• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Created by Joachim on 16/04/2019.
3  *  Adapted from donated nonius code.
4  *
5  *  Distributed under the Boost Software License, Version 1.0. (See accompanying
6  *  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
7  */
8 
9  // Run and analyse one benchmark
10 
11 #ifndef TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED
12 #define TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED
13 
14 #include "../catch_clock.hpp"
15 #include "../catch_sample_analysis.hpp"
16 #include "catch_stats.hpp"
17 
18 #include <algorithm>
19 #include <iterator>
20 #include <vector>
21 
22 namespace Catch {
23     namespace Benchmark {
24         namespace Detail {
25             template <typename Duration, typename Iterator>
analyse(const IConfig & cfg,Environment<Duration>,Iterator first,Iterator last)26             SampleAnalysis<Duration> analyse(const IConfig &cfg, Environment<Duration>, Iterator first, Iterator last) {
27                 if (!cfg.benchmarkNoAnalysis()) {
28                     std::vector<double> samples;
29                     samples.reserve(last - first);
30                     std::transform(first, last, std::back_inserter(samples), [](Duration d) { return d.count(); });
31 
32                     auto analysis = Catch::Benchmark::Detail::analyse_samples(cfg.benchmarkConfidenceInterval(), cfg.benchmarkResamples(), samples.begin(), samples.end());
33                     auto outliers = Catch::Benchmark::Detail::classify_outliers(samples.begin(), samples.end());
34 
35                     auto wrap_estimate = [](Estimate<double> e) {
36                         return Estimate<Duration> {
37                             Duration(e.point),
38                                 Duration(e.lower_bound),
39                                 Duration(e.upper_bound),
40                                 e.confidence_interval,
41                         };
42                     };
43                     std::vector<Duration> samples2;
44                     samples2.reserve(samples.size());
45                     std::transform(samples.begin(), samples.end(), std::back_inserter(samples2), [](double d) { return Duration(d); });
46                     return {
47                         std::move(samples2),
48                         wrap_estimate(analysis.mean),
49                         wrap_estimate(analysis.standard_deviation),
50                         outliers,
51                         analysis.outlier_variance,
52                     };
53                 } else {
54                     std::vector<Duration> samples;
55                     samples.reserve(last - first);
56 
57                     Duration mean = Duration(0);
58                     int i = 0;
59                     for (auto it = first; it < last; ++it, ++i) {
60                         samples.push_back(Duration(*it));
61                         mean += Duration(*it);
62                     }
63                     mean /= i;
64 
65                     return {
66                         std::move(samples),
67                         Estimate<Duration>{mean, mean, mean, 0.0},
68                         Estimate<Duration>{Duration(0), Duration(0), Duration(0), 0.0},
69                         OutlierClassification{},
70                         0.0
71                     };
72                 }
73             }
74         } // namespace Detail
75     } // namespace Benchmark
76 } // namespace Catch
77 
78 #endif // TWOBLUECUBES_CATCH_DETAIL_ANALYSE_HPP_INCLUDED
79