• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #define EIGEN_TEST_NO_LONGDOUBLE
12 #define EIGEN_TEST_NO_COMPLEX
13 
14 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
15 #define EIGEN_USE_GPU
16 
17 #include "main.h"
18 #include <unsupported/Eigen/CXX11/Tensor>
19 
20 #include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
21 
22 using Eigen::Tensor;
23 typedef Tensor<float, 1>::DimensionPair DimPair;
24 
25 template<int DataLayout>
test_gpu_contraction(int m_size,int k_size,int n_size)26 void test_gpu_contraction(int m_size, int k_size, int n_size)
27 {
28   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
29   // with these dimensions, the output has 300 * 140 elements, which is
30   // more than 30 * 1024, which is the number of threads in blocks on
31   // a 15 SM GK110 GPU
32   Tensor<float, 2, DataLayout> t_left(m_size, k_size);
33   Tensor<float, 2, DataLayout> t_right(k_size, n_size);
34   Tensor<float, 2, DataLayout> t_result(m_size, n_size);
35   Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size);
36   Eigen::array<DimPair, 1> dims(DimPair(1, 0));
37 
38   t_left.setRandom();
39   t_right.setRandom();
40 
41   std::size_t t_left_bytes = t_left.size()  * sizeof(float);
42   std::size_t t_right_bytes = t_right.size() * sizeof(float);
43   std::size_t t_result_bytes = t_result.size() * sizeof(float);
44 
45   float* d_t_left;
46   float* d_t_right;
47   float* d_t_result;
48 
49   gpuMalloc((void**)(&d_t_left), t_left_bytes);
50   gpuMalloc((void**)(&d_t_right), t_right_bytes);
51   gpuMalloc((void**)(&d_t_result), t_result_bytes);
52 
53   gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice);
54   gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice);
55 
56   Eigen::GpuStreamDevice stream;
57   Eigen::GpuDevice gpu_device(&stream);
58 
59   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
60       gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size));
61   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
62       gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size));
63   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
64       gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size));
65 
66 
67   gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
68   t_result = t_left.contract(t_right, dims);
69 
70   gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
71   for (DenseIndex i = 0; i < t_result.size(); i++) {
72     if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
73       continue;
74     }
75     if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
76       continue;
77     }
78     std::cout << "mismatch detected at index " << i << ": " << t_result(i)
79               << " vs " <<  t_result_gpu(i) << std::endl;
80     assert(false);
81   }
82 
83   gpuFree((void*)d_t_left);
84   gpuFree((void*)d_t_right);
85   gpuFree((void*)d_t_result);
86 }
87 
88 
89 template<int DataLayout>
test_scalar(int m_size,int k_size,int n_size)90 void test_scalar(int m_size, int k_size, int n_size)
91 {
92   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
93   // with these dimensions, the output has 300 * 140 elements, which is
94   // more than 30 * 1024, which is the number of threads in blocks on
95   // a 15 SM GK110 GPU
96   Tensor<float, 2, DataLayout> t_left(m_size, k_size);
97   Tensor<float, 2, DataLayout> t_right(k_size, n_size);
98   Tensor<float, 0, DataLayout> t_result;
99   Tensor<float, 0, DataLayout> t_result_gpu;
100   Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1));
101 
102   t_left.setRandom();
103   t_right.setRandom();
104 
105   std::size_t t_left_bytes = t_left.size()  * sizeof(float);
106   std::size_t t_right_bytes = t_right.size() * sizeof(float);
107   std::size_t t_result_bytes = sizeof(float);
108 
109   float* d_t_left;
110   float* d_t_right;
111   float* d_t_result;
112 
113   gpuMalloc((void**)(&d_t_left), t_left_bytes);
114   gpuMalloc((void**)(&d_t_right), t_right_bytes);
115   gpuMalloc((void**)(&d_t_result), t_result_bytes);
116 
117   gpuMemcpy(d_t_left, t_left.data(), t_left_bytes, gpuMemcpyHostToDevice);
118   gpuMemcpy(d_t_right, t_right.data(), t_right_bytes, gpuMemcpyHostToDevice);
119 
120   Eigen::GpuStreamDevice stream;
121   Eigen::GpuDevice gpu_device(&stream);
122 
123   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
124       gpu_t_left(d_t_left, m_size, k_size);
125   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
126       gpu_t_right(d_t_right, k_size, n_size);
127   Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> >
128       gpu_t_result(d_t_result);
129 
130   gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
131   t_result = t_left.contract(t_right, dims);
132 
133   gpuMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, gpuMemcpyDeviceToHost);
134   if (fabs(t_result() - t_result_gpu()) > 1e-4f &&
135       !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
136     std::cout << "mismatch detected: " << t_result()
137               << " vs " <<  t_result_gpu() << std::endl;
138     assert(false);
139   }
140 
141   gpuFree((void*)d_t_left);
142   gpuFree((void*)d_t_right);
143   gpuFree((void*)d_t_result);
144 }
145 
146 
147 template<int DataLayout>
test_gpu_contraction_m()148 void test_gpu_contraction_m() {
149   for (int k = 32; k < 256; k++) {
150     test_gpu_contraction<ColMajor>(k, 128, 128);
151     test_gpu_contraction<RowMajor>(k, 128, 128);
152   }
153 }
154 
155 template<int DataLayout>
test_gpu_contraction_k()156 void test_gpu_contraction_k() {
157   for (int k = 32; k < 256; k++) {
158     test_gpu_contraction<ColMajor>(128, k, 128);
159     test_gpu_contraction<RowMajor>(128, k, 128);
160   }
161 }
162 
163 template<int DataLayout>
test_gpu_contraction_n()164 void test_gpu_contraction_n() {
165   for (int k = 32; k < 256; k++) {
166     test_gpu_contraction<ColMajor>(128, 128, k);
167     test_gpu_contraction<RowMajor>(128, 128, k);
168   }
169 }
170 
171 
172 template<int DataLayout>
test_gpu_contraction_sizes()173 void test_gpu_contraction_sizes() {
174   int m_sizes[] = { 31,  39,   63,   64,   65,
175                    127, 129,  255,  257 , 511,
176                    512, 513, 1023, 1024, 1025};
177 
178   int n_sizes[] = { 31,  39,   63,   64,   65,
179                    127, 129,  255,  257,  511,
180                    512, 513, 1023, 1024, 1025};
181 
182   int k_sizes[] = {  31,   39,  63,  64,   65,
183                      95,   96, 127, 129,  255,
184                     257,  511, 512, 513, 1023,
185                    1024, 1025};
186 
187   for (int i = 0; i < 15; i++) {
188     for (int j = 0; j < 15; j++) {
189       for (int k = 0; k < 17; k++) {
190         test_gpu_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
191       }
192     }
193   }
194 }
195 
EIGEN_DECLARE_TEST(cxx11_tensor_contract_gpu)196 EIGEN_DECLARE_TEST(cxx11_tensor_contract_gpu)
197 {
198   CALL_SUBTEST_1(test_gpu_contraction<ColMajor>(128, 128, 128));
199   CALL_SUBTEST_1(test_gpu_contraction<RowMajor>(128, 128, 128));
200 
201   CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128));
202   CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128));
203 
204   CALL_SUBTEST_2(test_gpu_contraction_m<ColMajor>());
205   CALL_SUBTEST_3(test_gpu_contraction_m<RowMajor>());
206 
207   CALL_SUBTEST_4(test_gpu_contraction_k<ColMajor>());
208   CALL_SUBTEST_5(test_gpu_contraction_k<RowMajor>());
209 
210   CALL_SUBTEST_6(test_gpu_contraction_n<ColMajor>());
211   CALL_SUBTEST_7(test_gpu_contraction_n<RowMajor>());
212 
213 #if !defined(EIGEN_USE_HIP)
214 // disable these subtests for HIP
215   CALL_SUBTEST_8(test_gpu_contraction_sizes<ColMajor>());
216   CALL_SUBTEST_9(test_gpu_contraction_sizes<RowMajor>());
217 #endif
218 }
219