• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2018 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #ifndef SOURCE_UTIL_SMALL_VECTOR_H_
16 #define SOURCE_UTIL_SMALL_VECTOR_H_
17 
18 #include <cassert>
19 #include <iostream>
20 #include <memory>
21 #include <utility>
22 #include <vector>
23 
24 #include "source/util/make_unique.h"
25 
26 namespace spvtools {
27 namespace utils {
28 
29 // The |SmallVector| class is intended to be a drop-in replacement for
30 // |std::vector|.  The difference is in the implementation. A |SmallVector| is
31 // optimized for when the number of elements in the vector are small.  Small is
32 // defined by the template parameter |small_size|.
33 //
34 // Note that |SmallVector| is not always faster than an |std::vector|, so you
35 // should experiment with different values for |small_size| and compare to
36 // using and |std::vector|.
37 //
38 // TODO: I have implemented the public member functions from |std::vector| that
39 // I needed.  If others are needed they should be implemented. Do not implement
40 // public member functions that are not defined by std::vector.
41 template <class T, size_t small_size>
42 class SmallVector {
43  public:
44   using iterator = T*;
45   using const_iterator = const T*;
46 
SmallVector()47   SmallVector()
48       : size_(0),
49         small_data_(reinterpret_cast<T*>(buffer)),
50         large_data_(nullptr) {}
51 
SmallVector(const SmallVector & that)52   SmallVector(const SmallVector& that) : SmallVector() { *this = that; }
53 
SmallVector(SmallVector && that)54   SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); }
55 
SmallVector(const std::vector<T> & vec)56   SmallVector(const std::vector<T>& vec) : SmallVector() {
57     if (vec.size() > small_size) {
58       large_data_ = MakeUnique<std::vector<T>>(vec);
59     } else {
60       size_ = vec.size();
61       for (uint32_t i = 0; i < size_; i++) {
62         new (small_data_ + i) T(vec[i]);
63       }
64     }
65   }
66 
SmallVector(std::vector<T> && vec)67   SmallVector(std::vector<T>&& vec) : SmallVector() {
68     if (vec.size() > small_size) {
69       large_data_ = MakeUnique<std::vector<T>>(std::move(vec));
70     } else {
71       size_ = vec.size();
72       for (uint32_t i = 0; i < size_; i++) {
73         new (small_data_ + i) T(std::move(vec[i]));
74       }
75     }
76     vec.clear();
77   }
78 
SmallVector(std::initializer_list<T> init_list)79   SmallVector(std::initializer_list<T> init_list) : SmallVector() {
80     if (init_list.size() < small_size) {
81       for (auto it = init_list.begin(); it != init_list.end(); ++it) {
82         new (small_data_ + (size_++)) T(std::move(*it));
83       }
84     } else {
85       large_data_ = MakeUnique<std::vector<T>>(std::move(init_list));
86     }
87   }
88 
SmallVector(size_t s,const T & v)89   SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); }
90 
~SmallVector()91   virtual ~SmallVector() {
92     for (T* p = small_data_; p < small_data_ + size_; ++p) {
93       p->~T();
94     }
95   }
96 
97   SmallVector& operator=(const SmallVector& that) {
98     assert(small_data_);
99     if (that.large_data_) {
100       if (large_data_) {
101         *large_data_ = *that.large_data_;
102       } else {
103         large_data_ = MakeUnique<std::vector<T>>(*that.large_data_);
104       }
105     } else {
106       large_data_.reset(nullptr);
107       size_t i = 0;
108       // Do a copy for any element in |this| that is already constructed.
109       for (; i < size_ && i < that.size_; ++i) {
110         small_data_[i] = that.small_data_[i];
111       }
112 
113       if (i >= that.size_) {
114         // If the size of |this| becomes smaller after the assignment, then
115         // destroy any extra elements.
116         for (; i < size_; ++i) {
117           small_data_[i].~T();
118         }
119       } else {
120         // If the size of |this| becomes larger after the assignement, copy
121         // construct the new elements that are needed.
122         for (; i < that.size_; ++i) {
123           new (small_data_ + i) T(that.small_data_[i]);
124         }
125       }
126       size_ = that.size_;
127     }
128     return *this;
129   }
130 
131   SmallVector& operator=(SmallVector&& that) {
132     if (that.large_data_) {
133       large_data_.reset(that.large_data_.release());
134     } else {
135       large_data_.reset(nullptr);
136       size_t i = 0;
137       // Do a move for any element in |this| that is already constructed.
138       for (; i < size_ && i < that.size_; ++i) {
139         small_data_[i] = std::move(that.small_data_[i]);
140       }
141 
142       if (i >= that.size_) {
143         // If the size of |this| becomes smaller after the assignment, then
144         // destroy any extra elements.
145         for (; i < size_; ++i) {
146           small_data_[i].~T();
147         }
148       } else {
149         // If the size of |this| becomes larger after the assignement, move
150         // construct the new elements that are needed.
151         for (; i < that.size_; ++i) {
152           new (small_data_ + i) T(std::move(that.small_data_[i]));
153         }
154       }
155       size_ = that.size_;
156     }
157 
158     // Reset |that| because all of the data has been moved to |this|.
159     that.DestructSmallData();
160     return *this;
161   }
162 
163   template <class OtherVector>
164   friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) {
165     if (lhs.size() != rhs.size()) {
166       return false;
167     }
168 
169     auto rit = rhs.begin();
170     for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) {
171       if (*lit != *rit) {
172         return false;
173       }
174     }
175     return true;
176   }
177 
178 // Avoid infinite recursion from rewritten operators in C++20
179 #if __cplusplus <= 201703L
180   friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) {
181     return rhs == lhs;
182   }
183 #endif
184 
185   friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) {
186     return !(lhs == rhs);
187   }
188 
189   friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) {
190     return rhs != lhs;
191   }
192 
193   T& operator[](size_t i) {
194     if (!large_data_) {
195       return small_data_[i];
196     } else {
197       return (*large_data_)[i];
198     }
199   }
200 
201   const T& operator[](size_t i) const {
202     if (!large_data_) {
203       return small_data_[i];
204     } else {
205       return (*large_data_)[i];
206     }
207   }
208 
size()209   size_t size() const {
210     if (!large_data_) {
211       return size_;
212     } else {
213       return large_data_->size();
214     }
215   }
216 
begin()217   iterator begin() {
218     if (large_data_) {
219       return large_data_->data();
220     } else {
221       return small_data_;
222     }
223   }
224 
begin()225   const_iterator begin() const {
226     if (large_data_) {
227       return large_data_->data();
228     } else {
229       return small_data_;
230     }
231   }
232 
cbegin()233   const_iterator cbegin() const { return begin(); }
234 
end()235   iterator end() {
236     if (large_data_) {
237       return large_data_->data() + large_data_->size();
238     } else {
239       return small_data_ + size_;
240     }
241   }
242 
end()243   const_iterator end() const {
244     if (large_data_) {
245       return large_data_->data() + large_data_->size();
246     } else {
247       return small_data_ + size_;
248     }
249   }
250 
cend()251   const_iterator cend() const { return end(); }
252 
data()253   T* data() { return begin(); }
254 
data()255   const T* data() const { return cbegin(); }
256 
front()257   T& front() { return (*this)[0]; }
258 
front()259   const T& front() const { return (*this)[0]; }
260 
erase(const_iterator pos)261   iterator erase(const_iterator pos) { return erase(pos, pos + 1); }
262 
erase(const_iterator first,const_iterator last)263   iterator erase(const_iterator first, const_iterator last) {
264     if (large_data_) {
265       size_t start_index = first - large_data_->data();
266       size_t end_index = last - large_data_->data();
267       auto r = large_data_->erase(large_data_->begin() + start_index,
268                                   large_data_->begin() + end_index);
269       return large_data_->data() + (r - large_data_->begin());
270     }
271 
272     // Since C++11, std::vector has |const_iterator| for the parameters, so I
273     // follow that.  However, I need iterators to modify the current container,
274     // which is not const.  This is why I cast away the const.
275     iterator f = const_cast<iterator>(first);
276     iterator l = const_cast<iterator>(last);
277     iterator e = end();
278 
279     size_t num_of_del_elements = last - first;
280     iterator ret = f;
281     if (first == last) {
282       return ret;
283     }
284 
285     // Move |last| and any elements after it their earlier position.
286     while (l != e) {
287       *f = std::move(*l);
288       ++f;
289       ++l;
290     }
291 
292     // Destroy the elements that were supposed to be deleted.
293     while (f != l) {
294       f->~T();
295       ++f;
296     }
297 
298     // Update the size.
299     size_ -= num_of_del_elements;
300     return ret;
301   }
302 
push_back(const T & value)303   void push_back(const T& value) {
304     if (!large_data_ && size_ == small_size) {
305       MoveToLargeData();
306     }
307 
308     if (large_data_) {
309       large_data_->push_back(value);
310       return;
311     }
312 
313     new (small_data_ + size_) T(value);
314     ++size_;
315   }
316 
push_back(T && value)317   void push_back(T&& value) {
318     if (!large_data_ && size_ == small_size) {
319       MoveToLargeData();
320     }
321 
322     if (large_data_) {
323       large_data_->push_back(std::move(value));
324       return;
325     }
326 
327     new (small_data_ + size_) T(std::move(value));
328     ++size_;
329   }
330 
331   template <class InputIt>
insert(iterator pos,InputIt first,InputIt last)332   iterator insert(iterator pos, InputIt first, InputIt last) {
333     size_t element_idx = (pos - begin());
334     size_t num_of_new_elements = std::distance(first, last);
335     size_t new_size = size_ + num_of_new_elements;
336     if (!large_data_ && new_size > small_size) {
337       MoveToLargeData();
338     }
339 
340     if (large_data_) {
341       typename std::vector<T>::iterator new_pos =
342           large_data_->begin() + element_idx;
343       large_data_->insert(new_pos, first, last);
344       return begin() + element_idx;
345     }
346 
347     // Move |pos| and all of the elements after it over |num_of_new_elements|
348     // places.  We start at the end and work backwards, to make sure we do not
349     // overwrite data that we have not moved yet.
350     for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos;
351          --i, --j) {
352       if (i >= begin() + size_) {
353         new (i) T(std::move(*j));
354       } else {
355         *i = std::move(*j);
356       }
357     }
358 
359     // Copy the new elements into position.
360     iterator p = pos;
361     for (; first != last; ++p, ++first) {
362       if (p >= small_data_ + size_) {
363         new (p) T(*first);
364       } else {
365         *p = *first;
366       }
367     }
368 
369     // Update the size.
370     size_ += num_of_new_elements;
371     return pos;
372   }
373 
empty()374   bool empty() const {
375     if (large_data_) {
376       return large_data_->empty();
377     }
378     return size_ == 0;
379   }
380 
clear()381   void clear() {
382     if (large_data_) {
383       large_data_->clear();
384     } else {
385       DestructSmallData();
386     }
387   }
388 
389   template <class... Args>
emplace_back(Args &&...args)390   void emplace_back(Args&&... args) {
391     if (!large_data_ && size_ == small_size) {
392       MoveToLargeData();
393     }
394 
395     if (large_data_) {
396       large_data_->emplace_back(std::forward<Args>(args)...);
397     } else {
398       new (small_data_ + size_) T(std::forward<Args>(args)...);
399       ++size_;
400     }
401   }
402 
resize(size_t new_size,const T & v)403   void resize(size_t new_size, const T& v) {
404     if (!large_data_ && new_size > small_size) {
405       MoveToLargeData();
406     }
407 
408     if (large_data_) {
409       large_data_->resize(new_size, v);
410       return;
411     }
412 
413     // If |new_size| < |size_|, then destroy the extra elements.
414     for (size_t i = new_size; i < size_; ++i) {
415       small_data_[i].~T();
416     }
417 
418     // If |new_size| > |size_|, the copy construct the new elements.
419     for (size_t i = size_; i < new_size; ++i) {
420       new (small_data_ + i) T(v);
421     }
422 
423     // Update the size.
424     size_ = new_size;
425   }
426 
427  private:
428   // Moves all of the element from |small_data_| into a new std::vector that can
429   // be access through |large_data|.
MoveToLargeData()430   void MoveToLargeData() {
431     assert(!large_data_);
432     large_data_ = MakeUnique<std::vector<T>>();
433     for (size_t i = 0; i < size_; ++i) {
434       large_data_->emplace_back(std::move(small_data_[i]));
435     }
436     DestructSmallData();
437   }
438 
439   // Destroys all of the elements in |small_data_| that have been constructed.
DestructSmallData()440   void DestructSmallData() {
441     for (size_t i = 0; i < size_; ++i) {
442       small_data_[i].~T();
443     }
444     size_ = 0;
445   }
446 
447   // The number of elements in |small_data_| that have been constructed.
448   size_t size_;
449 
450   // The pointed used to access the array of elements when the number of
451   // elements is small.
452   T* small_data_;
453 
454   // The actual data used to store the array elements.  It must never be used
455   // directly, but must only be accessed through |small_data_|.
456   typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type
457       buffer[small_size];
458 
459   // A pointer to a vector that is used to store the elements of the vector when
460   // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data
461   // is stored in |small_data_|.  Otherwise, the data is stored in
462   // |large_data_|.
463   std::unique_ptr<std::vector<T>> large_data_;
464 };  // namespace utils
465 
466 }  // namespace utils
467 }  // namespace spvtools
468 
469 #endif  // SOURCE_UTIL_SMALL_VECTOR_H_
470