• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 
11 #define EIGEN_TEST_NO_LONGDOUBLE
12 
13 #define EIGEN_USE_GPU
14 
15 #include "main.h"
16 #include <unsupported/Eigen/CXX11/Tensor>
17 
18 #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
19 
20 using Eigen::Tensor;
21 
22 template <int Layout>
test_gpu_simple_argmax()23 void test_gpu_simple_argmax()
24 {
25   Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
26   Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
27   Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
28   in.setRandom();
29   in *= in.constant(100.0);
30   in(0, 0, 0) = -1000.0;
31   in(71, 52, 96) = 1000.0;
32 
33   std::size_t in_bytes = in.size() * sizeof(double);
34   std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
35 
36   double* d_in;
37   DenseIndex* d_out_max;
38   DenseIndex* d_out_min;
39   gpuMalloc((void**)(&d_in), in_bytes);
40   gpuMalloc((void**)(&d_out_max), out_bytes);
41   gpuMalloc((void**)(&d_out_min), out_bytes);
42 
43   gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice);
44 
45   Eigen::GpuStreamDevice stream;
46   Eigen::GpuDevice gpu_device(&stream);
47 
48   Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
49   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
50   Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
51 
52   gpu_out_max.device(gpu_device) = gpu_in.argmax();
53   gpu_out_min.device(gpu_device) = gpu_in.argmin();
54 
55   assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
56   assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
57   assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
58 
59   VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
60   VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
61 
62   gpuFree(d_in);
63   gpuFree(d_out_max);
64   gpuFree(d_out_min);
65 }
66 
67 template <int DataLayout>
test_gpu_argmax_dim()68 void test_gpu_argmax_dim()
69 {
70   Tensor<float, 4, DataLayout> tensor(2,3,5,7);
71   std::vector<int> dims;
72   dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
73 
74   for (int dim = 0; dim < 4; ++dim) {
75     tensor.setRandom();
76     tensor = (tensor + tensor.constant(0.5)).log();
77 
78     array<DenseIndex, 3> out_shape;
79     for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
80 
81     Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
82 
83     array<DenseIndex, 4> ix;
84     for (int i = 0; i < 2; ++i) {
85       for (int j = 0; j < 3; ++j) {
86         for (int k = 0; k < 5; ++k) {
87           for (int l = 0; l < 7; ++l) {
88             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
89             if (ix[dim] != 0) continue;
90             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
91             tensor(ix) = 10.0;
92           }
93         }
94       }
95     }
96 
97     std::size_t in_bytes = tensor.size() * sizeof(float);
98     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
99 
100     float* d_in;
101     DenseIndex* d_out;
102     gpuMalloc((void**)(&d_in), in_bytes);
103     gpuMalloc((void**)(&d_out), out_bytes);
104 
105     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
106 
107     Eigen::GpuStreamDevice stream;
108     Eigen::GpuDevice gpu_device(&stream);
109 
110     Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
111     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
112 
113     gpu_out.device(gpu_device) = gpu_in.argmax(dim);
114 
115     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
116     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
117 
118     VERIFY_IS_EQUAL(tensor_arg.size(),
119                     size_t(2*3*5*7 / tensor.dimension(dim)));
120 
121     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
122       // Expect max to be in the first index of the reduced dimension
123       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
124     }
125 
126     for (int i = 0; i < 2; ++i) {
127       for (int j = 0; j < 3; ++j) {
128         for (int k = 0; k < 5; ++k) {
129           for (int l = 0; l < 7; ++l) {
130             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
131             if (ix[dim] != tensor.dimension(dim) - 1) continue;
132             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
133             tensor(ix) = 20.0;
134           }
135         }
136       }
137     }
138 
139     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
140 
141     gpu_out.device(gpu_device) = gpu_in.argmax(dim);
142 
143     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
144     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
145 
146     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
147       // Expect max to be in the last index of the reduced dimension
148       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
149     }
150 
151     gpuFree(d_in);
152     gpuFree(d_out);
153   }
154 }
155 
156 template <int DataLayout>
test_gpu_argmin_dim()157 void test_gpu_argmin_dim()
158 {
159   Tensor<float, 4, DataLayout> tensor(2,3,5,7);
160   std::vector<int> dims;
161   dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
162 
163   for (int dim = 0; dim < 4; ++dim) {
164     tensor.setRandom();
165     tensor = (tensor + tensor.constant(0.5)).log();
166 
167     array<DenseIndex, 3> out_shape;
168     for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
169 
170     Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
171 
172     array<DenseIndex, 4> ix;
173     for (int i = 0; i < 2; ++i) {
174       for (int j = 0; j < 3; ++j) {
175         for (int k = 0; k < 5; ++k) {
176           for (int l = 0; l < 7; ++l) {
177             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
178             if (ix[dim] != 0) continue;
179             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
180             tensor(ix) = -10.0;
181           }
182         }
183       }
184     }
185 
186     std::size_t in_bytes = tensor.size() * sizeof(float);
187     std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
188 
189     float* d_in;
190     DenseIndex* d_out;
191     gpuMalloc((void**)(&d_in), in_bytes);
192     gpuMalloc((void**)(&d_out), out_bytes);
193 
194     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
195 
196     Eigen::GpuStreamDevice stream;
197     Eigen::GpuDevice gpu_device(&stream);
198 
199     Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
200     Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
201 
202     gpu_out.device(gpu_device) = gpu_in.argmin(dim);
203 
204     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
205     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
206 
207     VERIFY_IS_EQUAL(tensor_arg.size(),
208                     2*3*5*7 / tensor.dimension(dim));
209 
210     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
211       // Expect min to be in the first index of the reduced dimension
212       VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
213     }
214 
215     for (int i = 0; i < 2; ++i) {
216       for (int j = 0; j < 3; ++j) {
217         for (int k = 0; k < 5; ++k) {
218           for (int l = 0; l < 7; ++l) {
219             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
220             if (ix[dim] != tensor.dimension(dim) - 1) continue;
221             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
222             tensor(ix) = -20.0;
223           }
224         }
225       }
226     }
227 
228     gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
229 
230     gpu_out.device(gpu_device) = gpu_in.argmin(dim);
231 
232     assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
233     assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
234 
235     for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
236       // Expect max to be in the last index of the reduced dimension
237       VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
238     }
239 
240     gpuFree(d_in);
241     gpuFree(d_out);
242   }
243 }
244 
EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu)245 EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu)
246 {
247   CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>());
248   CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>());
249   CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>());
250   CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>());
251   CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>());
252   CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>());
253 }
254