• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli    Codeplay Software Ltd.
6 // Ralph Potter  Codeplay Software Ltd.
7 // Luke Iwanski  Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::Tensor;
24 static const int DataLayout = ColMajor;
25 
26 template <typename DataType, typename IndexType>
test_single_voxel_patch_sycl(const Eigen::SyclDevice & sycl_device)27 static void test_single_voxel_patch_sycl(const Eigen::SyclDevice& sycl_device)
28 {
29 
30 IndexType sizeDim0 = 4;
31 IndexType sizeDim1 = 2;
32 IndexType sizeDim2 = 3;
33 IndexType sizeDim3 = 5;
34 IndexType sizeDim4 = 7;
35 array<IndexType, 5> tensorColMajorRange = {{sizeDim0, sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
36 array<IndexType, 5> tensorRowMajorRange = {{sizeDim4, sizeDim3, sizeDim2, sizeDim1, sizeDim0}};
37 Tensor<DataType, 5, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
38 Tensor<DataType, 5, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
39 tensor_col_major.setRandom();
40 
41 
42   DataType* gpu_data_col_major  = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
43   DataType* gpu_data_row_major  = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
44   TensorMap<Tensor<DataType, 5, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
45   TensorMap<Tensor<DataType, 5, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
46 
47   sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
48   gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
49 
50 
51   // single volume patch: ColMajor
52   array<IndexType, 6> patchColMajorTensorRange={{sizeDim0,1, 1, 1, sizeDim1*sizeDim2*sizeDim3, sizeDim4}};
53   Tensor<DataType, 6, DataLayout,IndexType> single_voxel_patch_col_major(patchColMajorTensorRange);
54   size_t patchTensorBuffSize =single_voxel_patch_col_major.size()*sizeof(DataType);
55   DataType* gpu_data_single_voxel_patch_col_major  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
56   TensorMap<Tensor<DataType, 6, DataLayout,IndexType>> gpu_single_voxel_patch_col_major(gpu_data_single_voxel_patch_col_major, patchColMajorTensorRange);
57   gpu_single_voxel_patch_col_major.device(sycl_device)=gpu_col_major.extract_volume_patches(1, 1, 1);
58   sycl_device.memcpyDeviceToHost(single_voxel_patch_col_major.data(), gpu_data_single_voxel_patch_col_major, patchTensorBuffSize);
59 
60 
61   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(0), 4);
62   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(1), 1);
63   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(2), 1);
64   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(3), 1);
65   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(4), 2 * 3 * 5);
66   VERIFY_IS_EQUAL(single_voxel_patch_col_major.dimension(5), 7);
67 
68   array<IndexType, 6> patchRowMajorTensorRange={{sizeDim4, sizeDim1*sizeDim2*sizeDim3, 1, 1, 1, sizeDim0}};
69   Tensor<DataType, 6, RowMajor,IndexType> single_voxel_patch_row_major(patchRowMajorTensorRange);
70   patchTensorBuffSize =single_voxel_patch_row_major.size()*sizeof(DataType);
71   DataType* gpu_data_single_voxel_patch_row_major  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
72   TensorMap<Tensor<DataType, 6, RowMajor,IndexType>> gpu_single_voxel_patch_row_major(gpu_data_single_voxel_patch_row_major, patchRowMajorTensorRange);
73   gpu_single_voxel_patch_row_major.device(sycl_device)=gpu_row_major.extract_volume_patches(1, 1, 1);
74   sycl_device.memcpyDeviceToHost(single_voxel_patch_row_major.data(), gpu_data_single_voxel_patch_row_major, patchTensorBuffSize);
75 
76   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(0), 7);
77   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(1), 2 * 3 * 5);
78   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(2), 1);
79   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(3), 1);
80   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(4), 1);
81   VERIFY_IS_EQUAL(single_voxel_patch_row_major.dimension(5), 4);
82 
83  sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType));
84  for (IndexType i = 0; i < tensor_col_major.size(); ++i) {
85        VERIFY_IS_EQUAL(tensor_col_major.data()[i], single_voxel_patch_col_major.data()[i]);
86     VERIFY_IS_EQUAL(tensor_row_major.data()[i], single_voxel_patch_row_major.data()[i]);
87     VERIFY_IS_EQUAL(tensor_col_major.data()[i], tensor_row_major.data()[i]);
88   }
89 
90 
91   sycl_device.deallocate(gpu_data_col_major);
92   sycl_device.deallocate(gpu_data_row_major);
93   sycl_device.deallocate(gpu_data_single_voxel_patch_col_major);
94   sycl_device.deallocate(gpu_data_single_voxel_patch_row_major);
95 }
96 
97 template <typename DataType, typename IndexType>
test_entire_volume_patch_sycl(const Eigen::SyclDevice & sycl_device)98 static void test_entire_volume_patch_sycl(const Eigen::SyclDevice& sycl_device)
99 {
100   const int depth = 4;
101   const int patch_z = 2;
102   const int patch_y = 3;
103   const int patch_x = 5;
104   const int batch = 7;
105 
106   array<IndexType, 5> tensorColMajorRange = {{depth, patch_z, patch_y, patch_x, batch}};
107   array<IndexType, 5> tensorRowMajorRange = {{batch, patch_x, patch_y, patch_z, depth}};
108   Tensor<DataType, 5, DataLayout,IndexType> tensor_col_major(tensorColMajorRange);
109   Tensor<DataType, 5, RowMajor,IndexType> tensor_row_major(tensorRowMajorRange);
110   tensor_col_major.setRandom();
111 
112 
113     DataType* gpu_data_col_major  = static_cast<DataType*>(sycl_device.allocate(tensor_col_major.size()*sizeof(DataType)));
114     DataType* gpu_data_row_major  = static_cast<DataType*>(sycl_device.allocate(tensor_row_major.size()*sizeof(DataType)));
115     TensorMap<Tensor<DataType, 5, ColMajor, IndexType>> gpu_col_major(gpu_data_col_major, tensorColMajorRange);
116     TensorMap<Tensor<DataType, 5, RowMajor, IndexType>> gpu_row_major(gpu_data_row_major, tensorRowMajorRange);
117 
118     sycl_device.memcpyHostToDevice(gpu_data_col_major, tensor_col_major.data(),(tensor_col_major.size())*sizeof(DataType));
119     gpu_row_major.device(sycl_device)=gpu_col_major.swap_layout();
120     sycl_device.memcpyDeviceToHost(tensor_row_major.data(), gpu_data_row_major, (tensor_col_major.size())*sizeof(DataType));
121 
122 
123     // single volume patch: ColMajor
124     array<IndexType, 6> patchColMajorTensorRange={{depth,patch_z, patch_y, patch_x, patch_z*patch_y*patch_x, batch}};
125     Tensor<DataType, 6, DataLayout,IndexType> entire_volume_patch_col_major(patchColMajorTensorRange);
126     size_t patchTensorBuffSize =entire_volume_patch_col_major.size()*sizeof(DataType);
127     DataType* gpu_data_entire_volume_patch_col_major  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
128     TensorMap<Tensor<DataType, 6, DataLayout,IndexType>> gpu_entire_volume_patch_col_major(gpu_data_entire_volume_patch_col_major, patchColMajorTensorRange);
129     gpu_entire_volume_patch_col_major.device(sycl_device)=gpu_col_major.extract_volume_patches(patch_z, patch_y, patch_x);
130     sycl_device.memcpyDeviceToHost(entire_volume_patch_col_major.data(), gpu_data_entire_volume_patch_col_major, patchTensorBuffSize);
131 
132 
133 //  Tensor<float, 5> tensor(depth, patch_z, patch_y, patch_x, batch);
134 //  tensor.setRandom();
135 //  Tensor<float, 5, RowMajor> tensor_row_major = tensor.swap_layout();
136 
137   //Tensor<float, 6> entire_volume_patch;
138   //entire_volume_patch = tensor.extract_volume_patches(patch_z, patch_y, patch_x);
139   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(0), depth);
140   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(1), patch_z);
141   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(2), patch_y);
142   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(3), patch_x);
143   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(4), patch_z * patch_y * patch_x);
144   VERIFY_IS_EQUAL(entire_volume_patch_col_major.dimension(5), batch);
145 
146 //  Tensor<float, 6, RowMajor> entire_volume_patch_row_major;
147   //entire_volume_patch_row_major = tensor_row_major.extract_volume_patches(patch_z, patch_y, patch_x);
148 
149   array<IndexType, 6> patchRowMajorTensorRange={{batch,patch_z*patch_y*patch_x, patch_x, patch_y, patch_z, depth}};
150   Tensor<DataType, 6, RowMajor,IndexType> entire_volume_patch_row_major(patchRowMajorTensorRange);
151   patchTensorBuffSize =entire_volume_patch_row_major.size()*sizeof(DataType);
152   DataType* gpu_data_entire_volume_patch_row_major  = static_cast<DataType*>(sycl_device.allocate(patchTensorBuffSize));
153   TensorMap<Tensor<DataType, 6, RowMajor,IndexType>> gpu_entire_volume_patch_row_major(gpu_data_entire_volume_patch_row_major, patchRowMajorTensorRange);
154   gpu_entire_volume_patch_row_major.device(sycl_device)=gpu_row_major.extract_volume_patches(patch_z, patch_y, patch_x);
155   sycl_device.memcpyDeviceToHost(entire_volume_patch_row_major.data(), gpu_data_entire_volume_patch_row_major, patchTensorBuffSize);
156 
157 
158   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(0), batch);
159   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(1), patch_z * patch_y * patch_x);
160   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(2), patch_x);
161   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(3), patch_y);
162   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(4), patch_z);
163   VERIFY_IS_EQUAL(entire_volume_patch_row_major.dimension(5), depth);
164 
165   const int dz = patch_z - 1;
166   const int dy = patch_y - 1;
167   const int dx = patch_x - 1;
168 
169   const int forward_pad_z = dz / 2;
170   const int forward_pad_y = dy / 2;
171   const int forward_pad_x = dx / 2;
172 
173   for (int pz = 0; pz < patch_z; pz++) {
174     for (int py = 0; py < patch_y; py++) {
175       for (int px = 0; px < patch_x; px++) {
176         const int patchId = pz + patch_z * (py + px * patch_y);
177         for (int z = 0; z < patch_z; z++) {
178           for (int y = 0; y < patch_y; y++) {
179             for (int x = 0; x < patch_x; x++) {
180               for (int b = 0; b < batch; b++) {
181                 for (int d = 0; d < depth; d++) {
182                   float expected = 0.0f;
183                   float expected_row_major = 0.0f;
184                   const int eff_z = z - forward_pad_z + pz;
185                   const int eff_y = y - forward_pad_y + py;
186                   const int eff_x = x - forward_pad_x + px;
187                   if (eff_z >= 0 && eff_y >= 0 && eff_x >= 0 &&
188                       eff_z < patch_z && eff_y < patch_y && eff_x < patch_x) {
189                     expected = tensor_col_major(d, eff_z, eff_y, eff_x, b);
190                     expected_row_major = tensor_row_major(b, eff_x, eff_y, eff_z, d);
191                   }
192                   VERIFY_IS_EQUAL(entire_volume_patch_col_major(d, z, y, x, patchId, b), expected);
193                   VERIFY_IS_EQUAL(entire_volume_patch_row_major(b, patchId, x, y, z, d), expected_row_major);
194                 }
195               }
196             }
197           }
198         }
199       }
200     }
201   }
202   sycl_device.deallocate(gpu_data_col_major);
203   sycl_device.deallocate(gpu_data_row_major);
204   sycl_device.deallocate(gpu_data_entire_volume_patch_col_major);
205   sycl_device.deallocate(gpu_data_entire_volume_patch_row_major);
206 }
207 
208 
209 
sycl_tensor_volume_patch_test_per_device(dev_Selector s)210 template<typename DataType, typename dev_Selector> void sycl_tensor_volume_patch_test_per_device(dev_Selector s){
211 QueueInterface queueInterface(s);
212 auto sycl_device = Eigen::SyclDevice(&queueInterface);
213 std::cout << "Running on " << s.template get_info<cl::sycl::info::device::name>() << std::endl;
214 test_single_voxel_patch_sycl<DataType, int64_t>(sycl_device);
215 test_entire_volume_patch_sycl<DataType, int64_t>(sycl_device);
216 }
EIGEN_DECLARE_TEST(cxx11_tensor_volume_patch_sycl)217 EIGEN_DECLARE_TEST(cxx11_tensor_volume_patch_sycl)
218 {
219 for (const auto& device :Eigen::get_sycl_supported_devices()) {
220   CALL_SUBTEST(sycl_tensor_volume_patch_test_per_device<float>(device));
221 }
222 }
223