;
736 } else {
737 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
738 ERR_add_error_dataf("unknown hash function '%s'", buf);
739 return false;
740 }
741
742 bool found = false;
743 for (const auto &candidate : kSignatureAlgorithmsMapping) {
744 if (candidate.pkey_type == pkey_type &&
745 candidate.hash_nid == hash_nid) {
746 assert(out_i < num_elements);
747 (*out)[out_i++] = candidate.signature_algorithm;
748 found = true;
749 break;
750 }
751 }
752
753 if (!found) {
754 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
755 ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
756 return false;
757 }
758 }
759
760 state = pkey_or_name;
761 buf_used = 0;
762 break;
763
764 default:
765 if (buf_used == sizeof(buf) - 1) {
766 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
767 ERR_add_error_dataf("substring too long at offset %zu", offset);
768 return false;
769 }
770
771 if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') ||
772 (c >= 'A' && c <= 'Z') || c == '-' || c == '_') {
773 buf[buf_used++] = c;
774 } else {
775 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
776 ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
777 offset);
778 return false;
779 }
780 }
781 }
782
783 assert(out_i == out->size());
784 return true;
785 }
786
SSL_CTX_set1_sigalgs_list(SSL_CTX * ctx,const char * str)787 int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
788 Array<uint16_t> sigalgs;
789 if (!parse_sigalgs_list(&sigalgs, str) ||
790 !sigalgs_unique(sigalgs)) {
791 return 0;
792 }
793
794 if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
795 sigalgs.size()) ||
796 !SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
797 sigalgs.size())) {
798 return 0;
799 }
800
801 return 1;
802 }
803
SSL_set1_sigalgs_list(SSL * ssl,const char * str)804 int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
805 if (!ssl->config) {
806 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
807 return 0;
808 }
809
810 Array<uint16_t> sigalgs;
811 if (!parse_sigalgs_list(&sigalgs, str) ||
812 !sigalgs_unique(sigalgs)) {
813 return 0;
814 }
815
816 if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
817 !SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
818 return 0;
819 }
820
821 return 1;
822 }
823
SSL_CTX_set_verify_algorithm_prefs(SSL_CTX * ctx,const uint16_t * prefs,size_t num_prefs)824 int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
825 size_t num_prefs) {
826 return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
827 }
828
SSL_set_verify_algorithm_prefs(SSL * ssl,const uint16_t * prefs,size_t num_prefs)829 int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
830 size_t num_prefs) {
831 if (!ssl->config) {
832 OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
833 return 0;
834 }
835
836 return ssl->config->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
837 }
838