1 // Copyright (c) 2016 Google Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 17 18 #include <memory> 19 #include <ostream> 20 #include <string> 21 #include <unordered_map> 22 #include <utility> 23 #include <vector> 24 25 #include "libspirv.hpp" 26 27 namespace spvtools { 28 29 namespace opt { 30 class Pass; 31 struct DescriptorSetAndBinding; 32 } // namespace opt 33 34 // C++ interface for SPIR-V optimization functionalities. It wraps the context 35 // (including target environment and the corresponding SPIR-V grammar) and 36 // provides methods for registering optimization passes and optimizing. 37 // 38 // Instances of this class provides basic thread-safety guarantee. 39 class Optimizer { 40 public: 41 // The token for an optimization pass. It is returned via one of the 42 // Create*Pass() standalone functions at the end of this header file and 43 // consumed by the RegisterPass() method. Tokens are one-time objects that 44 // only support move; copying is not allowed. 45 struct PassToken { 46 struct Impl; // Opaque struct for holding internal data. 47 48 PassToken(std::unique_ptr<Impl>); 49 50 // Tokens for built-in passes should be created using Create*Pass functions 51 // below; for out-of-tree passes, use this constructor instead. 52 // Note that this API isn't guaranteed to be stable and may change without 53 // preserving source or binary compatibility in the future. 54 PassToken(std::unique_ptr<opt::Pass>&& pass); 55 56 // Tokens can only be moved. Copying is disabled. 57 PassToken(const PassToken&) = delete; 58 PassToken(PassToken&&); 59 PassToken& operator=(const PassToken&) = delete; 60 PassToken& operator=(PassToken&&); 61 62 ~PassToken(); 63 64 std::unique_ptr<Impl> impl_; // Unique pointer to internal data. 65 }; 66 67 // Constructs an instance with the given target |env|, which is used to decode 68 // the binaries to be optimized later. 69 // 70 // The instance will have an empty message consumer, which ignores all 71 // messages from the library. Use SetMessageConsumer() to supply a consumer 72 // if messages are of concern. 73 explicit Optimizer(spv_target_env env); 74 75 // Disables copy/move constructor/assignment operations. 76 Optimizer(const Optimizer&) = delete; 77 Optimizer(Optimizer&&) = delete; 78 Optimizer& operator=(const Optimizer&) = delete; 79 Optimizer& operator=(Optimizer&&) = delete; 80 81 // Destructs this instance. 82 ~Optimizer(); 83 84 // Sets the message consumer to the given |consumer|. The |consumer| will be 85 // invoked once for each message communicated from the library. 86 void SetMessageConsumer(MessageConsumer consumer); 87 88 // Returns a reference to the registered message consumer. 89 const MessageConsumer& consumer() const; 90 91 // Registers the given |pass| to this optimizer. Passes will be run in the 92 // exact order of registration. The token passed in will be consumed by this 93 // method. 94 Optimizer& RegisterPass(PassToken&& pass); 95 96 // Registers passes that attempt to improve performance of generated code. 97 // This sequence of passes is subject to constant review and will change 98 // from time to time. 99 Optimizer& RegisterPerformancePasses(); 100 101 // Registers passes that attempt to improve the size of generated code. 102 // This sequence of passes is subject to constant review and will change 103 // from time to time. 104 Optimizer& RegisterSizePasses(); 105 106 // Registers passes that attempt to legalize the generated code. 107 // 108 // Note: this recipe is specially designed for legalizing SPIR-V. It should be 109 // used by compilers after translating HLSL source code literally. It should 110 // *not* be used by general workloads for performance or size improvement. 111 // 112 // This sequence of passes is subject to constant review and will change 113 // from time to time. 114 Optimizer& RegisterLegalizationPasses(); 115 116 // Register passes specified in the list of |flags|. Each flag must be a 117 // string of a form accepted by Optimizer::FlagHasValidForm(). 118 // 119 // If the list of flags contains an invalid entry, it returns false and an 120 // error message is emitted to the MessageConsumer object (use 121 // Optimizer::SetMessageConsumer to define a message consumer, if needed). 122 // 123 // If all the passes are registered successfully, it returns true. 124 bool RegisterPassesFromFlags(const std::vector<std::string>& flags); 125 126 // Registers the optimization pass associated with |flag|. This only accepts 127 // |flag| values of the form "--pass_name[=pass_args]". If no such pass 128 // exists, it returns false. Otherwise, the pass is registered and it returns 129 // true. 130 // 131 // The following flags have special meaning: 132 // 133 // -O: Registers all performance optimization passes 134 // (Optimizer::RegisterPerformancePasses) 135 // 136 // -Os: Registers all size optimization passes 137 // (Optimizer::RegisterSizePasses). 138 // 139 // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an 140 // HLSL front-end. 141 bool RegisterPassFromFlag(const std::string& flag); 142 143 // Validates that |flag| has a valid format. Strings accepted: 144 // 145 // --pass_name[=pass_args] 146 // -O 147 // -Os 148 // 149 // If |flag| takes one of the forms above, it returns true. Otherwise, it 150 // returns false. 151 bool FlagHasValidForm(const std::string& flag) const; 152 153 // Allows changing, after creation time, the target environment to be 154 // optimized for and validated. Should be called before calling Run(). 155 void SetTargetEnv(const spv_target_env env); 156 157 // Optimizes the given SPIR-V module |original_binary| and writes the 158 // optimized binary into |optimized_binary|. The optimized binary uses 159 // the same SPIR-V version as the original binary. 160 // 161 // Returns true on successful optimization, whether or not the module is 162 // modified. Returns false if |original_binary| fails to validate or if errors 163 // occur when processing |original_binary| using any of the registered passes. 164 // In that case, no further passes are executed and the contents in 165 // |optimized_binary| may be invalid. 166 // 167 // By default, the binary is validated before any transforms are performed, 168 // and optionally after each transform. Validation uses SPIR-V spec rules 169 // for the SPIR-V version named in the binary's header (at word offset 1). 170 // Additionally, if the target environment is a client API (such as 171 // Vulkan 1.1), then validate for that client API version, to the extent 172 // that it is verifiable from data in the binary itself. 173 // 174 // It's allowed to alias |original_binary| to the start of |optimized_binary|. 175 bool Run(const uint32_t* original_binary, size_t original_binary_size, 176 std::vector<uint32_t>* optimized_binary) const; 177 178 // DEPRECATED: Same as above, except passes |options| to the validator when 179 // trying to validate the binary. If |skip_validation| is true, then the 180 // caller is guaranteeing that |original_binary| is valid, and the validator 181 // will not be run. The |max_id_bound| is the limit on the max id in the 182 // module. 183 bool Run(const uint32_t* original_binary, const size_t original_binary_size, 184 std::vector<uint32_t>* optimized_binary, 185 const ValidatorOptions& options, bool skip_validation) const; 186 187 // Same as above, except it takes an options object. See the documentation 188 // for |OptimizerOptions| to see which options can be set. 189 // 190 // By default, the binary is validated before any transforms are performed, 191 // and optionally after each transform. Validation uses SPIR-V spec rules 192 // for the SPIR-V version named in the binary's header (at word offset 1). 193 // Additionally, if the target environment is a client API (such as 194 // Vulkan 1.1), then validate for that client API version, to the extent 195 // that it is verifiable from data in the binary itself, or from the 196 // validator options set on the optimizer options. 197 bool Run(const uint32_t* original_binary, const size_t original_binary_size, 198 std::vector<uint32_t>* optimized_binary, 199 const spv_optimizer_options opt_options) const; 200 201 // Returns a vector of strings with all the pass names added to this 202 // optimizer's pass manager. These strings are valid until the associated 203 // pass manager is destroyed. 204 std::vector<const char*> GetPassNames() const; 205 206 // Sets the option to print the disassembly before each pass and after the 207 // last pass. If |out| is null, then no output is generated. Otherwise, 208 // output is sent to the |out| output stream. 209 Optimizer& SetPrintAll(std::ostream* out); 210 211 // Sets the option to print the resource utilization of each pass. If |out| 212 // is null, then no output is generated. Otherwise, output is sent to the 213 // |out| output stream. 214 Optimizer& SetTimeReport(std::ostream* out); 215 216 // Sets the option to validate the module after each pass. 217 Optimizer& SetValidateAfterAll(bool validate); 218 219 private: 220 struct Impl; // Opaque struct for holding internal data. 221 std::unique_ptr<Impl> impl_; // Unique pointer to internal data. 222 }; 223 224 // Creates a null pass. 225 // A null pass does nothing to the SPIR-V module to be optimized. 226 Optimizer::PassToken CreateNullPass(); 227 228 // Creates a strip-debug-info pass. 229 // A strip-debug-info pass removes all debug instructions (as documented in 230 // Section 3.42.2 of the SPIR-V spec) of the SPIR-V module to be optimized. 231 Optimizer::PassToken CreateStripDebugInfoPass(); 232 233 // [Deprecated] This will create a strip-nonsemantic-info pass. See below. 234 Optimizer::PassToken CreateStripReflectInfoPass(); 235 236 // Creates a strip-nonsemantic-info pass. 237 // A strip-nonsemantic-info pass removes all reflections and explicitly 238 // non-semantic instructions. 239 Optimizer::PassToken CreateStripNonSemanticInfoPass(); 240 241 // Creates an eliminate-dead-functions pass. 242 // An eliminate-dead-functions pass will remove all functions that are not in 243 // the call trees rooted at entry points and exported functions. These 244 // functions are not needed because they will never be called. 245 Optimizer::PassToken CreateEliminateDeadFunctionsPass(); 246 247 // Creates an eliminate-dead-members pass. 248 // An eliminate-dead-members pass will remove all unused members of structures. 249 // This will not affect the data layout of the remaining members. 250 Optimizer::PassToken CreateEliminateDeadMembersPass(); 251 252 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids 253 // to the default values in the form of string. 254 // A set-spec-constant-default-value pass sets the default values for the 255 // spec constants that have SpecId decorations (i.e., those defined by 256 // OpSpecConstant{|True|False} instructions). 257 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( 258 const std::unordered_map<uint32_t, std::string>& id_value_map); 259 260 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids 261 // to the default values in the form of bit pattern. 262 // A set-spec-constant-default-value pass sets the default values for the 263 // spec constants that have SpecId decorations (i.e., those defined by 264 // OpSpecConstant{|True|False} instructions). 265 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass( 266 const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map); 267 268 // Creates a flatten-decoration pass. 269 // A flatten-decoration pass replaces grouped decorations with equivalent 270 // ungrouped decorations. That is, it replaces each OpDecorationGroup 271 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate 272 // instructions with equivalent OpDecorate and OpMemberDecorate instructions. 273 // The pass does not attempt to preserve debug information for instructions 274 // it removes. 275 Optimizer::PassToken CreateFlattenDecorationPass(); 276 277 // Creates a freeze-spec-constant-value pass. 278 // A freeze-spec-constant pass specializes the value of spec constants to 279 // their default values. This pass only processes the spec constants that have 280 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or 281 // OpSpecConstantFalse instructions) and replaces them with their normal 282 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The 283 // corresponding SpecId annotation instructions will also be removed. This 284 // pass does not fold the newly added normal constants and does not process 285 // other spec constants defined by OpSpecConstantComposite or 286 // OpSpecConstantOp. 287 Optimizer::PassToken CreateFreezeSpecConstantValuePass(); 288 289 // Creates a fold-spec-constant-op-and-composite pass. 290 // A fold-spec-constant-op-and-composite pass folds spec constants defined by 291 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants 292 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or 293 // OpConstantComposite instructions. Note that spec constants defined with 294 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are 295 // not handled, as these instructions indicate their value are not determined 296 // and can be changed in future. A spec constant is foldable if all of its 297 // value(s) can be determined from the module. E.g., an integer spec constant 298 // defined with OpSpecConstantOp instruction can be folded if its value won't 299 // change later. This pass will replace the original OpSpecConstantOp 300 // instruction with an OpConstant instruction. When folding composite spec 301 // constants, new instructions may be inserted to define the components of the 302 // composite constant first, then the original spec constants will be replaced 303 // by OpConstantComposite instructions. 304 // 305 // There are some operations not supported yet: 306 // OpSConvert, OpFConvert, OpQuantizeToF16 and 307 // all the operations under Kernel capability. 308 // TODO(qining): Add support for the operations listed above. 309 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass(); 310 311 // Creates a unify-constant pass. 312 // A unify-constant pass de-duplicates the constants. Constants with the exact 313 // same value and identical form will be unified and only one constant will 314 // be kept for each unique pair of type and value. 315 // There are several cases not handled by this pass: 316 // 1) Constants defined by OpConstantNull instructions (null constants) and 317 // constants defined by OpConstantFalse, OpConstant or OpConstantComposite 318 // with value 0 (zero-valued normal constants) are not considered equivalent. 319 // So null constants won't be used to replace zero-valued normal constants, 320 // vice versa. 321 // 2) Whenever there are decorations to the constant's result id id, the 322 // constant won't be handled, which means, it won't be used to replace any 323 // other constants, neither can other constants replace it. 324 // 3) NaN in float point format with different bit patterns are not unified. 325 Optimizer::PassToken CreateUnifyConstantPass(); 326 327 // Creates a eliminate-dead-constant pass. 328 // A eliminate-dead-constant pass removes dead constants, including normal 329 // constants defined by OpConstant, OpConstantComposite, OpConstantTrue, or 330 // OpConstantFalse and spec constants defined by OpSpecConstant, 331 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or 332 // OpSpecConstantOp. 333 Optimizer::PassToken CreateEliminateDeadConstantPass(); 334 335 // Creates a strength-reduction pass. 336 // A strength-reduction pass will look for opportunities to replace an 337 // instruction with an equivalent and less expensive one. For example, 338 // multiplying by a power of 2 can be replaced by a bit shift. 339 Optimizer::PassToken CreateStrengthReductionPass(); 340 341 // Creates a block merge pass. 342 // This pass searches for blocks with a single Branch to a block with no 343 // other predecessors and merges the blocks into a single block. Continue 344 // blocks and Merge blocks are not candidates for the second block. 345 // 346 // The pass is most useful after Dead Branch Elimination, which can leave 347 // such sequences of blocks. Merging them makes subsequent passes more 348 // effective, such as single block local store-load elimination. 349 // 350 // While this pass reduces the number of occurrences of this sequence, at 351 // this time it does not guarantee all such sequences are eliminated. 352 // 353 // Presence of phi instructions can inhibit this optimization. Handling 354 // these is left for future improvements. 355 Optimizer::PassToken CreateBlockMergePass(); 356 357 // Creates an exhaustive inline pass. 358 // An exhaustive inline pass attempts to exhaustively inline all function 359 // calls in all functions in an entry point call tree. The intent is to enable, 360 // albeit through brute force, analysis and optimization across function 361 // calls by subsequent optimization passes. As the inlining is exhaustive, 362 // there is no attempt to optimize for size or runtime performance. Functions 363 // that are not in the call tree of an entry point are not changed. 364 Optimizer::PassToken CreateInlineExhaustivePass(); 365 366 // Creates an opaque inline pass. 367 // An opaque inline pass inlines all function calls in all functions in all 368 // entry point call trees where the called function contains an opaque type 369 // in either its parameter types or return type. An opaque type is currently 370 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit 371 // through brute force, analysis and optimization across these function calls 372 // by subsequent passes in order to remove the storing of opaque types which is 373 // not legal in Vulkan. Functions that are not in the call tree of an entry 374 // point are not changed. 375 Optimizer::PassToken CreateInlineOpaquePass(); 376 377 // Creates a single-block local variable load/store elimination pass. 378 // For every entry point function, do single block memory optimization of 379 // function variables referenced only with non-access-chain loads and stores. 380 // For each targeted variable load, if previous store to that variable in the 381 // block, replace the load's result id with the value id of the store. 382 // If previous load within the block, replace the current load's result id 383 // with the previous load's result id. In either case, delete the current 384 // load. Finally, check if any remaining stores are useless, and delete store 385 // and variable if possible. 386 // 387 // The presence of access chain references and function calls can inhibit 388 // the above optimization. 389 // 390 // Only modules with relaxed logical addressing (see opt/instruction.h) are 391 // currently processed. 392 // 393 // This pass is most effective if preceded by Inlining and 394 // LocalAccessChainConvert. This pass will reduce the work needed to be done 395 // by LocalSingleStoreElim and LocalMultiStoreElim. 396 // 397 // Only functions in the call tree of an entry point are processed. 398 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass(); 399 400 // Create dead branch elimination pass. 401 // For each entry point function, this pass will look for SelectionMerge 402 // BranchConditionals with constant condition and convert to a Branch to 403 // the indicated label. It will delete resulting dead blocks. 404 // 405 // For all phi functions in merge block, replace all uses with the id 406 // corresponding to the living predecessor. 407 // 408 // Note that some branches and blocks may be left to avoid creating invalid 409 // control flow. Improving this is left to future work. 410 // 411 // This pass is most effective when preceded by passes which eliminate 412 // local loads and stores, effectively propagating constant values where 413 // possible. 414 Optimizer::PassToken CreateDeadBranchElimPass(); 415 416 // Creates an SSA local variable load/store elimination pass. 417 // For every entry point function, eliminate all loads and stores of function 418 // scope variables only referenced with non-access-chain loads and stores. 419 // Eliminate the variables as well. 420 // 421 // The presence of access chain references and function calls can inhibit 422 // the above optimization. 423 // 424 // Only shader modules with relaxed logical addressing (see opt/instruction.h) 425 // are currently processed. Currently modules with any extensions enabled are 426 // not processed. This is left for future work. 427 // 428 // This pass is most effective if preceded by Inlining and 429 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim 430 // will reduce the work that this pass has to do. 431 Optimizer::PassToken CreateLocalMultiStoreElimPass(); 432 433 // Creates a local access chain conversion pass. 434 // A local access chain conversion pass identifies all function scope 435 // variables which are accessed only with loads, stores and access chains 436 // with constant indices. It then converts all loads and stores of such 437 // variables into equivalent sequences of loads, stores, extracts and inserts. 438 // 439 // This pass only processes entry point functions. It currently only converts 440 // non-nested, non-ptr access chains. It does not process modules with 441 // non-32-bit integer types present. Optional memory access options on loads 442 // and stores are ignored as we are only processing function scope variables. 443 // 444 // This pass unifies access to these variables to a single mode and simplifies 445 // subsequent analysis and elimination of these variables along with their 446 // loads and stores allowing values to propagate to their points of use where 447 // possible. 448 Optimizer::PassToken CreateLocalAccessChainConvertPass(); 449 450 // Creates a local single store elimination pass. 451 // For each entry point function, this pass eliminates loads and stores for 452 // function scope variable that are stored to only once, where possible. Only 453 // whole variable loads and stores are eliminated; access-chain references are 454 // not optimized. Replace all loads of such variables with the value that is 455 // stored and eliminate any resulting dead code. 456 // 457 // Currently, the presence of access chains and function calls can inhibit this 458 // pass, however the Inlining and LocalAccessChainConvert passes can make it 459 // more effective. In additional, many non-load/store memory operations are 460 // not supported and will prohibit optimization of a function. Support of 461 // these operations are future work. 462 // 463 // Only shader modules with relaxed logical addressing (see opt/instruction.h) 464 // are currently processed. 465 // 466 // This pass will reduce the work needed to be done by LocalSingleBlockElim 467 // and LocalMultiStoreElim and can improve the effectiveness of other passes 468 // such as DeadBranchElimination which depend on values for their analysis. 469 Optimizer::PassToken CreateLocalSingleStoreElimPass(); 470 471 // Creates an insert/extract elimination pass. 472 // This pass processes each entry point function in the module, searching for 473 // extracts on a sequence of inserts. It further searches the sequence for an 474 // insert with indices identical to the extract. If such an insert can be 475 // found before hitting a conflicting insert, the extract's result id is 476 // replaced with the id of the values from the insert. 477 // 478 // Besides removing extracts this pass enables subsequent dead code elimination 479 // passes to delete the inserts. This pass performs best after access chains are 480 // converted to inserts and extracts and local loads and stores are eliminated. 481 Optimizer::PassToken CreateInsertExtractElimPass(); 482 483 // Creates a dead insert elimination pass. 484 // This pass processes each entry point function in the module, searching for 485 // unreferenced inserts into composite types. These are most often unused 486 // stores to vector components. They are unused because they are never 487 // referenced, or because there is another insert to the same component between 488 // the insert and the reference. After removing the inserts, dead code 489 // elimination is attempted on the inserted values. 490 // 491 // This pass performs best after access chains are converted to inserts and 492 // extracts and local loads and stores are eliminated. While executing this 493 // pass can be advantageous on its own, it is also advantageous to execute 494 // this pass after CreateInsertExtractPass() as it will remove any unused 495 // inserts created by that pass. 496 Optimizer::PassToken CreateDeadInsertElimPass(); 497 498 // Create aggressive dead code elimination pass 499 // This pass eliminates unused code from the module. In addition, 500 // it detects and eliminates code which may have spurious uses but which do 501 // not contribute to the output of the function. The most common cause of 502 // such code sequences is summations in loops whose result is no longer used 503 // due to dead code elimination. This optimization has additional compile 504 // time cost over standard dead code elimination. 505 // 506 // This pass only processes entry point functions. It also only processes 507 // shaders with relaxed logical addressing (see opt/instruction.h). It 508 // currently will not process functions with function calls. Unreachable 509 // functions are deleted. 510 // 511 // This pass will be made more effective by first running passes that remove 512 // dead control flow and inlines function calls. 513 // 514 // This pass can be especially useful after running Local Access Chain 515 // Conversion, which tends to cause cycles of dead code to be left after 516 // Store/Load elimination passes are completed. These cycles cannot be 517 // eliminated with standard dead code elimination. 518 // 519 // If |preserve_interface| is true, all non-io variables in the entry point 520 // interface are considered live and are not eliminated. This mode is needed 521 // by GPU-Assisted validation instrumentation, where a change in the interface 522 // is not allowed. 523 Optimizer::PassToken CreateAggressiveDCEPass(); 524 Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface); 525 526 // Creates a remove-unused-interface-variables pass. 527 // Removes variables referenced on the |OpEntryPoint| instruction that are not 528 // referenced in the entry point function or any function in its call tree. Note 529 // that this could cause the shader interface to no longer match other shader 530 // stages. 531 Optimizer::PassToken CreateRemoveUnusedInterfaceVariablesPass(); 532 533 // Creates an empty pass. 534 // This is deprecated and will be removed. 535 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. 536 // https://github.com/KhronosGroup/glslang/pull/2440 537 Optimizer::PassToken CreatePropagateLineInfoPass(); 538 539 // Creates an empty pass. 540 // This is deprecated and will be removed. 541 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests. 542 // https://github.com/KhronosGroup/glslang/pull/2440 543 Optimizer::PassToken CreateRedundantLineInfoElimPass(); 544 545 // Creates a compact ids pass. 546 // The pass remaps result ids to a compact and gapless range starting from %1. 547 Optimizer::PassToken CreateCompactIdsPass(); 548 549 // Creates a remove duplicate pass. 550 // This pass removes various duplicates: 551 // * duplicate capabilities; 552 // * duplicate extended instruction imports; 553 // * duplicate types; 554 // * duplicate decorations. 555 Optimizer::PassToken CreateRemoveDuplicatesPass(); 556 557 // Creates a CFG cleanup pass. 558 // This pass removes cruft from the control flow graph of functions that are 559 // reachable from entry points and exported functions. It currently includes the 560 // following functionality: 561 // 562 // - Removal of unreachable basic blocks. 563 Optimizer::PassToken CreateCFGCleanupPass(); 564 565 // Create dead variable elimination pass. 566 // This pass will delete module scope variables, along with their decorations, 567 // that are not referenced. 568 Optimizer::PassToken CreateDeadVariableEliminationPass(); 569 570 // create merge return pass. 571 // changes functions that have multiple return statements so they have a single 572 // return statement. 573 // 574 // for structured control flow it is assumed that the only unreachable blocks in 575 // the function are trivial merge and continue blocks. 576 // 577 // a trivial merge block contains the label and an opunreachable instructions, 578 // nothing else. a trivial continue block contain a label and an opbranch to 579 // the header, nothing else. 580 // 581 // these conditions are guaranteed to be met after running dead-branch 582 // elimination. 583 Optimizer::PassToken CreateMergeReturnPass(); 584 585 // Create value numbering pass. 586 // This pass will look for instructions in the same basic block that compute the 587 // same value, and remove the redundant ones. 588 Optimizer::PassToken CreateLocalRedundancyEliminationPass(); 589 590 // Create LICM pass. 591 // This pass will look for invariant instructions inside loops and hoist them to 592 // the loops preheader. 593 Optimizer::PassToken CreateLoopInvariantCodeMotionPass(); 594 595 // Creates a loop fission pass. 596 // This pass will split all top level loops whose register pressure exceedes the 597 // given |threshold|. 598 Optimizer::PassToken CreateLoopFissionPass(size_t threshold); 599 600 // Creates a loop fusion pass. 601 // This pass will look for adjacent loops that are compatible and legal to be 602 // fused. The fuse all such loops as long as the register usage for the fused 603 // loop stays under the threshold defined by |max_registers_per_loop|. 604 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop); 605 606 // Creates a loop peeling pass. 607 // This pass will look for conditions inside a loop that are true or false only 608 // for the N first or last iteration. For loop with such condition, those N 609 // iterations of the loop will be executed outside of the main loop. 610 // To limit code size explosion, the loop peeling can only happen if the code 611 // size growth for each loop is under |code_growth_threshold|. 612 Optimizer::PassToken CreateLoopPeelingPass(); 613 614 // Creates a loop unswitch pass. 615 // This pass will look for loop independent branch conditions and move the 616 // condition out of the loop and version the loop based on the taken branch. 617 // Works best after LICM and local multi store elimination pass. 618 Optimizer::PassToken CreateLoopUnswitchPass(); 619 620 // Create global value numbering pass. 621 // This pass will look for instructions where the same value is computed on all 622 // paths leading to the instruction. Those instructions are deleted. 623 Optimizer::PassToken CreateRedundancyEliminationPass(); 624 625 // Create scalar replacement pass. 626 // This pass replaces composite function scope variables with variables for each 627 // element if those elements are accessed individually. The parameter is a 628 // limit on the number of members in the composite variable that the pass will 629 // consider replacing. 630 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100); 631 632 // Create a private to local pass. 633 // This pass looks for variables declared in the private storage class that are 634 // used in only one function. Those variables are moved to the function storage 635 // class in the function that they are used. 636 Optimizer::PassToken CreatePrivateToLocalPass(); 637 638 // Creates a conditional constant propagation (CCP) pass. 639 // This pass implements the SSA-CCP algorithm in 640 // 641 // Constant propagation with conditional branches, 642 // Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 643 // 644 // Constant values in expressions and conditional jumps are folded and 645 // simplified. This may reduce code size by removing never executed jump targets 646 // and computations with constant operands. 647 Optimizer::PassToken CreateCCPPass(); 648 649 // Creates a workaround driver bugs pass. This pass attempts to work around 650 // a known driver bug (issue #1209) by identifying the bad code sequences and 651 // rewriting them. 652 // 653 // Current workaround: Avoid OpUnreachable instructions in loops. 654 Optimizer::PassToken CreateWorkaround1209Pass(); 655 656 // Creates a pass that converts if-then-else like assignments into OpSelect. 657 Optimizer::PassToken CreateIfConversionPass(); 658 659 // Creates a pass that will replace instructions that are not valid for the 660 // current shader stage by constants. Has no effect on non-shader modules. 661 Optimizer::PassToken CreateReplaceInvalidOpcodePass(); 662 663 // Creates a pass that simplifies instructions using the instruction folder. 664 Optimizer::PassToken CreateSimplificationPass(); 665 666 // Create loop unroller pass. 667 // Creates a pass to unroll loops which have the "Unroll" loop control 668 // mask set. The loops must meet a specific criteria in order to be unrolled 669 // safely this criteria is checked before doing the unroll by the 670 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria 671 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information. 672 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0); 673 674 // Create the SSA rewrite pass. 675 // This pass converts load/store operations on function local variables into 676 // operations on SSA IDs. This allows SSA optimizers to act on these variables. 677 // Only variables that are local to the function and of supported types are 678 // processed (see IsSSATargetVar for details). 679 Optimizer::PassToken CreateSSARewritePass(); 680 681 // Create pass to convert relaxed precision instructions to half precision. 682 // This pass converts as many relaxed float32 arithmetic operations to half as 683 // possible. It converts any float32 operands to half if needed. It converts 684 // any resulting half precision values back to float32 as needed. No variables 685 // are changed. No image operations are changed. 686 // 687 // Best if run after function scope store/load and composite operation 688 // eliminations are run. Also best if followed by instruction simplification, 689 // redundancy elimination and DCE. 690 Optimizer::PassToken CreateConvertRelaxedToHalfPass(); 691 692 // Create relax float ops pass. 693 // This pass decorates all float32 result instructions with RelaxedPrecision 694 // if not already so decorated. 695 Optimizer::PassToken CreateRelaxFloatOpsPass(); 696 697 // Create copy propagate arrays pass. 698 // This pass looks to copy propagate memory references for arrays. It looks 699 // for specific code patterns to recognize array copies. 700 Optimizer::PassToken CreateCopyPropagateArraysPass(); 701 702 // Create a vector dce pass. 703 // This pass looks for components of vectors that are unused, and removes them 704 // from the vector. Note this would still leave around lots of dead code that 705 // a pass of ADCE will be able to remove. 706 Optimizer::PassToken CreateVectorDCEPass(); 707 708 // Create a pass to reduce the size of loads. 709 // This pass looks for loads of structures where only a few of its members are 710 // used. It replaces the loads feeding an OpExtract with an OpAccessChain and 711 // a load of the specific elements. The parameter is a threshold to determine 712 // whether we have to replace the load or not. If the ratio of the used 713 // components of the load is less than the threshold, we replace the load. 714 Optimizer::PassToken CreateReduceLoadSizePass( 715 double load_replacement_threshold = 0.9); 716 717 // Create a pass to combine chained access chains. 718 // This pass looks for access chains fed by other access chains and combines 719 // them into a single instruction where possible. 720 Optimizer::PassToken CreateCombineAccessChainsPass(); 721 722 // Create a pass to instrument bindless descriptor checking 723 // This pass instruments all bindless references to check that descriptor 724 // array indices are inbounds, and if the descriptor indexing extension is 725 // enabled, that the descriptor has been initialized. If the reference is 726 // invalid, a record is written to the debug output buffer (if space allows) 727 // and a null value is returned. This pass is designed to support bindless 728 // validation in the Vulkan validation layers. 729 // 730 // TODO(greg-lunarg): Add support for buffer references. Currently only does 731 // checking for image references. 732 // 733 // Dead code elimination should be run after this pass as the original, 734 // potentially invalid code is not removed and could cause undefined behavior, 735 // including crashes. It may also be beneficial to run Simplification 736 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to 737 // optimize instrument code involving the testing of compile-time constants. 738 // It is also generally recommended that this pass (and all 739 // instrumentation passes) be run after any legalization and optimization 740 // passes. This will give better analysis for the instrumentation and avoid 741 // potentially de-optimizing the instrument code, for example, inlining 742 // the debug record output function throughout the module. 743 // 744 // The instrumentation will read and write buffers in debug 745 // descriptor set |desc_set|. It will write |shader_id| in each output record 746 // to identify the shader module which generated the record. 747 // |desc_length_enable| controls instrumentation of runtime descriptor array 748 // references, |desc_init_enable| controls instrumentation of descriptor 749 // initialization checking, and |buff_oob_enable| controls instrumentation 750 // of storage and uniform buffer bounds checking, all of which require input 751 // buffer support. |texbuff_oob_enable| controls instrumentation of texel 752 // buffers, which does not require input buffer support. 753 Optimizer::PassToken CreateInstBindlessCheckPass( 754 uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false, 755 bool desc_init_enable = false, bool buff_oob_enable = false, 756 bool texbuff_oob_enable = false); 757 758 // Create a pass to instrument physical buffer address checking 759 // This pass instruments all physical buffer address references to check that 760 // all referenced bytes fall in a valid buffer. If the reference is 761 // invalid, a record is written to the debug output buffer (if space allows) 762 // and a null value is returned. This pass is designed to support buffer 763 // address validation in the Vulkan validation layers. 764 // 765 // Dead code elimination should be run after this pass as the original, 766 // potentially invalid code is not removed and could cause undefined behavior, 767 // including crashes. Instruction simplification would likely also be 768 // beneficial. It is also generally recommended that this pass (and all 769 // instrumentation passes) be run after any legalization and optimization 770 // passes. This will give better analysis for the instrumentation and avoid 771 // potentially de-optimizing the instrument code, for example, inlining 772 // the debug record output function throughout the module. 773 // 774 // The instrumentation will read and write buffers in debug 775 // descriptor set |desc_set|. It will write |shader_id| in each output record 776 // to identify the shader module which generated the record. 777 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set, 778 uint32_t shader_id); 779 780 // Create a pass to instrument OpDebugPrintf instructions. 781 // This pass replaces all OpDebugPrintf instructions with instructions to write 782 // a record containing the string id and the all specified values into a special 783 // printf output buffer (if space allows). This pass is designed to support 784 // the printf validation in the Vulkan validation layers. 785 // 786 // The instrumentation will write buffers in debug descriptor set |desc_set|. 787 // It will write |shader_id| in each output record to identify the shader 788 // module which generated the record. 789 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set, 790 uint32_t shader_id); 791 792 // Create a pass to upgrade to the VulkanKHR memory model. 793 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR. 794 // Additionally, it modifies memory, image, atomic and barrier operations to 795 // conform to that model's requirements. 796 Optimizer::PassToken CreateUpgradeMemoryModelPass(); 797 798 // Create a pass to do code sinking. Code sinking is a transformation 799 // where an instruction is moved into a more deeply nested construct. 800 Optimizer::PassToken CreateCodeSinkingPass(); 801 802 // Create a pass to fix incorrect storage classes. In order to make code 803 // generation simpler, DXC may generate code where the storage classes do not 804 // match up correctly. This pass will fix the errors that it can. 805 Optimizer::PassToken CreateFixStorageClassPass(); 806 807 // Creates a graphics robust access pass. 808 // 809 // This pass injects code to clamp indexed accesses to buffers and internal 810 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules. 811 // 812 // TODO(dneto): Clamps coordinates and sample index for pointer calculations 813 // into storage images (OpImageTexelPointer). For an cube array image, it 814 // assumes the maximum layer count times 6 is at most 0xffffffff. 815 // 816 // NOTE: This pass will fail with a message if: 817 // - The module is not a Shader module. 818 // - The module declares VariablePointers, VariablePointersStorageBuffer, or 819 // RuntimeDescriptorArrayEXT capabilities. 820 // - The module uses an addressing model other than Logical 821 // - Access chain indices are wider than 64 bits. 822 // - Access chain index for a struct is not an OpConstant integer or is out 823 // of range. (The module is already invalid if that is the case.) 824 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits 825 // wide. 826 // 827 // NOTE: Access chain indices are always treated as signed integers. So 828 // if an array has a fixed size of more than 2^31 elements, then elements 829 // from 2^31 and above are never accessible with a 32-bit index, 830 // signed or unsigned. For this case, this pass will clamp the index 831 // between 0 and at 2^31-1, inclusive. 832 // Similarly, if an array has more then 2^15 element and is accessed with 833 // a 16-bit index, then elements from 2^15 and above are not accessible. 834 // In this case, the pass will clamp the index between 0 and 2^15-1 835 // inclusive. 836 Optimizer::PassToken CreateGraphicsRobustAccessPass(); 837 838 // Create a pass to spread Volatile semantics to variables with SMIDNV, 839 // WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask, 840 // SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn 841 // decorations or OpLoad for them when the shader model is the ray generation, 842 // closest hit, miss, intersection, or callable. This pass can be used for 843 // VUID-StandaloneSpirv-VulkanMemoryModel-04678 and 844 // VUID-StandaloneSpirv-VulkanMemoryModel-04679 (See "Standalone SPIR-V 845 // Validation" section of Vulkan spec "Appendix A: Vulkan Environment for 846 // SPIR-V"). When the SPIR-V version is 1.6 or above, the pass also spreads 847 // the Volatile semantics to a variable with HelperInvocation BuiltIn decoration 848 // in the fragement shader. 849 Optimizer::PassToken CreateSpreadVolatileSemanticsPass(); 850 851 // Create a pass to replace a descriptor access using variable index. 852 // This pass replaces every access using a variable index to array variable 853 // |desc| that has a DescriptorSet and Binding decorations with a constant 854 // element of the array. In order to replace the access using a variable index 855 // with the constant element, it uses a switch statement. 856 Optimizer::PassToken CreateReplaceDescArrayAccessUsingVarIndexPass(); 857 858 // Create descriptor scalar replacement pass. 859 // This pass replaces every array variable |desc| that has a DescriptorSet and 860 // Binding decorations with a new variable for each element of the array. 861 // Suppose |desc| was bound at binding |b|. Then the variable corresponding to 862 // |desc[i]| will have binding |b+i|. The descriptor set will be the same. It 863 // is assumed that no other variable already has a binding that will used by one 864 // of the new variables. If not, the pass will generate invalid Spir-V. All 865 // accesses to |desc| must be OpAccessChain instructions with a literal index 866 // for the first index. 867 Optimizer::PassToken CreateDescriptorScalarReplacementPass(); 868 869 // Create a pass to replace each OpKill instruction with a function call to a 870 // function that has a single OpKill. Also replace each OpTerminateInvocation 871 // instruction with a function call to a function that has a single 872 // OpTerminateInvocation. This allows more code to be inlined. 873 Optimizer::PassToken CreateWrapOpKillPass(); 874 875 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and 876 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and 877 // capabilities. 878 Optimizer::PassToken CreateAmdExtToKhrPass(); 879 880 // Replaces the internal version of GLSLstd450 InterpolateAt* extended 881 // instructions with the externally valid version. The internal version allows 882 // an OpLoad of the interpolant for the first argument. This pass removes the 883 // OpLoad and replaces it with its pointer. glslang and possibly other 884 // frontends will create the internal version for HLSL. This pass will be part 885 // of HLSL legalization and should be called after interpolants have been 886 // propagated into their final positions. 887 Optimizer::PassToken CreateInterpolateFixupPass(); 888 889 // Creates a convert-to-sampled-image pass to convert images and/or 890 // samplers with given pairs of descriptor set and binding to sampled image. 891 // If a pair of an image and a sampler have the same pair of descriptor set and 892 // binding that is one of the given pairs, they will be converted to a sampled 893 // image. In addition, if only an image has the descriptor set and binding that 894 // is one of the given pairs, it will be converted to a sampled image as well. 895 Optimizer::PassToken CreateConvertToSampledImagePass( 896 const std::vector<opt::DescriptorSetAndBinding>& 897 descriptor_set_binding_pairs); 898 899 } // namespace spvtools 900 901 #endif // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_ 902