• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 // Benoit Steiner <benoit.steiner.goog@gmail.com>
10 //
11 // This Source Code Form is subject to the terms of the Mozilla
12 // Public License v. 2.0. If a copy of the MPL was not distributed
13 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
14 
15 #define EIGEN_TEST_NO_LONGDOUBLE
16 #define EIGEN_TEST_NO_COMPLEX
17 
18 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
19 #define EIGEN_USE_SYCL
20 
21 #include "main.h"
22 
23 #include <Eigen/CXX11/Tensor>
24 
25 using Eigen::Tensor;
26 
27 template <typename DataType, int DataLayout, typename IndexType>
test_simple_patch_sycl(const Eigen::SyclDevice & sycl_device)28 static void test_simple_patch_sycl(const Eigen::SyclDevice& sycl_device){
29 
30   IndexType sizeDim1 = 2;
31   IndexType sizeDim2 = 3;
32   IndexType sizeDim3 = 5;
33   IndexType sizeDim4 = 7;
34   array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
35   array<IndexType, 5> patchTensorRange;
36   if (DataLayout == ColMajor) {
37    patchTensorRange = {{1, 1, 1, 1, sizeDim1*sizeDim2*sizeDim3*sizeDim4}};
38   }else{
39      patchTensorRange = {{sizeDim1*sizeDim2*sizeDim3*sizeDim4,1, 1, 1, 1}};
40   }
41 
42   Tensor<DataType, 4, DataLayout,IndexType> tensor(tensorRange);
43   Tensor<DataType, 5, DataLayout,IndexType> no_patch(patchTensorRange);
44 
45   tensor.setRandom();
46 
47   array<ptrdiff_t, 4> patch_dims;
48   patch_dims[0] = 1;
49   patch_dims[1] = 1;
50   patch_dims[2] = 1;
51   patch_dims[3] = 1;
52 
53   const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
54   size_t patchTensorBuffSize =no_patch.size()*sizeof(DataType);
55   DataType* gpu_data_tensor  = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
56   DataType* gpu_data_no_patch  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
57 
58   TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
59   TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_no_patch(gpu_data_no_patch, patchTensorRange);
60 
61   sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
62   gpu_no_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
63   sycl_device.memcpyDeviceToHost(no_patch.data(), gpu_data_no_patch, patchTensorBuffSize);
64 
65   if (DataLayout == ColMajor) {
66     VERIFY_IS_EQUAL(no_patch.dimension(0), 1);
67     VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
68     VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
69     VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
70     VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size());
71   } else {
72     VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size());
73     VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
74     VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
75     VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
76     VERIFY_IS_EQUAL(no_patch.dimension(4), 1);
77   }
78 
79   for (int i = 0; i < tensor.size(); ++i) {
80     VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]);
81   }
82 
83   patch_dims[0] = 2;
84   patch_dims[1] = 3;
85   patch_dims[2] = 5;
86   patch_dims[3] = 7;
87 
88   if (DataLayout == ColMajor) {
89    patchTensorRange = {{sizeDim1,sizeDim2,sizeDim3,sizeDim4,1}};
90   }else{
91      patchTensorRange = {{1,sizeDim1,sizeDim2,sizeDim3,sizeDim4}};
92   }
93   Tensor<DataType, 5, DataLayout,IndexType> single_patch(patchTensorRange);
94   patchTensorBuffSize =single_patch.size()*sizeof(DataType);
95   DataType* gpu_data_single_patch  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
96   TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_single_patch(gpu_data_single_patch, patchTensorRange);
97 
98   gpu_single_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
99   sycl_device.memcpyDeviceToHost(single_patch.data(), gpu_data_single_patch, patchTensorBuffSize);
100 
101   if (DataLayout == ColMajor) {
102     VERIFY_IS_EQUAL(single_patch.dimension(0), 2);
103     VERIFY_IS_EQUAL(single_patch.dimension(1), 3);
104     VERIFY_IS_EQUAL(single_patch.dimension(2), 5);
105     VERIFY_IS_EQUAL(single_patch.dimension(3), 7);
106     VERIFY_IS_EQUAL(single_patch.dimension(4), 1);
107   } else {
108     VERIFY_IS_EQUAL(single_patch.dimension(0), 1);
109     VERIFY_IS_EQUAL(single_patch.dimension(1), 2);
110     VERIFY_IS_EQUAL(single_patch.dimension(2), 3);
111     VERIFY_IS_EQUAL(single_patch.dimension(3), 5);
112     VERIFY_IS_EQUAL(single_patch.dimension(4), 7);
113   }
114 
115   for (int i = 0; i < tensor.size(); ++i) {
116     VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]);
117   }
118   patch_dims[0] = 1;
119   patch_dims[1] = 2;
120   patch_dims[2] = 2;
121   patch_dims[3] = 1;
122 
123   if (DataLayout == ColMajor) {
124    patchTensorRange = {{1,2,2,1,2*2*4*7}};
125   }else{
126      patchTensorRange = {{2*2*4*7, 1, 2,2,1}};
127   }
128   Tensor<DataType, 5, DataLayout,IndexType> twod_patch(patchTensorRange);
129   patchTensorBuffSize =twod_patch.size()*sizeof(DataType);
130   DataType* gpu_data_twod_patch  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
131   TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_twod_patch(gpu_data_twod_patch, patchTensorRange);
132 
133   gpu_twod_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
134   sycl_device.memcpyDeviceToHost(twod_patch.data(), gpu_data_twod_patch, patchTensorBuffSize);
135 
136   if (DataLayout == ColMajor) {
137     VERIFY_IS_EQUAL(twod_patch.dimension(0), 1);
138     VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
139     VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
140     VERIFY_IS_EQUAL(twod_patch.dimension(3), 1);
141     VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7);
142   } else {
143     VERIFY_IS_EQUAL(twod_patch.dimension(0), 2*2*4*7);
144     VERIFY_IS_EQUAL(twod_patch.dimension(1), 1);
145     VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
146     VERIFY_IS_EQUAL(twod_patch.dimension(3), 2);
147     VERIFY_IS_EQUAL(twod_patch.dimension(4), 1);
148   }
149 
150   for (int i = 0; i < 2; ++i) {
151     for (int j = 0; j < 2; ++j) {
152       for (int k = 0; k < 4; ++k) {
153         for (int l = 0; l < 7; ++l) {
154           int patch_loc;
155           if (DataLayout == ColMajor) {
156             patch_loc = i + 2 * (j + 2 * (k + 4 * l));
157           } else {
158             patch_loc = l + 7 * (k + 4 * (j + 2 * i));
159           }
160           for (int x = 0; x < 2; ++x) {
161             for (int y = 0; y < 2; ++y) {
162               if (DataLayout == ColMajor) {
163                 VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc));
164               } else {
165                 VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(patch_loc,0,x,y,0));
166               }
167             }
168           }
169         }
170       }
171     }
172   }
173 
174   patch_dims[0] = 1;
175   patch_dims[1] = 2;
176   patch_dims[2] = 3;
177   patch_dims[3] = 5;
178 
179   if (DataLayout == ColMajor) {
180    patchTensorRange = {{1,2,3,5,2*2*3*3}};
181   }else{
182      patchTensorRange = {{2*2*3*3, 1, 2,3,5}};
183   }
184   Tensor<DataType, 5, DataLayout,IndexType> threed_patch(patchTensorRange);
185   patchTensorBuffSize =threed_patch.size()*sizeof(DataType);
186   DataType* gpu_data_threed_patch  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
187   TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_threed_patch(gpu_data_threed_patch, patchTensorRange);
188 
189   gpu_threed_patch.device(sycl_device)=gpu_tensor.extract_patches(patch_dims);
190   sycl_device.memcpyDeviceToHost(threed_patch.data(), gpu_data_threed_patch, patchTensorBuffSize);
191 
192   if (DataLayout == ColMajor) {
193     VERIFY_IS_EQUAL(threed_patch.dimension(0), 1);
194     VERIFY_IS_EQUAL(threed_patch.dimension(1), 2);
195     VERIFY_IS_EQUAL(threed_patch.dimension(2), 3);
196     VERIFY_IS_EQUAL(threed_patch.dimension(3), 5);
197     VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3);
198   } else {
199     VERIFY_IS_EQUAL(threed_patch.dimension(0), 2*2*3*3);
200     VERIFY_IS_EQUAL(threed_patch.dimension(1), 1);
201     VERIFY_IS_EQUAL(threed_patch.dimension(2), 2);
202     VERIFY_IS_EQUAL(threed_patch.dimension(3), 3);
203     VERIFY_IS_EQUAL(threed_patch.dimension(4), 5);
204   }
205 
206   for (int i = 0; i < 2; ++i) {
207     for (int j = 0; j < 2; ++j) {
208       for (int k = 0; k < 3; ++k) {
209         for (int l = 0; l < 3; ++l) {
210           int patch_loc;
211           if (DataLayout == ColMajor) {
212             patch_loc = i + 2 * (j + 2 * (k + 3 * l));
213           } else {
214             patch_loc = l + 3 * (k + 3 * (j + 2 * i));
215           }
216           for (int x = 0; x < 2; ++x) {
217             for (int y = 0; y < 3; ++y) {
218               for (int z = 0; z < 5; ++z) {
219                 if (DataLayout == ColMajor) {
220                   VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc));
221                 } else {
222                   VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(patch_loc,0,x,y,z));
223                 }
224               }
225             }
226           }
227         }
228       }
229     }
230   }
231   sycl_device.deallocate(gpu_data_tensor);
232   sycl_device.deallocate(gpu_data_no_patch);
233   sycl_device.deallocate(gpu_data_single_patch);
234   sycl_device.deallocate(gpu_data_twod_patch);
235   sycl_device.deallocate(gpu_data_threed_patch);
236 }
237 
sycl_tensor_patch_test_per_device(dev_Selector s)238 template<typename DataType, typename dev_Selector> void sycl_tensor_patch_test_per_device(dev_Selector s){
239   QueueInterface queueInterface(s);
240   auto sycl_device = Eigen::SyclDevice(&queueInterface);
241   test_simple_patch_sycl<DataType, RowMajor, int64_t>(sycl_device);
242   test_simple_patch_sycl<DataType, ColMajor, int64_t>(sycl_device);
243 }
EIGEN_DECLARE_TEST(cxx11_tensor_patch_sycl)244 EIGEN_DECLARE_TEST(cxx11_tensor_patch_sycl)
245 {
246   for (const auto& device :Eigen::get_sycl_supported_devices()) {
247     CALL_SUBTEST(sycl_tensor_patch_test_per_device<float>(device));
248   }
249 }
250