• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::array;
24 using Eigen::SyclDevice;
25 using Eigen::Tensor;
26 using Eigen::TensorMap;
27 
28 template <typename DataType, int DataLayout, typename IndexType>
test_broadcast_sycl_fixed(const Eigen::SyclDevice & sycl_device)29 static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){
30 
31   // BROADCAST test:
32   IndexType inDim1=2;
33   IndexType inDim2=3;
34   IndexType inDim3=5;
35   IndexType inDim4=7;
36   IndexType bDim1=2;
37   IndexType bDim2=3;
38   IndexType bDim3=1;
39   IndexType bDim4=4;
40   array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}};
41   array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
42   array<IndexType, 4> out_range;  // = in_range * broadcasts
43   for (size_t i = 0; i < out_range.size(); ++i)
44     out_range[i] = in_range[i] * broadcasts[i];
45 
46   Tensor<DataType, 4, DataLayout, IndexType>  input(in_range);
47   Tensor<DataType, 4, DataLayout, IndexType> out(out_range);
48 
49   for (size_t i = 0; i < in_range.size(); ++i)
50     VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
51 
52 
53   for (IndexType i = 0; i < input.size(); ++i)
54     input(i) = static_cast<DataType>(i);
55 
56   DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
57   DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
58 
59   TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout, IndexType>> gpu_in(gpu_in_data, in_range);
60   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
61   sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
62   gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
63   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
64 
65   for (IndexType i = 0; i < inDim1*bDim1; ++i) {
66     for (IndexType j = 0; j < inDim2*bDim2; ++j) {
67       for (IndexType k = 0; k < inDim3*bDim3; ++k) {
68         for (IndexType l = 0; l < inDim4*bDim4; ++l) {
69           VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l));
70         }
71       }
72     }
73   }
74   printf("Broadcast Test with fixed size Passed\n");
75   sycl_device.deallocate(gpu_in_data);
76   sycl_device.deallocate(gpu_out_data);
77 }
78 
79 template <typename DataType, int DataLayout, typename IndexType>
test_broadcast_sycl(const Eigen::SyclDevice & sycl_device)80 static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){
81 
82   // BROADCAST test:
83   IndexType inDim1=2;
84   IndexType inDim2=3;
85   IndexType inDim3=5;
86   IndexType inDim4=7;
87   IndexType bDim1=2;
88   IndexType bDim2=3;
89   IndexType bDim3=1;
90   IndexType bDim4=4;
91   array<IndexType, 4> in_range   = {{inDim1, inDim2, inDim3, inDim4}};
92   array<IndexType, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
93   array<IndexType, 4> out_range;  // = in_range * broadcasts
94   for (size_t i = 0; i < out_range.size(); ++i)
95     out_range[i] = in_range[i] * broadcasts[i];
96 
97   Tensor<DataType, 4, DataLayout, IndexType>  input(in_range);
98   Tensor<DataType, 4, DataLayout, IndexType> out(out_range);
99 
100   for (size_t i = 0; i < in_range.size(); ++i)
101     VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
102 
103 
104   for (IndexType i = 0; i < input.size(); ++i)
105     input(i) = static_cast<DataType>(i);
106 
107   DataType * gpu_in_data  = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
108   DataType * gpu_out_data  = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
109 
110   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>>  gpu_in(gpu_in_data, in_range);
111   TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_out(gpu_out_data, out_range);
112   sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
113   gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
114   sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
115 
116   for (IndexType i = 0; i < inDim1*bDim1; ++i) {
117     for (IndexType j = 0; j < inDim2*bDim2; ++j) {
118       for (IndexType k = 0; k < inDim3*bDim3; ++k) {
119         for (IndexType l = 0; l < inDim4*bDim4; ++l) {
120           VERIFY_IS_APPROX(input(i%inDim1,j%inDim2,k%inDim3,l%inDim4), out(i,j,k,l));
121         }
122       }
123     }
124   }
125   printf("Broadcast Test Passed\n");
126   sycl_device.deallocate(gpu_in_data);
127   sycl_device.deallocate(gpu_out_data);
128 }
129 
sycl_broadcast_test_per_device(const cl::sycl::device & d)130 template<typename DataType> void sycl_broadcast_test_per_device(const cl::sycl::device& d){
131   std::cout << "Running on " << d.template get_info<cl::sycl::info::device::name>() << std::endl;
132   QueueInterface queueInterface(d);
133   auto sycl_device = Eigen::SyclDevice(&queueInterface);
134   test_broadcast_sycl<DataType, RowMajor, int64_t>(sycl_device);
135   test_broadcast_sycl<DataType, ColMajor, int64_t>(sycl_device);
136   test_broadcast_sycl_fixed<DataType, RowMajor, int64_t>(sycl_device);
137   test_broadcast_sycl_fixed<DataType, ColMajor, int64_t>(sycl_device);
138 }
139 
EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl)140 EIGEN_DECLARE_TEST(cxx11_tensor_broadcast_sycl) {
141   for (const auto& device :Eigen::get_sycl_supported_devices()) {
142     CALL_SUBTEST(sycl_broadcast_test_per_device<float>(device));
143   }
144 }
145