1# CPU INFOrmation library 2 3[](https://github.com/pytorch/cpuinfo/blob/master/LICENSE) 4[](https://travis-ci.org/pytorch/cpuinfo) 5[](https://ci.appveyor.com/project/MaratDukhan/cpuinfo/branch/master) 6 7cpuinfo is a library to detect essential for performance optimization information about host CPU. 8 9## Features 10 11- **Cross-platform** availability: 12 - Linux, Windows, macOS, Android, and iOS operating systems 13 - x86, x86-64, ARM, and ARM64 architectures 14- Modern **C/C++ interface** 15 - Thread-safe 16 - No memory allocation after initialization 17 - No exceptions thrown 18- Detection of **supported instruction sets**, up to AVX512 (x86) and ARMv8.3 extensions 19- Detection of SoC and core information: 20 - **Processor (SoC) name** 21 - Vendor and **microarchitecture** for each CPU core 22 - ID (**MIDR** on ARM, **CPUID** leaf 1 EAX value on x86) for each CPU core 23- Detection of **cache information**: 24 - Cache type (instruction/data/unified), size and line size 25 - Cache associativity 26 - Cores and logical processors (hyper-threads) sharing the cache 27- Detection of **topology information** (relative between logical processors, cores, and processor packages) 28- Well-tested **production-quality** code: 29 - 60+ mock tests based on data from real devices 30 - Includes work-arounds for common bugs in hardware and OS kernels 31 - Supports systems with heterogenous cores, such as **big.LITTLE** and Max.Med.Min 32- Permissive **open-source** license (Simplified BSD) 33 34## Examples 35 36Log processor name: 37 38```c 39cpuinfo_initialize(); 40printf("Running on %s CPU\n", cpuinfo_get_package(0)->name); 41``` 42 43Detect if target is a 32-bit or 64-bit ARM system: 44 45```c 46#if CPUINFO_ARCH_ARM || CPUINFO_ARCH_ARM64 47 /* 32-bit ARM-specific code here */ 48#endif 49``` 50 51Check if the host CPU support ARM NEON 52 53```c 54cpuinfo_initialize(); 55if (cpuinfo_has_arm_neon()) { 56 neon_implementation(arguments); 57} 58``` 59 60Check if the host CPU supports x86 AVX 61 62```c 63cpuinfo_initialize(); 64if (cpuinfo_has_x86_avx()) { 65 avx_implementation(arguments); 66} 67``` 68 69Check if the thread runs on a Cortex-A53 core 70 71```c 72cpuinfo_initialize(); 73switch (cpuinfo_get_current_core()->uarch) { 74 case cpuinfo_uarch_cortex_a53: 75 cortex_a53_implementation(arguments); 76 break; 77 default: 78 generic_implementation(arguments); 79 break; 80} 81``` 82 83Get the size of level 1 data cache on the fastest core in the processor (e.g. big core in big.LITTLE ARM systems): 84 85```c 86cpuinfo_initialize(); 87const size_t l1_size = cpuinfo_get_processor(0)->cache.l1d->size; 88``` 89 90Pin thread to cores sharing L2 cache with the current core (Linux or Android) 91 92```c 93cpuinfo_initialize(); 94cpu_set_t cpu_set; 95CPU_ZERO(&cpu_set); 96const struct cpuinfo_cache* current_l2 = cpuinfo_get_current_processor()->cache.l2; 97for (uint32_t i = 0; i < current_l2->processor_count; i++) { 98 CPU_SET(cpuinfo_get_processor(current_l2->processor_start + i)->linux_id, &cpu_set); 99} 100pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_set); 101``` 102 103## Exposed information 104- [x] Processor (SoC) name 105- [x] Microarchitecture 106- [x] Usable instruction sets 107- [ ] CPU frequency 108- [x] Cache 109 - [x] Size 110 - [x] Associativity 111 - [x] Line size 112 - [x] Number of partitions 113 - [x] Flags (unified, inclusive, complex hash function) 114 - [x] Topology (logical processors that share this cache level) 115- [ ] TLB 116 - [ ] Number of entries 117 - [ ] Associativity 118 - [ ] Covered page types (instruction, data) 119 - [ ] Covered page sizes 120- [x] Topology information 121 - [x] Logical processors 122 - [x] Cores 123 - [x] Packages (sockets) 124 125## Supported environments: 126- [x] Android 127 - [x] x86 ABI 128 - [x] x86_64 ABI 129 - [x] armeabi ABI 130 - [x] armeabiv7-a ABI 131 - [x] arm64-v8a ABI 132 - [ ] ~~mips ABI~~ 133 - [ ] ~~mips64 ABI~~ 134- [x] Linux 135 - [x] x86 136 - [x] x86-64 137 - [x] 32-bit ARM (ARMv5T and later) 138 - [x] ARM64 139 - [ ] PowerPC64 140- [x] iOS 141 - [x] x86 (iPhone simulator) 142 - [x] x86-64 (iPhone simulator) 143 - [x] ARMv7 144 - [x] ARM64 145- [x] OS X 146 - [x] x86 147 - [x] x86-64 148- [x] Windows 149 - [x] x86 150 - [x] x86-64 151 152## Methods 153 154- Processor (SoC) name detection 155 - [x] Using CPUID leaves 0x80000002–0x80000004 on x86/x86-64 156 - [x] Using `/proc/cpuinfo` on ARM 157 - [x] Using `ro.chipname`, `ro.board.platform`, `ro.product.board`, `ro.mediatek.platform`, `ro.arch` properties (Android) 158 - [ ] Using kernel log (`dmesg`) on ARM Linux 159- Vendor and microarchitecture detection 160 - [x] Intel-designed x86/x86-64 cores (up to Sunny Cove, Goldmont Plus, and Knights Mill) 161 - [x] AMD-designed x86/x86-64 cores (up to Puma/Jaguar and Zen 2) 162 - [ ] VIA-designed x86/x86-64 cores 163 - [ ] Other x86 cores (DM&P, RDC, Transmeta, Cyrix, Rise) 164 - [x] ARM-designed ARM cores (up to Cortex-A55, Cortex-A77, and Neoverse E1/N1) 165 - [x] Qualcomm-designed ARM cores (Scorpion, Krait, and Kryo) 166 - [x] Nvidia-designed ARM cores (Denver and Carmel) 167 - [x] Samsung-designed ARM cores (Exynos) 168 - [x] Intel-designed ARM cores (XScale up to 3rd-gen) 169 - [x] Apple-designed ARM cores (up to Lightning and Thunder) 170 - [x] Cavium-designed ARM cores (ThunderX) 171 - [x] AppliedMicro-designed ARM cores (X-Gene) 172- Instruction set detection 173 - [x] Using CPUID (x86/x86-64) 174 - [x] Using `/proc/cpuinfo` on 32-bit ARM EABI (Linux) 175 - [x] Using microarchitecture heuristics on (32-bit ARM) 176 - [x] Using `FPSID` and `WCID` registers (32-bit ARM) 177 - [x] Using `getauxval` (Linux/ARM) 178 - [x] Using `/proc/self/auxv` (Android/ARM) 179 - [ ] Using instruction probing on ARM (Linux) 180 - [ ] Using CPUID registers on ARM64 (Linux) 181- Cache detection 182 - [x] Using CPUID leaf 0x00000002 (x86/x86-64) 183 - [x] Using CPUID leaf 0x00000004 (non-AMD x86/x86-64) 184 - [ ] Using CPUID leaves 0x80000005-0x80000006 (AMD x86/x86-64) 185 - [x] Using CPUID leaf 0x8000001D (AMD x86/x86-64) 186 - [x] Using `/proc/cpuinfo` (Linux/pre-ARMv7) 187 - [x] Using microarchitecture heuristics (ARM) 188 - [x] Using chipset name (ARM) 189 - [x] Using `sysctlbyname` (Mach) 190 - [x] Using sysfs `typology` directories (ARM/Linux) 191 - [ ] Using sysfs `cache` directories (Linux) 192- TLB detection 193 - [x] Using CPUID leaf 0x00000002 (x86/x86-64) 194 - [ ] Using CPUID leaves 0x80000005-0x80000006 and 0x80000019 (AMD x86/x86-64) 195 - [x] Using microarchitecture heuristics (ARM) 196- Topology detection 197 - [x] Using CPUID leaf 0x00000001 on x86/x86-64 (legacy APIC ID) 198 - [x] Using CPUID leaf 0x0000000B on x86/x86-64 (Intel APIC ID) 199 - [ ] Using CPUID leaf 0x8000001E on x86/x86-64 (AMD APIC ID) 200 - [x] Using `/proc/cpuinfo` (Linux) 201 - [x] Using `host_info` (Mach) 202 - [x] Using `GetLogicalProcessorInformationEx` (Windows) 203 - [x] Using sysfs (Linux) 204 - [x] Using chipset name (ARM/Linux) 205