• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include <iostream>
21 #include <chrono>
22 #include <ctime>
23 
24 #include "main.h"
25 #include <unsupported/Eigen/CXX11/Tensor>
26 
27 using Eigen::array;
28 using Eigen::SyclDevice;
29 using Eigen::Tensor;
30 using Eigen::TensorMap;
31 
32 
33 template <typename DataType, int DataLayout, typename IndexType>
test_simple_striding(const Eigen::SyclDevice & sycl_device)34 static void test_simple_striding(const Eigen::SyclDevice& sycl_device)
35 {
36 
37   Eigen::array<IndexType, 4> tensor_dims = {{2,3,5,7}};
38   Eigen::array<IndexType, 4> stride_dims = {{1,1,3,3}};
39 
40 
41   Tensor<DataType, 4, DataLayout, IndexType> tensor(tensor_dims);
42   Tensor<DataType, 4, DataLayout,IndexType> no_stride(tensor_dims);
43   Tensor<DataType, 4, DataLayout,IndexType> stride(stride_dims);
44 
45 
46   std::size_t tensor_bytes = tensor.size()  * sizeof(DataType);
47   std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType);
48   std::size_t stride_bytes = stride.size() * sizeof(DataType);
49   DataType * d_tensor = static_cast<DataType*>(sycl_device.allocate(tensor_bytes));
50   DataType * d_no_stride = static_cast<DataType*>(sycl_device.allocate(no_stride_bytes));
51   DataType * d_stride = static_cast<DataType*>(sycl_device.allocate(stride_bytes));
52 
53   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_tensor(d_tensor, tensor_dims);
54   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_no_stride(d_no_stride, tensor_dims);
55   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_stride(d_stride, stride_dims);
56 
57 
58   tensor.setRandom();
59   array<IndexType, 4> strides;
60   strides[0] = 1;
61   strides[1] = 1;
62   strides[2] = 1;
63   strides[3] = 1;
64   sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes);
65   gpu_no_stride.device(sycl_device)=gpu_tensor.stride(strides);
66   sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes);
67 
68   //no_stride = tensor.stride(strides);
69 
70   VERIFY_IS_EQUAL(no_stride.dimension(0), 2);
71   VERIFY_IS_EQUAL(no_stride.dimension(1), 3);
72   VERIFY_IS_EQUAL(no_stride.dimension(2), 5);
73   VERIFY_IS_EQUAL(no_stride.dimension(3), 7);
74 
75   for (IndexType i = 0; i < 2; ++i) {
76     for (IndexType j = 0; j < 3; ++j) {
77       for (IndexType k = 0; k < 5; ++k) {
78         for (IndexType l = 0; l < 7; ++l) {
79           VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
80         }
81       }
82     }
83   }
84 
85   strides[0] = 2;
86   strides[1] = 4;
87   strides[2] = 2;
88   strides[3] = 3;
89 //Tensor<float, 4, DataLayout> stride;
90 //  stride = tensor.stride(strides);
91 
92   gpu_stride.device(sycl_device)=gpu_tensor.stride(strides);
93   sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes);
94 
95   VERIFY_IS_EQUAL(stride.dimension(0), 1);
96   VERIFY_IS_EQUAL(stride.dimension(1), 1);
97   VERIFY_IS_EQUAL(stride.dimension(2), 3);
98   VERIFY_IS_EQUAL(stride.dimension(3), 3);
99 
100   for (IndexType i = 0; i < 1; ++i) {
101     for (IndexType j = 0; j < 1; ++j) {
102       for (IndexType k = 0; k < 3; ++k) {
103         for (IndexType l = 0; l < 3; ++l) {
104           VERIFY_IS_EQUAL(tensor(2*i,4*j,2*k,3*l), stride(i,j,k,l));
105         }
106       }
107     }
108   }
109 
110   sycl_device.deallocate(d_tensor);
111   sycl_device.deallocate(d_no_stride);
112   sycl_device.deallocate(d_stride);
113 }
114 
115 template <typename DataType, int DataLayout, typename IndexType>
test_striding_as_lvalue(const Eigen::SyclDevice & sycl_device)116 static void test_striding_as_lvalue(const Eigen::SyclDevice& sycl_device)
117 {
118 
119   Eigen::array<IndexType, 4> tensor_dims = {{2,3,5,7}};
120   Eigen::array<IndexType, 4> stride_dims = {{3,12,10,21}};
121 
122 
123   Tensor<DataType, 4, DataLayout, IndexType> tensor(tensor_dims);
124   Tensor<DataType, 4, DataLayout,IndexType> no_stride(stride_dims);
125   Tensor<DataType, 4, DataLayout,IndexType> stride(stride_dims);
126 
127 
128   std::size_t tensor_bytes = tensor.size()  * sizeof(DataType);
129   std::size_t no_stride_bytes = no_stride.size() * sizeof(DataType);
130   std::size_t stride_bytes = stride.size() * sizeof(DataType);
131 
132   DataType * d_tensor = static_cast<DataType*>(sycl_device.allocate(tensor_bytes));
133   DataType * d_no_stride = static_cast<DataType*>(sycl_device.allocate(no_stride_bytes));
134   DataType * d_stride = static_cast<DataType*>(sycl_device.allocate(stride_bytes));
135 
136   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_tensor(d_tensor, tensor_dims);
137   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_no_stride(d_no_stride, stride_dims);
138   Eigen::TensorMap<Eigen::Tensor<DataType, 4, DataLayout, IndexType> > gpu_stride(d_stride, stride_dims);
139 
140   //Tensor<float, 4, DataLayout> tensor(2,3,5,7);
141   tensor.setRandom();
142   array<IndexType, 4> strides;
143   strides[0] = 2;
144   strides[1] = 4;
145   strides[2] = 2;
146   strides[3] = 3;
147 
148 //  Tensor<float, 4, DataLayout> result(3, 12, 10, 21);
149 //  result.stride(strides) = tensor;
150   sycl_device.memcpyHostToDevice(d_tensor, tensor.data(), tensor_bytes);
151   gpu_stride.stride(strides).device(sycl_device)=gpu_tensor;
152   sycl_device.memcpyDeviceToHost(stride.data(), d_stride, stride_bytes);
153 
154   for (IndexType i = 0; i < 2; ++i) {
155     for (IndexType j = 0; j < 3; ++j) {
156       for (IndexType k = 0; k < 5; ++k) {
157         for (IndexType l = 0; l < 7; ++l) {
158           VERIFY_IS_EQUAL(tensor(i,j,k,l), stride(2*i,4*j,2*k,3*l));
159         }
160       }
161     }
162   }
163 
164   array<IndexType, 4> no_strides;
165   no_strides[0] = 1;
166   no_strides[1] = 1;
167   no_strides[2] = 1;
168   no_strides[3] = 1;
169 //  Tensor<float, 4, DataLayout> result2(3, 12, 10, 21);
170 //  result2.stride(strides) = tensor.stride(no_strides);
171 
172   gpu_no_stride.stride(strides).device(sycl_device)=gpu_tensor.stride(no_strides);
173   sycl_device.memcpyDeviceToHost(no_stride.data(), d_no_stride, no_stride_bytes);
174 
175   for (IndexType i = 0; i < 2; ++i) {
176     for (IndexType j = 0; j < 3; ++j) {
177       for (IndexType k = 0; k < 5; ++k) {
178         for (IndexType l = 0; l < 7; ++l) {
179           VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(2*i,4*j,2*k,3*l));
180         }
181       }
182     }
183   }
184   sycl_device.deallocate(d_tensor);
185   sycl_device.deallocate(d_no_stride);
186   sycl_device.deallocate(d_stride);
187 }
188 
189 
tensorStridingPerDevice(Dev_selector & s)190 template <typename Dev_selector> void tensorStridingPerDevice(Dev_selector& s){
191   QueueInterface queueInterface(s);
192   auto sycl_device=Eigen::SyclDevice(&queueInterface);
193   test_simple_striding<float, ColMajor, int64_t>(sycl_device);
194   test_simple_striding<float, RowMajor, int64_t>(sycl_device);
195   test_striding_as_lvalue<float, ColMajor, int64_t>(sycl_device);
196   test_striding_as_lvalue<float, RowMajor, int64_t>(sycl_device);
197 }
198 
EIGEN_DECLARE_TEST(cxx11_tensor_striding_sycl)199 EIGEN_DECLARE_TEST(cxx11_tensor_striding_sycl) {
200   for (const auto& device :Eigen::get_sycl_supported_devices()) {
201     CALL_SUBTEST(tensorStridingPerDevice(device));
202   }
203 }
204