1 // Copyright 2020 The Chromium OS Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 use std::future::Future;
6
7 use async_task::Task;
8
9 use super::{
10 poll_source::Error as PollError, uring_executor::use_uring, AsyncResult, FdExecutor, IntoAsync,
11 IoSourceExt, PollSource, URingExecutor, UringSource,
12 };
13
async_uring_from<'a, F: IntoAsync + Send + 'a>( f: F, ex: &URingExecutor, ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>>14 pub(crate) fn async_uring_from<'a, F: IntoAsync + Send + 'a>(
15 f: F,
16 ex: &URingExecutor,
17 ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>> {
18 Ok(UringSource::new(f, ex).map(|u| Box::new(u) as Box<dyn IoSourceExt<F> + Send>)?)
19 }
20
21 /// Creates a concrete `IoSourceExt` using the fd_executor.
async_poll_from<'a, F: IntoAsync + Send + 'a>( f: F, ex: &FdExecutor, ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>>22 pub(crate) fn async_poll_from<'a, F: IntoAsync + Send + 'a>(
23 f: F,
24 ex: &FdExecutor,
25 ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>> {
26 Ok(PollSource::new(f, ex).map(|u| Box::new(u) as Box<dyn IoSourceExt<F> + Send>)?)
27 }
28
29 /// An executor for scheduling tasks that poll futures to completion.
30 ///
31 /// All asynchronous operations must run within an executor, which is capable of spawning futures as
32 /// tasks. This executor also provides a mechanism for performing asynchronous I/O operations.
33 ///
34 /// The returned type is a cheap, clonable handle to the underlying executor. Cloning it will only
35 /// create a new reference, not a new executor.
36 ///
37 /// # Examples
38 ///
39 /// Concurrently wait for multiple files to become readable/writable and then read/write the data.
40 ///
41 /// ```
42 /// use std::cmp::min;
43 /// use std::error::Error;
44 /// use std::fs::{File, OpenOptions};
45 ///
46 /// use cros_async::{AsyncResult, Executor, IoSourceExt, complete3};
47 /// const CHUNK_SIZE: usize = 32;
48 ///
49 /// // Write all bytes from `data` to `f`.
50 /// async fn write_file(f: &dyn IoSourceExt<File>, mut data: Vec<u8>) -> AsyncResult<()> {
51 /// while data.len() > 0 {
52 /// let (count, mut buf) = f.write_from_vec(None, data).await?;
53 ///
54 /// data = buf.split_off(count);
55 /// }
56 ///
57 /// Ok(())
58 /// }
59 ///
60 /// // Transfer `len` bytes of data from `from` to `to`.
61 /// async fn transfer_data(
62 /// from: Box<dyn IoSourceExt<File>>,
63 /// to: Box<dyn IoSourceExt<File>>,
64 /// len: usize,
65 /// ) -> AsyncResult<usize> {
66 /// let mut rem = len;
67 ///
68 /// while rem > 0 {
69 /// let buf = vec![0u8; min(rem, CHUNK_SIZE)];
70 /// let (count, mut data) = from.read_to_vec(None, buf).await?;
71 ///
72 /// if count == 0 {
73 /// // End of file. Return the number of bytes transferred.
74 /// return Ok(len - rem);
75 /// }
76 ///
77 /// data.truncate(count);
78 /// write_file(&*to, data).await?;
79 ///
80 /// rem = rem.saturating_sub(count);
81 /// }
82 ///
83 /// Ok(len)
84 /// }
85 ///
86 /// # fn do_it() -> Result<(), Box<dyn Error>> {
87 /// let ex = Executor::new()?;
88 ///
89 /// let (rx, tx) = base::pipe(true)?;
90 /// let zero = File::open("/dev/zero")?;
91 /// let zero_bytes = CHUNK_SIZE * 7;
92 /// let zero_to_pipe = transfer_data(
93 /// ex.async_from(zero)?,
94 /// ex.async_from(tx.try_clone()?)?,
95 /// zero_bytes,
96 /// );
97 ///
98 /// let rand = File::open("/dev/urandom")?;
99 /// let rand_bytes = CHUNK_SIZE * 19;
100 /// let rand_to_pipe = transfer_data(ex.async_from(rand)?, ex.async_from(tx)?, rand_bytes);
101 ///
102 /// let null = OpenOptions::new().write(true).open("/dev/null")?;
103 /// let null_bytes = zero_bytes + rand_bytes;
104 /// let pipe_to_null = transfer_data(ex.async_from(rx)?, ex.async_from(null)?, null_bytes);
105 ///
106 /// ex.run_until(complete3(
107 /// async { assert_eq!(pipe_to_null.await.unwrap(), null_bytes) },
108 /// async { assert_eq!(zero_to_pipe.await.unwrap(), zero_bytes) },
109 /// async { assert_eq!(rand_to_pipe.await.unwrap(), rand_bytes) },
110 /// ))?;
111 ///
112 /// # Ok(())
113 /// # }
114 ///
115 /// # do_it().unwrap();
116 /// ```
117
118 #[derive(Clone)]
119 pub enum Executor {
120 Uring(URingExecutor),
121 Fd(FdExecutor),
122 }
123
124 impl Executor {
125 /// Create a new `Executor`.
new() -> AsyncResult<Self>126 pub fn new() -> AsyncResult<Self> {
127 if use_uring() {
128 Ok(URingExecutor::new().map(Executor::Uring)?)
129 } else {
130 Ok(FdExecutor::new()
131 .map(Executor::Fd)
132 .map_err(PollError::Executor)?)
133 }
134 }
135
136 /// Create a new `Box<dyn IoSourceExt<F>>` associated with `self`. Callers may then use the
137 /// returned `IoSourceExt` to directly start async operations without needing a separate
138 /// reference to the executor.
async_from<'a, F: IntoAsync + Send + 'a>( &self, f: F, ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>>139 pub fn async_from<'a, F: IntoAsync + Send + 'a>(
140 &self,
141 f: F,
142 ) -> AsyncResult<Box<dyn IoSourceExt<F> + Send + 'a>> {
143 match self {
144 Executor::Uring(ex) => async_uring_from(f, ex),
145 Executor::Fd(ex) => async_poll_from(f, ex),
146 }
147 }
148
149 /// Spawn a new future for this executor to run to completion. Callers may use the returned
150 /// `Task` to await on the result of `f`. Dropping the returned `Task` will cancel `f`,
151 /// preventing it from being polled again. To drop a `Task` without canceling the future
152 /// associated with it use `Task::detach`. To cancel a task gracefully and wait until it is
153 /// fully destroyed, use `Task::cancel`.
154 ///
155 /// # Examples
156 ///
157 /// ```
158 /// # use cros_async::AsyncResult;
159 /// # fn example_spawn() -> AsyncResult<()> {
160 /// # use std::thread;
161 ///
162 /// # use cros_async::Executor;
163 /// use futures::executor::block_on;
164 ///
165 /// # let ex = Executor::new()?;
166 ///
167 /// # // Spawn a thread that runs the executor.
168 /// # let ex2 = ex.clone();
169 /// # thread::spawn(move || ex2.run());
170 ///
171 /// let task = ex.spawn(async { 7 + 13 });
172 ///
173 /// let result = block_on(task);
174 /// assert_eq!(result, 20);
175 /// # Ok(())
176 /// # }
177 ///
178 /// # example_spawn().unwrap();
179 /// ```
spawn<F>(&self, f: F) -> Task<F::Output> where F: Future + Send + 'static, F::Output: Send + 'static,180 pub fn spawn<F>(&self, f: F) -> Task<F::Output>
181 where
182 F: Future + Send + 'static,
183 F::Output: Send + 'static,
184 {
185 match self {
186 Executor::Uring(ex) => ex.spawn(f),
187 Executor::Fd(ex) => ex.spawn(f),
188 }
189 }
190
191 /// Spawn a thread-local task for this executor to drive to completion. Like `spawn` but without
192 /// requiring `Send` on `F` or `F::Output`. This method should only be called from the same
193 /// thread where `run()` or `run_until()` is called.
194 ///
195 /// # Panics
196 ///
197 /// `Executor::run` and `Executor::run_util` will panic if they try to poll a future that was
198 /// added by calling `spawn_local` from a different thread.
199 ///
200 /// # Examples
201 ///
202 /// ```
203 /// # use cros_async::AsyncResult;
204 /// # fn example_spawn_local() -> AsyncResult<()> {
205 /// # use cros_async::Executor;
206 ///
207 /// # let ex = Executor::new()?;
208 ///
209 /// let task = ex.spawn_local(async { 7 + 13 });
210 ///
211 /// let result = ex.run_until(task)?;
212 /// assert_eq!(result, 20);
213 /// # Ok(())
214 /// # }
215 ///
216 /// # example_spawn_local().unwrap();
217 /// ```
spawn_local<F>(&self, f: F) -> Task<F::Output> where F: Future + 'static, F::Output: 'static,218 pub fn spawn_local<F>(&self, f: F) -> Task<F::Output>
219 where
220 F: Future + 'static,
221 F::Output: 'static,
222 {
223 match self {
224 Executor::Uring(ex) => ex.spawn_local(f),
225 Executor::Fd(ex) => ex.spawn_local(f),
226 }
227 }
228
229 /// Run the provided closure on a dedicated thread where blocking is allowed.
230 ///
231 /// Callers may `await` on the returned `Task` to wait for the result of `f`. Dropping or
232 /// canceling the returned `Task` may not cancel the operation if it was already started on a
233 /// worker thread.
234 ///
235 /// # Panics
236 ///
237 /// `await`ing the `Task` after the `Executor` is dropped will panic if the work was not already
238 /// completed.
239 ///
240 /// # Examples
241 ///
242 /// ```edition2018
243 /// # use cros_async::Executor;
244 ///
245 /// # async fn do_it(ex: &Executor) {
246 /// let res = ex.spawn_blocking(move || {
247 /// // Do some CPU-intensive or blocking work here.
248 ///
249 /// 42
250 /// }).await;
251 ///
252 /// assert_eq!(res, 42);
253 /// # }
254 ///
255 /// # let ex = Executor::new().unwrap();
256 /// # ex.run_until(do_it(&ex)).unwrap();
257 /// ```
spawn_blocking<F, R>(&self, f: F) -> Task<R> where F: FnOnce() -> R + Send + 'static, R: Send + 'static,258 pub fn spawn_blocking<F, R>(&self, f: F) -> Task<R>
259 where
260 F: FnOnce() -> R + Send + 'static,
261 R: Send + 'static,
262 {
263 match self {
264 Executor::Uring(ex) => ex.spawn_blocking(f),
265 Executor::Fd(ex) => ex.spawn_blocking(f),
266 }
267 }
268
269 /// Run the executor indefinitely, driving all spawned futures to completion. This method will
270 /// block the current thread and only return in the case of an error.
271 ///
272 /// # Panics
273 ///
274 /// Once this method has been called on a thread, it may only be called on that thread from that
275 /// point on. Attempting to call it from another thread will panic.
276 ///
277 /// # Examples
278 ///
279 /// ```
280 /// # use cros_async::AsyncResult;
281 /// # fn example_run() -> AsyncResult<()> {
282 /// use std::thread;
283 ///
284 /// use cros_async::Executor;
285 /// use futures::executor::block_on;
286 ///
287 /// let ex = Executor::new()?;
288 ///
289 /// // Spawn a thread that runs the executor.
290 /// let ex2 = ex.clone();
291 /// thread::spawn(move || ex2.run());
292 ///
293 /// let task = ex.spawn(async { 7 + 13 });
294 ///
295 /// let result = block_on(task);
296 /// assert_eq!(result, 20);
297 /// # Ok(())
298 /// # }
299 ///
300 /// # example_run().unwrap();
301 /// ```
run(&self) -> AsyncResult<()>302 pub fn run(&self) -> AsyncResult<()> {
303 match self {
304 Executor::Uring(ex) => ex.run()?,
305 Executor::Fd(ex) => ex.run().map_err(PollError::Executor)?,
306 }
307
308 Ok(())
309 }
310
311 /// Drive all futures spawned in this executor until `f` completes. This method will block the
312 /// current thread only until `f` is complete and there may still be unfinished futures in the
313 /// executor.
314 ///
315 /// # Panics
316 ///
317 /// Once this method has been called on a thread, from then onwards it may only be called on
318 /// that thread. Attempting to call it from another thread will panic.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// # use cros_async::AsyncResult;
324 /// # fn example_run_until() -> AsyncResult<()> {
325 /// use cros_async::Executor;
326 ///
327 /// let ex = Executor::new()?;
328 ///
329 /// let task = ex.spawn_local(async { 7 + 13 });
330 ///
331 /// let result = ex.run_until(task)?;
332 /// assert_eq!(result, 20);
333 /// # Ok(())
334 /// # }
335 ///
336 /// # example_run_until().unwrap();
337 /// ```
run_until<F: Future>(&self, f: F) -> AsyncResult<F::Output>338 pub fn run_until<F: Future>(&self, f: F) -> AsyncResult<F::Output> {
339 match self {
340 Executor::Uring(ex) => Ok(ex.run_until(f)?),
341 Executor::Fd(ex) => Ok(ex.run_until(f).map_err(PollError::Executor)?),
342 }
343 }
344 }
345