• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2016 Google Inc.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
16 #define INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
17 
18 #include <memory>
19 #include <ostream>
20 #include <string>
21 #include <unordered_map>
22 #include <utility>
23 #include <vector>
24 
25 #include "libspirv.hpp"
26 
27 namespace spvtools {
28 
29 namespace opt {
30 class Pass;
31 struct DescriptorSetAndBinding;
32 }  // namespace opt
33 
34 // C++ interface for SPIR-V optimization functionalities. It wraps the context
35 // (including target environment and the corresponding SPIR-V grammar) and
36 // provides methods for registering optimization passes and optimizing.
37 //
38 // Instances of this class provides basic thread-safety guarantee.
39 class Optimizer {
40  public:
41   // The token for an optimization pass. It is returned via one of the
42   // Create*Pass() standalone functions at the end of this header file and
43   // consumed by the RegisterPass() method. Tokens are one-time objects that
44   // only support move; copying is not allowed.
45   struct PassToken {
46     struct Impl;  // Opaque struct for holding internal data.
47 
48     PassToken(std::unique_ptr<Impl>);
49 
50     // Tokens for built-in passes should be created using Create*Pass functions
51     // below; for out-of-tree passes, use this constructor instead.
52     // Note that this API isn't guaranteed to be stable and may change without
53     // preserving source or binary compatibility in the future.
54     PassToken(std::unique_ptr<opt::Pass>&& pass);
55 
56     // Tokens can only be moved. Copying is disabled.
57     PassToken(const PassToken&) = delete;
58     PassToken(PassToken&&);
59     PassToken& operator=(const PassToken&) = delete;
60     PassToken& operator=(PassToken&&);
61 
62     ~PassToken();
63 
64     std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
65   };
66 
67   // Constructs an instance with the given target |env|, which is used to decode
68   // the binaries to be optimized later.
69   //
70   // The instance will have an empty message consumer, which ignores all
71   // messages from the library. Use SetMessageConsumer() to supply a consumer
72   // if messages are of concern.
73   explicit Optimizer(spv_target_env env);
74 
75   // Disables copy/move constructor/assignment operations.
76   Optimizer(const Optimizer&) = delete;
77   Optimizer(Optimizer&&) = delete;
78   Optimizer& operator=(const Optimizer&) = delete;
79   Optimizer& operator=(Optimizer&&) = delete;
80 
81   // Destructs this instance.
82   ~Optimizer();
83 
84   // Sets the message consumer to the given |consumer|. The |consumer| will be
85   // invoked once for each message communicated from the library.
86   void SetMessageConsumer(MessageConsumer consumer);
87 
88   // Returns a reference to the registered message consumer.
89   const MessageConsumer& consumer() const;
90 
91   // Registers the given |pass| to this optimizer. Passes will be run in the
92   // exact order of registration. The token passed in will be consumed by this
93   // method.
94   Optimizer& RegisterPass(PassToken&& pass);
95 
96   // Registers passes that attempt to improve performance of generated code.
97   // This sequence of passes is subject to constant review and will change
98   // from time to time.
99   Optimizer& RegisterPerformancePasses();
100 
101   // Registers passes that attempt to improve the size of generated code.
102   // This sequence of passes is subject to constant review and will change
103   // from time to time.
104   Optimizer& RegisterSizePasses();
105 
106   // Registers passes that attempt to legalize the generated code.
107   //
108   // Note: this recipe is specially designed for legalizing SPIR-V. It should be
109   // used by compilers after translating HLSL source code literally. It should
110   // *not* be used by general workloads for performance or size improvement.
111   //
112   // This sequence of passes is subject to constant review and will change
113   // from time to time.
114   Optimizer& RegisterLegalizationPasses();
115 
116   // Register passes specified in the list of |flags|.  Each flag must be a
117   // string of a form accepted by Optimizer::FlagHasValidForm().
118   //
119   // If the list of flags contains an invalid entry, it returns false and an
120   // error message is emitted to the MessageConsumer object (use
121   // Optimizer::SetMessageConsumer to define a message consumer, if needed).
122   //
123   // If all the passes are registered successfully, it returns true.
124   bool RegisterPassesFromFlags(const std::vector<std::string>& flags);
125 
126   // Registers the optimization pass associated with |flag|.  This only accepts
127   // |flag| values of the form "--pass_name[=pass_args]".  If no such pass
128   // exists, it returns false.  Otherwise, the pass is registered and it returns
129   // true.
130   //
131   // The following flags have special meaning:
132   //
133   // -O: Registers all performance optimization passes
134   //     (Optimizer::RegisterPerformancePasses)
135   //
136   // -Os: Registers all size optimization passes
137   //      (Optimizer::RegisterSizePasses).
138   //
139   // --legalize-hlsl: Registers all passes that legalize SPIR-V generated by an
140   //                  HLSL front-end.
141   bool RegisterPassFromFlag(const std::string& flag);
142 
143   // Validates that |flag| has a valid format.  Strings accepted:
144   //
145   // --pass_name[=pass_args]
146   // -O
147   // -Os
148   //
149   // If |flag| takes one of the forms above, it returns true.  Otherwise, it
150   // returns false.
151   bool FlagHasValidForm(const std::string& flag) const;
152 
153   // Allows changing, after creation time, the target environment to be
154   // optimized for and validated.  Should be called before calling Run().
155   void SetTargetEnv(const spv_target_env env);
156 
157   // Optimizes the given SPIR-V module |original_binary| and writes the
158   // optimized binary into |optimized_binary|. The optimized binary uses
159   // the same SPIR-V version as the original binary.
160   //
161   // Returns true on successful optimization, whether or not the module is
162   // modified. Returns false if |original_binary| fails to validate or if errors
163   // occur when processing |original_binary| using any of the registered passes.
164   // In that case, no further passes are executed and the contents in
165   // |optimized_binary| may be invalid.
166   //
167   // By default, the binary is validated before any transforms are performed,
168   // and optionally after each transform.  Validation uses SPIR-V spec rules
169   // for the SPIR-V version named in the binary's header (at word offset 1).
170   // Additionally, if the target environment is a client API (such as
171   // Vulkan 1.1), then validate for that client API version, to the extent
172   // that it is verifiable from data in the binary itself.
173   //
174   // It's allowed to alias |original_binary| to the start of |optimized_binary|.
175   bool Run(const uint32_t* original_binary, size_t original_binary_size,
176            std::vector<uint32_t>* optimized_binary) const;
177 
178   // DEPRECATED: Same as above, except passes |options| to the validator when
179   // trying to validate the binary.  If |skip_validation| is true, then the
180   // caller is guaranteeing that |original_binary| is valid, and the validator
181   // will not be run.  The |max_id_bound| is the limit on the max id in the
182   // module.
183   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
184            std::vector<uint32_t>* optimized_binary,
185            const ValidatorOptions& options, bool skip_validation) const;
186 
187   // Same as above, except it takes an options object.  See the documentation
188   // for |OptimizerOptions| to see which options can be set.
189   //
190   // By default, the binary is validated before any transforms are performed,
191   // and optionally after each transform.  Validation uses SPIR-V spec rules
192   // for the SPIR-V version named in the binary's header (at word offset 1).
193   // Additionally, if the target environment is a client API (such as
194   // Vulkan 1.1), then validate for that client API version, to the extent
195   // that it is verifiable from data in the binary itself, or from the
196   // validator options set on the optimizer options.
197   bool Run(const uint32_t* original_binary, const size_t original_binary_size,
198            std::vector<uint32_t>* optimized_binary,
199            const spv_optimizer_options opt_options) const;
200 
201   // Returns a vector of strings with all the pass names added to this
202   // optimizer's pass manager. These strings are valid until the associated
203   // pass manager is destroyed.
204   std::vector<const char*> GetPassNames() const;
205 
206   // Sets the option to print the disassembly before each pass and after the
207   // last pass.  If |out| is null, then no output is generated.  Otherwise,
208   // output is sent to the |out| output stream.
209   Optimizer& SetPrintAll(std::ostream* out);
210 
211   // Sets the option to print the resource utilization of each pass. If |out|
212   // is null, then no output is generated. Otherwise, output is sent to the
213   // |out| output stream.
214   Optimizer& SetTimeReport(std::ostream* out);
215 
216   // Sets the option to validate the module after each pass.
217   Optimizer& SetValidateAfterAll(bool validate);
218 
219  private:
220   struct Impl;                  // Opaque struct for holding internal data.
221   std::unique_ptr<Impl> impl_;  // Unique pointer to internal data.
222 };
223 
224 // Creates a null pass.
225 // A null pass does nothing to the SPIR-V module to be optimized.
226 Optimizer::PassToken CreateNullPass();
227 
228 // Creates a strip-debug-info pass.
229 // A strip-debug-info pass removes all debug instructions (as documented in
230 // Section 3.42.2 of the SPIR-V spec) of the SPIR-V module to be optimized.
231 Optimizer::PassToken CreateStripDebugInfoPass();
232 
233 // [Deprecated] This will create a strip-nonsemantic-info pass.  See below.
234 Optimizer::PassToken CreateStripReflectInfoPass();
235 
236 // Creates a strip-nonsemantic-info pass.
237 // A strip-nonsemantic-info pass removes all reflections and explicitly
238 // non-semantic instructions.
239 Optimizer::PassToken CreateStripNonSemanticInfoPass();
240 
241 // Creates an eliminate-dead-functions pass.
242 // An eliminate-dead-functions pass will remove all functions that are not in
243 // the call trees rooted at entry points and exported functions.  These
244 // functions are not needed because they will never be called.
245 Optimizer::PassToken CreateEliminateDeadFunctionsPass();
246 
247 // Creates an eliminate-dead-members pass.
248 // An eliminate-dead-members pass will remove all unused members of structures.
249 // This will not affect the data layout of the remaining members.
250 Optimizer::PassToken CreateEliminateDeadMembersPass();
251 
252 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
253 // to the default values in the form of string.
254 // A set-spec-constant-default-value pass sets the default values for the
255 // spec constants that have SpecId decorations (i.e., those defined by
256 // OpSpecConstant{|True|False} instructions).
257 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
258     const std::unordered_map<uint32_t, std::string>& id_value_map);
259 
260 // Creates a set-spec-constant-default-value pass from a mapping from spec-ids
261 // to the default values in the form of bit pattern.
262 // A set-spec-constant-default-value pass sets the default values for the
263 // spec constants that have SpecId decorations (i.e., those defined by
264 // OpSpecConstant{|True|False} instructions).
265 Optimizer::PassToken CreateSetSpecConstantDefaultValuePass(
266     const std::unordered_map<uint32_t, std::vector<uint32_t>>& id_value_map);
267 
268 // Creates a flatten-decoration pass.
269 // A flatten-decoration pass replaces grouped decorations with equivalent
270 // ungrouped decorations.  That is, it replaces each OpDecorationGroup
271 // instruction and associated OpGroupDecorate and OpGroupMemberDecorate
272 // instructions with equivalent OpDecorate and OpMemberDecorate instructions.
273 // The pass does not attempt to preserve debug information for instructions
274 // it removes.
275 Optimizer::PassToken CreateFlattenDecorationPass();
276 
277 // Creates a freeze-spec-constant-value pass.
278 // A freeze-spec-constant pass specializes the value of spec constants to
279 // their default values. This pass only processes the spec constants that have
280 // SpecId decorations (defined by OpSpecConstant, OpSpecConstantTrue, or
281 // OpSpecConstantFalse instructions) and replaces them with their normal
282 // counterparts (OpConstant, OpConstantTrue, or OpConstantFalse). The
283 // corresponding SpecId annotation instructions will also be removed. This
284 // pass does not fold the newly added normal constants and does not process
285 // other spec constants defined by OpSpecConstantComposite or
286 // OpSpecConstantOp.
287 Optimizer::PassToken CreateFreezeSpecConstantValuePass();
288 
289 // Creates a fold-spec-constant-op-and-composite pass.
290 // A fold-spec-constant-op-and-composite pass folds spec constants defined by
291 // OpSpecConstantOp or OpSpecConstantComposite instruction, to normal Constants
292 // defined by OpConstantTrue, OpConstantFalse, OpConstant, OpConstantNull, or
293 // OpConstantComposite instructions. Note that spec constants defined with
294 // OpSpecConstant, OpSpecConstantTrue, or OpSpecConstantFalse instructions are
295 // not handled, as these instructions indicate their value are not determined
296 // and can be changed in future. A spec constant is foldable if all of its
297 // value(s) can be determined from the module. E.g., an integer spec constant
298 // defined with OpSpecConstantOp instruction can be folded if its value won't
299 // change later. This pass will replace the original OpSpecConstantOp
300 // instruction with an OpConstant instruction. When folding composite spec
301 // constants, new instructions may be inserted to define the components of the
302 // composite constant first, then the original spec constants will be replaced
303 // by OpConstantComposite instructions.
304 //
305 // There are some operations not supported yet:
306 //   OpSConvert, OpFConvert, OpQuantizeToF16 and
307 //   all the operations under Kernel capability.
308 // TODO(qining): Add support for the operations listed above.
309 Optimizer::PassToken CreateFoldSpecConstantOpAndCompositePass();
310 
311 // Creates a unify-constant pass.
312 // A unify-constant pass de-duplicates the constants. Constants with the exact
313 // same value and identical form will be unified and only one constant will
314 // be kept for each unique pair of type and value.
315 // There are several cases not handled by this pass:
316 //  1) Constants defined by OpConstantNull instructions (null constants) and
317 //  constants defined by OpConstantFalse, OpConstant or OpConstantComposite
318 //  with value 0 (zero-valued normal constants) are not considered equivalent.
319 //  So null constants won't be used to replace zero-valued normal constants,
320 //  vice versa.
321 //  2) Whenever there are decorations to the constant's result id id, the
322 //  constant won't be handled, which means, it won't be used to replace any
323 //  other constants, neither can other constants replace it.
324 //  3) NaN in float point format with different bit patterns are not unified.
325 Optimizer::PassToken CreateUnifyConstantPass();
326 
327 // Creates a eliminate-dead-constant pass.
328 // A eliminate-dead-constant pass removes dead constants, including normal
329 // constants defined by OpConstant, OpConstantComposite, OpConstantTrue, or
330 // OpConstantFalse and spec constants defined by OpSpecConstant,
331 // OpSpecConstantComposite, OpSpecConstantTrue, OpSpecConstantFalse or
332 // OpSpecConstantOp.
333 Optimizer::PassToken CreateEliminateDeadConstantPass();
334 
335 // Creates a strength-reduction pass.
336 // A strength-reduction pass will look for opportunities to replace an
337 // instruction with an equivalent and less expensive one.  For example,
338 // multiplying by a power of 2 can be replaced by a bit shift.
339 Optimizer::PassToken CreateStrengthReductionPass();
340 
341 // Creates a block merge pass.
342 // This pass searches for blocks with a single Branch to a block with no
343 // other predecessors and merges the blocks into a single block. Continue
344 // blocks and Merge blocks are not candidates for the second block.
345 //
346 // The pass is most useful after Dead Branch Elimination, which can leave
347 // such sequences of blocks. Merging them makes subsequent passes more
348 // effective, such as single block local store-load elimination.
349 //
350 // While this pass reduces the number of occurrences of this sequence, at
351 // this time it does not guarantee all such sequences are eliminated.
352 //
353 // Presence of phi instructions can inhibit this optimization. Handling
354 // these is left for future improvements.
355 Optimizer::PassToken CreateBlockMergePass();
356 
357 // Creates an exhaustive inline pass.
358 // An exhaustive inline pass attempts to exhaustively inline all function
359 // calls in all functions in an entry point call tree. The intent is to enable,
360 // albeit through brute force, analysis and optimization across function
361 // calls by subsequent optimization passes. As the inlining is exhaustive,
362 // there is no attempt to optimize for size or runtime performance. Functions
363 // that are not in the call tree of an entry point are not changed.
364 Optimizer::PassToken CreateInlineExhaustivePass();
365 
366 // Creates an opaque inline pass.
367 // An opaque inline pass inlines all function calls in all functions in all
368 // entry point call trees where the called function contains an opaque type
369 // in either its parameter types or return type. An opaque type is currently
370 // defined as Image, Sampler or SampledImage. The intent is to enable, albeit
371 // through brute force, analysis and optimization across these function calls
372 // by subsequent passes in order to remove the storing of opaque types which is
373 // not legal in Vulkan. Functions that are not in the call tree of an entry
374 // point are not changed.
375 Optimizer::PassToken CreateInlineOpaquePass();
376 
377 // Creates a single-block local variable load/store elimination pass.
378 // For every entry point function, do single block memory optimization of
379 // function variables referenced only with non-access-chain loads and stores.
380 // For each targeted variable load, if previous store to that variable in the
381 // block, replace the load's result id with the value id of the store.
382 // If previous load within the block, replace the current load's result id
383 // with the previous load's result id. In either case, delete the current
384 // load. Finally, check if any remaining stores are useless, and delete store
385 // and variable if possible.
386 //
387 // The presence of access chain references and function calls can inhibit
388 // the above optimization.
389 //
390 // Only modules with relaxed logical addressing (see opt/instruction.h) are
391 // currently processed.
392 //
393 // This pass is most effective if preceded by Inlining and
394 // LocalAccessChainConvert. This pass will reduce the work needed to be done
395 // by LocalSingleStoreElim and LocalMultiStoreElim.
396 //
397 // Only functions in the call tree of an entry point are processed.
398 Optimizer::PassToken CreateLocalSingleBlockLoadStoreElimPass();
399 
400 // Create dead branch elimination pass.
401 // For each entry point function, this pass will look for SelectionMerge
402 // BranchConditionals with constant condition and convert to a Branch to
403 // the indicated label. It will delete resulting dead blocks.
404 //
405 // For all phi functions in merge block, replace all uses with the id
406 // corresponding to the living predecessor.
407 //
408 // Note that some branches and blocks may be left to avoid creating invalid
409 // control flow. Improving this is left to future work.
410 //
411 // This pass is most effective when preceded by passes which eliminate
412 // local loads and stores, effectively propagating constant values where
413 // possible.
414 Optimizer::PassToken CreateDeadBranchElimPass();
415 
416 // Creates an SSA local variable load/store elimination pass.
417 // For every entry point function, eliminate all loads and stores of function
418 // scope variables only referenced with non-access-chain loads and stores.
419 // Eliminate the variables as well.
420 //
421 // The presence of access chain references and function calls can inhibit
422 // the above optimization.
423 //
424 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
425 // are currently processed. Currently modules with any extensions enabled are
426 // not processed. This is left for future work.
427 //
428 // This pass is most effective if preceded by Inlining and
429 // LocalAccessChainConvert. LocalSingleStoreElim and LocalSingleBlockElim
430 // will reduce the work that this pass has to do.
431 Optimizer::PassToken CreateLocalMultiStoreElimPass();
432 
433 // Creates a local access chain conversion pass.
434 // A local access chain conversion pass identifies all function scope
435 // variables which are accessed only with loads, stores and access chains
436 // with constant indices. It then converts all loads and stores of such
437 // variables into equivalent sequences of loads, stores, extracts and inserts.
438 //
439 // This pass only processes entry point functions. It currently only converts
440 // non-nested, non-ptr access chains. It does not process modules with
441 // non-32-bit integer types present. Optional memory access options on loads
442 // and stores are ignored as we are only processing function scope variables.
443 //
444 // This pass unifies access to these variables to a single mode and simplifies
445 // subsequent analysis and elimination of these variables along with their
446 // loads and stores allowing values to propagate to their points of use where
447 // possible.
448 Optimizer::PassToken CreateLocalAccessChainConvertPass();
449 
450 // Creates a local single store elimination pass.
451 // For each entry point function, this pass eliminates loads and stores for
452 // function scope variable that are stored to only once, where possible. Only
453 // whole variable loads and stores are eliminated; access-chain references are
454 // not optimized. Replace all loads of such variables with the value that is
455 // stored and eliminate any resulting dead code.
456 //
457 // Currently, the presence of access chains and function calls can inhibit this
458 // pass, however the Inlining and LocalAccessChainConvert passes can make it
459 // more effective. In additional, many non-load/store memory operations are
460 // not supported and will prohibit optimization of a function. Support of
461 // these operations are future work.
462 //
463 // Only shader modules with relaxed logical addressing (see opt/instruction.h)
464 // are currently processed.
465 //
466 // This pass will reduce the work needed to be done by LocalSingleBlockElim
467 // and LocalMultiStoreElim and can improve the effectiveness of other passes
468 // such as DeadBranchElimination which depend on values for their analysis.
469 Optimizer::PassToken CreateLocalSingleStoreElimPass();
470 
471 // Creates an insert/extract elimination pass.
472 // This pass processes each entry point function in the module, searching for
473 // extracts on a sequence of inserts. It further searches the sequence for an
474 // insert with indices identical to the extract. If such an insert can be
475 // found before hitting a conflicting insert, the extract's result id is
476 // replaced with the id of the values from the insert.
477 //
478 // Besides removing extracts this pass enables subsequent dead code elimination
479 // passes to delete the inserts. This pass performs best after access chains are
480 // converted to inserts and extracts and local loads and stores are eliminated.
481 Optimizer::PassToken CreateInsertExtractElimPass();
482 
483 // Creates a dead insert elimination pass.
484 // This pass processes each entry point function in the module, searching for
485 // unreferenced inserts into composite types. These are most often unused
486 // stores to vector components. They are unused because they are never
487 // referenced, or because there is another insert to the same component between
488 // the insert and the reference. After removing the inserts, dead code
489 // elimination is attempted on the inserted values.
490 //
491 // This pass performs best after access chains are converted to inserts and
492 // extracts and local loads and stores are eliminated. While executing this
493 // pass can be advantageous on its own, it is also advantageous to execute
494 // this pass after CreateInsertExtractPass() as it will remove any unused
495 // inserts created by that pass.
496 Optimizer::PassToken CreateDeadInsertElimPass();
497 
498 // Create aggressive dead code elimination pass
499 // This pass eliminates unused code from the module. In addition,
500 // it detects and eliminates code which may have spurious uses but which do
501 // not contribute to the output of the function. The most common cause of
502 // such code sequences is summations in loops whose result is no longer used
503 // due to dead code elimination. This optimization has additional compile
504 // time cost over standard dead code elimination.
505 //
506 // This pass only processes entry point functions. It also only processes
507 // shaders with relaxed logical addressing (see opt/instruction.h). It
508 // currently will not process functions with function calls. Unreachable
509 // functions are deleted.
510 //
511 // This pass will be made more effective by first running passes that remove
512 // dead control flow and inlines function calls.
513 //
514 // This pass can be especially useful after running Local Access Chain
515 // Conversion, which tends to cause cycles of dead code to be left after
516 // Store/Load elimination passes are completed. These cycles cannot be
517 // eliminated with standard dead code elimination.
518 //
519 // If |preserve_interface| is true, all non-io variables in the entry point
520 // interface are considered live and are not eliminated. This mode is needed
521 // by GPU-Assisted validation instrumentation, where a change in the interface
522 // is not allowed.
523 Optimizer::PassToken CreateAggressiveDCEPass();
524 Optimizer::PassToken CreateAggressiveDCEPass(bool preserve_interface);
525 
526 // Creates a remove-unused-interface-variables pass.
527 // Removes variables referenced on the |OpEntryPoint| instruction that are not
528 // referenced in the entry point function or any function in its call tree. Note
529 // that this could cause the shader interface to no longer match other shader
530 // stages.
531 Optimizer::PassToken CreateRemoveUnusedInterfaceVariablesPass();
532 
533 // Creates an empty pass.
534 // This is deprecated and will be removed.
535 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
536 //                https://github.com/KhronosGroup/glslang/pull/2440
537 Optimizer::PassToken CreatePropagateLineInfoPass();
538 
539 // Creates an empty pass.
540 // This is deprecated and will be removed.
541 // TODO(jaebaek): remove this pass after handling glslang's broken unit tests.
542 //                https://github.com/KhronosGroup/glslang/pull/2440
543 Optimizer::PassToken CreateRedundantLineInfoElimPass();
544 
545 // Creates a compact ids pass.
546 // The pass remaps result ids to a compact and gapless range starting from %1.
547 Optimizer::PassToken CreateCompactIdsPass();
548 
549 // Creates a remove duplicate pass.
550 // This pass removes various duplicates:
551 // * duplicate capabilities;
552 // * duplicate extended instruction imports;
553 // * duplicate types;
554 // * duplicate decorations.
555 Optimizer::PassToken CreateRemoveDuplicatesPass();
556 
557 // Creates a CFG cleanup pass.
558 // This pass removes cruft from the control flow graph of functions that are
559 // reachable from entry points and exported functions. It currently includes the
560 // following functionality:
561 //
562 // - Removal of unreachable basic blocks.
563 Optimizer::PassToken CreateCFGCleanupPass();
564 
565 // Create dead variable elimination pass.
566 // This pass will delete module scope variables, along with their decorations,
567 // that are not referenced.
568 Optimizer::PassToken CreateDeadVariableEliminationPass();
569 
570 // create merge return pass.
571 // changes functions that have multiple return statements so they have a single
572 // return statement.
573 //
574 // for structured control flow it is assumed that the only unreachable blocks in
575 // the function are trivial merge and continue blocks.
576 //
577 // a trivial merge block contains the label and an opunreachable instructions,
578 // nothing else.  a trivial continue block contain a label and an opbranch to
579 // the header, nothing else.
580 //
581 // these conditions are guaranteed to be met after running dead-branch
582 // elimination.
583 Optimizer::PassToken CreateMergeReturnPass();
584 
585 // Create value numbering pass.
586 // This pass will look for instructions in the same basic block that compute the
587 // same value, and remove the redundant ones.
588 Optimizer::PassToken CreateLocalRedundancyEliminationPass();
589 
590 // Create LICM pass.
591 // This pass will look for invariant instructions inside loops and hoist them to
592 // the loops preheader.
593 Optimizer::PassToken CreateLoopInvariantCodeMotionPass();
594 
595 // Creates a loop fission pass.
596 // This pass will split all top level loops whose register pressure exceedes the
597 // given |threshold|.
598 Optimizer::PassToken CreateLoopFissionPass(size_t threshold);
599 
600 // Creates a loop fusion pass.
601 // This pass will look for adjacent loops that are compatible and legal to be
602 // fused. The fuse all such loops as long as the register usage for the fused
603 // loop stays under the threshold defined by |max_registers_per_loop|.
604 Optimizer::PassToken CreateLoopFusionPass(size_t max_registers_per_loop);
605 
606 // Creates a loop peeling pass.
607 // This pass will look for conditions inside a loop that are true or false only
608 // for the N first or last iteration. For loop with such condition, those N
609 // iterations of the loop will be executed outside of the main loop.
610 // To limit code size explosion, the loop peeling can only happen if the code
611 // size growth for each loop is under |code_growth_threshold|.
612 Optimizer::PassToken CreateLoopPeelingPass();
613 
614 // Creates a loop unswitch pass.
615 // This pass will look for loop independent branch conditions and move the
616 // condition out of the loop and version the loop based on the taken branch.
617 // Works best after LICM and local multi store elimination pass.
618 Optimizer::PassToken CreateLoopUnswitchPass();
619 
620 // Create global value numbering pass.
621 // This pass will look for instructions where the same value is computed on all
622 // paths leading to the instruction.  Those instructions are deleted.
623 Optimizer::PassToken CreateRedundancyEliminationPass();
624 
625 // Create scalar replacement pass.
626 // This pass replaces composite function scope variables with variables for each
627 // element if those elements are accessed individually.  The parameter is a
628 // limit on the number of members in the composite variable that the pass will
629 // consider replacing.
630 Optimizer::PassToken CreateScalarReplacementPass(uint32_t size_limit = 100);
631 
632 // Create a private to local pass.
633 // This pass looks for variables declared in the private storage class that are
634 // used in only one function.  Those variables are moved to the function storage
635 // class in the function that they are used.
636 Optimizer::PassToken CreatePrivateToLocalPass();
637 
638 // Creates a conditional constant propagation (CCP) pass.
639 // This pass implements the SSA-CCP algorithm in
640 //
641 //      Constant propagation with conditional branches,
642 //      Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
643 //
644 // Constant values in expressions and conditional jumps are folded and
645 // simplified. This may reduce code size by removing never executed jump targets
646 // and computations with constant operands.
647 Optimizer::PassToken CreateCCPPass();
648 
649 // Creates a workaround driver bugs pass.  This pass attempts to work around
650 // a known driver bug (issue #1209) by identifying the bad code sequences and
651 // rewriting them.
652 //
653 // Current workaround: Avoid OpUnreachable instructions in loops.
654 Optimizer::PassToken CreateWorkaround1209Pass();
655 
656 // Creates a pass that converts if-then-else like assignments into OpSelect.
657 Optimizer::PassToken CreateIfConversionPass();
658 
659 // Creates a pass that will replace instructions that are not valid for the
660 // current shader stage by constants.  Has no effect on non-shader modules.
661 Optimizer::PassToken CreateReplaceInvalidOpcodePass();
662 
663 // Creates a pass that simplifies instructions using the instruction folder.
664 Optimizer::PassToken CreateSimplificationPass();
665 
666 // Create loop unroller pass.
667 // Creates a pass to unroll loops which have the "Unroll" loop control
668 // mask set. The loops must meet a specific criteria in order to be unrolled
669 // safely this criteria is checked before doing the unroll by the
670 // LoopUtils::CanPerformUnroll method. Any loop that does not meet the criteria
671 // won't be unrolled. See CanPerformUnroll LoopUtils.h for more information.
672 Optimizer::PassToken CreateLoopUnrollPass(bool fully_unroll, int factor = 0);
673 
674 // Create the SSA rewrite pass.
675 // This pass converts load/store operations on function local variables into
676 // operations on SSA IDs.  This allows SSA optimizers to act on these variables.
677 // Only variables that are local to the function and of supported types are
678 // processed (see IsSSATargetVar for details).
679 Optimizer::PassToken CreateSSARewritePass();
680 
681 // Create pass to convert relaxed precision instructions to half precision.
682 // This pass converts as many relaxed float32 arithmetic operations to half as
683 // possible. It converts any float32 operands to half if needed. It converts
684 // any resulting half precision values back to float32 as needed. No variables
685 // are changed. No image operations are changed.
686 //
687 // Best if run after function scope store/load and composite operation
688 // eliminations are run. Also best if followed by instruction simplification,
689 // redundancy elimination and DCE.
690 Optimizer::PassToken CreateConvertRelaxedToHalfPass();
691 
692 // Create relax float ops pass.
693 // This pass decorates all float32 result instructions with RelaxedPrecision
694 // if not already so decorated.
695 Optimizer::PassToken CreateRelaxFloatOpsPass();
696 
697 // Create copy propagate arrays pass.
698 // This pass looks to copy propagate memory references for arrays.  It looks
699 // for specific code patterns to recognize array copies.
700 Optimizer::PassToken CreateCopyPropagateArraysPass();
701 
702 // Create a vector dce pass.
703 // This pass looks for components of vectors that are unused, and removes them
704 // from the vector.  Note this would still leave around lots of dead code that
705 // a pass of ADCE will be able to remove.
706 Optimizer::PassToken CreateVectorDCEPass();
707 
708 // Create a pass to reduce the size of loads.
709 // This pass looks for loads of structures where only a few of its members are
710 // used.  It replaces the loads feeding an OpExtract with an OpAccessChain and
711 // a load of the specific elements.  The parameter is a threshold to determine
712 // whether we have to replace the load or not.  If the ratio of the used
713 // components of the load is less than the threshold, we replace the load.
714 Optimizer::PassToken CreateReduceLoadSizePass(
715     double load_replacement_threshold = 0.9);
716 
717 // Create a pass to combine chained access chains.
718 // This pass looks for access chains fed by other access chains and combines
719 // them into a single instruction where possible.
720 Optimizer::PassToken CreateCombineAccessChainsPass();
721 
722 // Create a pass to instrument bindless descriptor checking
723 // This pass instruments all bindless references to check that descriptor
724 // array indices are inbounds, and if the descriptor indexing extension is
725 // enabled, that the descriptor has been initialized. If the reference is
726 // invalid, a record is written to the debug output buffer (if space allows)
727 // and a null value is returned. This pass is designed to support bindless
728 // validation in the Vulkan validation layers.
729 //
730 // TODO(greg-lunarg): Add support for buffer references. Currently only does
731 // checking for image references.
732 //
733 // Dead code elimination should be run after this pass as the original,
734 // potentially invalid code is not removed and could cause undefined behavior,
735 // including crashes. It may also be beneficial to run Simplification
736 // (ie Constant Propagation), DeadBranchElim and BlockMerge after this pass to
737 // optimize instrument code involving the testing of compile-time constants.
738 // It is also generally recommended that this pass (and all
739 // instrumentation passes) be run after any legalization and optimization
740 // passes. This will give better analysis for the instrumentation and avoid
741 // potentially de-optimizing the instrument code, for example, inlining
742 // the debug record output function throughout the module.
743 //
744 // The instrumentation will read and write buffers in debug
745 // descriptor set |desc_set|. It will write |shader_id| in each output record
746 // to identify the shader module which generated the record.
747 // |desc_length_enable| controls instrumentation of runtime descriptor array
748 // references, |desc_init_enable| controls instrumentation of descriptor
749 // initialization checking, and |buff_oob_enable| controls instrumentation
750 // of storage and uniform buffer bounds checking, all of which require input
751 // buffer support. |texbuff_oob_enable| controls instrumentation of texel
752 // buffers, which does not require input buffer support.
753 Optimizer::PassToken CreateInstBindlessCheckPass(
754     uint32_t desc_set, uint32_t shader_id, bool desc_length_enable = false,
755     bool desc_init_enable = false, bool buff_oob_enable = false,
756     bool texbuff_oob_enable = false);
757 
758 // Create a pass to instrument physical buffer address checking
759 // This pass instruments all physical buffer address references to check that
760 // all referenced bytes fall in a valid buffer. If the reference is
761 // invalid, a record is written to the debug output buffer (if space allows)
762 // and a null value is returned. This pass is designed to support buffer
763 // address validation in the Vulkan validation layers.
764 //
765 // Dead code elimination should be run after this pass as the original,
766 // potentially invalid code is not removed and could cause undefined behavior,
767 // including crashes. Instruction simplification would likely also be
768 // beneficial. It is also generally recommended that this pass (and all
769 // instrumentation passes) be run after any legalization and optimization
770 // passes. This will give better analysis for the instrumentation and avoid
771 // potentially de-optimizing the instrument code, for example, inlining
772 // the debug record output function throughout the module.
773 //
774 // The instrumentation will read and write buffers in debug
775 // descriptor set |desc_set|. It will write |shader_id| in each output record
776 // to identify the shader module which generated the record.
777 Optimizer::PassToken CreateInstBuffAddrCheckPass(uint32_t desc_set,
778                                                  uint32_t shader_id);
779 
780 // Create a pass to instrument OpDebugPrintf instructions.
781 // This pass replaces all OpDebugPrintf instructions with instructions to write
782 // a record containing the string id and the all specified values into a special
783 // printf output buffer (if space allows). This pass is designed to support
784 // the printf validation in the Vulkan validation layers.
785 //
786 // The instrumentation will write buffers in debug descriptor set |desc_set|.
787 // It will write |shader_id| in each output record to identify the shader
788 // module which generated the record.
789 Optimizer::PassToken CreateInstDebugPrintfPass(uint32_t desc_set,
790                                                uint32_t shader_id);
791 
792 // Create a pass to upgrade to the VulkanKHR memory model.
793 // This pass upgrades the Logical GLSL450 memory model to Logical VulkanKHR.
794 // Additionally, it modifies memory, image, atomic and barrier operations to
795 // conform to that model's requirements.
796 Optimizer::PassToken CreateUpgradeMemoryModelPass();
797 
798 // Create a pass to do code sinking.  Code sinking is a transformation
799 // where an instruction is moved into a more deeply nested construct.
800 Optimizer::PassToken CreateCodeSinkingPass();
801 
802 // Create a pass to fix incorrect storage classes.  In order to make code
803 // generation simpler, DXC may generate code where the storage classes do not
804 // match up correctly.  This pass will fix the errors that it can.
805 Optimizer::PassToken CreateFixStorageClassPass();
806 
807 // Creates a graphics robust access pass.
808 //
809 // This pass injects code to clamp indexed accesses to buffers and internal
810 // arrays, providing guarantees satisfying Vulkan's robustBufferAccess rules.
811 //
812 // TODO(dneto): Clamps coordinates and sample index for pointer calculations
813 // into storage images (OpImageTexelPointer).  For an cube array image, it
814 // assumes the maximum layer count times 6 is at most 0xffffffff.
815 //
816 // NOTE: This pass will fail with a message if:
817 // - The module is not a Shader module.
818 // - The module declares VariablePointers, VariablePointersStorageBuffer, or
819 //   RuntimeDescriptorArrayEXT capabilities.
820 // - The module uses an addressing model other than Logical
821 // - Access chain indices are wider than 64 bits.
822 // - Access chain index for a struct is not an OpConstant integer or is out
823 //   of range. (The module is already invalid if that is the case.)
824 // - TODO(dneto): The OpImageTexelPointer coordinate component is not 32-bits
825 // wide.
826 //
827 // NOTE: Access chain indices are always treated as signed integers.  So
828 //   if an array has a fixed size of more than 2^31 elements, then elements
829 //   from 2^31 and above are never accessible with a 32-bit index,
830 //   signed or unsigned.  For this case, this pass will clamp the index
831 //   between 0 and at 2^31-1, inclusive.
832 //   Similarly, if an array has more then 2^15 element and is accessed with
833 //   a 16-bit index, then elements from 2^15 and above are not accessible.
834 //   In this case, the pass will clamp the index between 0 and 2^15-1
835 //   inclusive.
836 Optimizer::PassToken CreateGraphicsRobustAccessPass();
837 
838 // Create a pass to spread Volatile semantics to variables with SMIDNV,
839 // WarpIDNV, SubgroupSize, SubgroupLocalInvocationId, SubgroupEqMask,
840 // SubgroupGeMask, SubgroupGtMask, SubgroupLeMask, or SubgroupLtMask BuiltIn
841 // decorations or OpLoad for them when the shader model is the ray generation,
842 // closest hit, miss, intersection, or callable. This pass can be used for
843 // VUID-StandaloneSpirv-VulkanMemoryModel-04678 and
844 // VUID-StandaloneSpirv-VulkanMemoryModel-04679 (See "Standalone SPIR-V
845 // Validation" section of Vulkan spec "Appendix A: Vulkan Environment for
846 // SPIR-V"). When the SPIR-V version is 1.6 or above, the pass also spreads
847 // the Volatile semantics to a variable with HelperInvocation BuiltIn decoration
848 // in the fragement shader.
849 Optimizer::PassToken CreateSpreadVolatileSemanticsPass();
850 
851 // Create a pass to replace a descriptor access using variable index.
852 // This pass replaces every access using a variable index to array variable
853 // |desc| that has a DescriptorSet and Binding decorations with a constant
854 // element of the array. In order to replace the access using a variable index
855 // with the constant element, it uses a switch statement.
856 Optimizer::PassToken CreateReplaceDescArrayAccessUsingVarIndexPass();
857 
858 // Create descriptor scalar replacement pass.
859 // This pass replaces every array variable |desc| that has a DescriptorSet and
860 // Binding decorations with a new variable for each element of the array.
861 // Suppose |desc| was bound at binding |b|.  Then the variable corresponding to
862 // |desc[i]| will have binding |b+i|.  The descriptor set will be the same.  It
863 // is assumed that no other variable already has a binding that will used by one
864 // of the new variables.  If not, the pass will generate invalid Spir-V.  All
865 // accesses to |desc| must be OpAccessChain instructions with a literal index
866 // for the first index.
867 Optimizer::PassToken CreateDescriptorScalarReplacementPass();
868 
869 // Create a pass to replace each OpKill instruction with a function call to a
870 // function that has a single OpKill.  Also replace each OpTerminateInvocation
871 // instruction  with a function call to a function that has a single
872 // OpTerminateInvocation.  This allows more code to be inlined.
873 Optimizer::PassToken CreateWrapOpKillPass();
874 
875 // Replaces the extensions VK_AMD_shader_ballot,VK_AMD_gcn_shader, and
876 // VK_AMD_shader_trinary_minmax with equivalent code using core instructions and
877 // capabilities.
878 Optimizer::PassToken CreateAmdExtToKhrPass();
879 
880 // Replaces the internal version of GLSLstd450 InterpolateAt* extended
881 // instructions with the externally valid version. The internal version allows
882 // an OpLoad of the interpolant for the first argument. This pass removes the
883 // OpLoad and replaces it with its pointer. glslang and possibly other
884 // frontends will create the internal version for HLSL. This pass will be part
885 // of HLSL legalization and should be called after interpolants have been
886 // propagated into their final positions.
887 Optimizer::PassToken CreateInterpolateFixupPass();
888 
889 // Creates a convert-to-sampled-image pass to convert images and/or
890 // samplers with given pairs of descriptor set and binding to sampled image.
891 // If a pair of an image and a sampler have the same pair of descriptor set and
892 // binding that is one of the given pairs, they will be converted to a sampled
893 // image. In addition, if only an image has the descriptor set and binding that
894 // is one of the given pairs, it will be converted to a sampled image as well.
895 Optimizer::PassToken CreateConvertToSampledImagePass(
896     const std::vector<opt::DescriptorSetAndBinding>&
897         descriptor_set_binding_pairs);
898 
899 }  // namespace spvtools
900 
901 #endif  // INCLUDE_SPIRV_TOOLS_OPTIMIZER_HPP_
902