• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2017, The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package cmp determines equality of values.
6//
7// This package is intended to be a more powerful and safer alternative to
8// reflect.DeepEqual for comparing whether two values are semantically equal.
9// It is intended to only be used in tests, as performance is not a goal and
10// it may panic if it cannot compare the values. Its propensity towards
11// panicking means that its unsuitable for production environments where a
12// spurious panic may be fatal.
13//
14// The primary features of cmp are:
15//
16// • When the default behavior of equality does not suit the needs of the test,
17// custom equality functions can override the equality operation.
18// For example, an equality function may report floats as equal so long as they
19// are within some tolerance of each other.
20//
21// • Types that have an Equal method may use that method to determine equality.
22// This allows package authors to determine the equality operation for the types
23// that they define.
24//
25// • If no custom equality functions are used and no Equal method is defined,
26// equality is determined by recursively comparing the primitive kinds on both
27// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported
28// fields are not compared by default; they result in panics unless suppressed
29// by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly
30// compared using the Exporter option.
31package cmp
32
33import (
34	"fmt"
35	"reflect"
36	"strings"
37
38	"github.com/google/go-cmp/cmp/internal/diff"
39	"github.com/google/go-cmp/cmp/internal/function"
40	"github.com/google/go-cmp/cmp/internal/value"
41)
42
43// Equal reports whether x and y are equal by recursively applying the
44// following rules in the given order to x and y and all of their sub-values:
45//
46// • Let S be the set of all Ignore, Transformer, and Comparer options that
47// remain after applying all path filters, value filters, and type filters.
48// If at least one Ignore exists in S, then the comparison is ignored.
49// If the number of Transformer and Comparer options in S is greater than one,
50// then Equal panics because it is ambiguous which option to use.
51// If S contains a single Transformer, then use that to transform the current
52// values and recursively call Equal on the output values.
53// If S contains a single Comparer, then use that to compare the current values.
54// Otherwise, evaluation proceeds to the next rule.
55//
56// • If the values have an Equal method of the form "(T) Equal(T) bool" or
57// "(T) Equal(I) bool" where T is assignable to I, then use the result of
58// x.Equal(y) even if x or y is nil. Otherwise, no such method exists and
59// evaluation proceeds to the next rule.
60//
61// • Lastly, try to compare x and y based on their basic kinds.
62// Simple kinds like booleans, integers, floats, complex numbers, strings, and
63// channels are compared using the equivalent of the == operator in Go.
64// Functions are only equal if they are both nil, otherwise they are unequal.
65//
66// Structs are equal if recursively calling Equal on all fields report equal.
67// If a struct contains unexported fields, Equal panics unless an Ignore option
68// (e.g., cmpopts.IgnoreUnexported) ignores that field or the Exporter option
69// explicitly permits comparing the unexported field.
70//
71// Slices are equal if they are both nil or both non-nil, where recursively
72// calling Equal on all non-ignored slice or array elements report equal.
73// Empty non-nil slices and nil slices are not equal; to equate empty slices,
74// consider using cmpopts.EquateEmpty.
75//
76// Maps are equal if they are both nil or both non-nil, where recursively
77// calling Equal on all non-ignored map entries report equal.
78// Map keys are equal according to the == operator.
79// To use custom comparisons for map keys, consider using cmpopts.SortMaps.
80// Empty non-nil maps and nil maps are not equal; to equate empty maps,
81// consider using cmpopts.EquateEmpty.
82//
83// Pointers and interfaces are equal if they are both nil or both non-nil,
84// where they have the same underlying concrete type and recursively
85// calling Equal on the underlying values reports equal.
86//
87// Before recursing into a pointer, slice element, or map, the current path
88// is checked to detect whether the address has already been visited.
89// If there is a cycle, then the pointed at values are considered equal
90// only if both addresses were previously visited in the same path step.
91func Equal(x, y interface{}, opts ...Option) bool {
92	s := newState(opts)
93	s.compareAny(rootStep(x, y))
94	return s.result.Equal()
95}
96
97// Diff returns a human-readable report of the differences between two values:
98// y - x. It returns an empty string if and only if Equal returns true for the
99// same input values and options.
100//
101// The output is displayed as a literal in pseudo-Go syntax.
102// At the start of each line, a "-" prefix indicates an element removed from x,
103// a "+" prefix to indicates an element added from y, and the lack of a prefix
104// indicates an element common to both x and y. If possible, the output
105// uses fmt.Stringer.String or error.Error methods to produce more humanly
106// readable outputs. In such cases, the string is prefixed with either an
107// 's' or 'e' character, respectively, to indicate that the method was called.
108//
109// Do not depend on this output being stable. If you need the ability to
110// programmatically interpret the difference, consider using a custom Reporter.
111func Diff(x, y interface{}, opts ...Option) string {
112	s := newState(opts)
113
114	// Optimization: If there are no other reporters, we can optimize for the
115	// common case where the result is equal (and thus no reported difference).
116	// This avoids the expensive construction of a difference tree.
117	if len(s.reporters) == 0 {
118		s.compareAny(rootStep(x, y))
119		if s.result.Equal() {
120			return ""
121		}
122		s.result = diff.Result{} // Reset results
123	}
124
125	r := new(defaultReporter)
126	s.reporters = append(s.reporters, reporter{r})
127	s.compareAny(rootStep(x, y))
128	d := r.String()
129	if (d == "") != s.result.Equal() {
130		panic("inconsistent difference and equality results")
131	}
132	return d
133}
134
135// rootStep constructs the first path step. If x and y have differing types,
136// then they are stored within an empty interface type.
137func rootStep(x, y interface{}) PathStep {
138	vx := reflect.ValueOf(x)
139	vy := reflect.ValueOf(y)
140
141	// If the inputs are different types, auto-wrap them in an empty interface
142	// so that they have the same parent type.
143	var t reflect.Type
144	if !vx.IsValid() || !vy.IsValid() || vx.Type() != vy.Type() {
145		t = reflect.TypeOf((*interface{})(nil)).Elem()
146		if vx.IsValid() {
147			vvx := reflect.New(t).Elem()
148			vvx.Set(vx)
149			vx = vvx
150		}
151		if vy.IsValid() {
152			vvy := reflect.New(t).Elem()
153			vvy.Set(vy)
154			vy = vvy
155		}
156	} else {
157		t = vx.Type()
158	}
159
160	return &pathStep{t, vx, vy}
161}
162
163type state struct {
164	// These fields represent the "comparison state".
165	// Calling statelessCompare must not result in observable changes to these.
166	result    diff.Result // The current result of comparison
167	curPath   Path        // The current path in the value tree
168	curPtrs   pointerPath // The current set of visited pointers
169	reporters []reporter  // Optional reporters
170
171	// recChecker checks for infinite cycles applying the same set of
172	// transformers upon the output of itself.
173	recChecker recChecker
174
175	// dynChecker triggers pseudo-random checks for option correctness.
176	// It is safe for statelessCompare to mutate this value.
177	dynChecker dynChecker
178
179	// These fields, once set by processOption, will not change.
180	exporters []exporter // List of exporters for structs with unexported fields
181	opts      Options    // List of all fundamental and filter options
182}
183
184func newState(opts []Option) *state {
185	// Always ensure a validator option exists to validate the inputs.
186	s := &state{opts: Options{validator{}}}
187	s.curPtrs.Init()
188	s.processOption(Options(opts))
189	return s
190}
191
192func (s *state) processOption(opt Option) {
193	switch opt := opt.(type) {
194	case nil:
195	case Options:
196		for _, o := range opt {
197			s.processOption(o)
198		}
199	case coreOption:
200		type filtered interface {
201			isFiltered() bool
202		}
203		if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() {
204			panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt))
205		}
206		s.opts = append(s.opts, opt)
207	case exporter:
208		s.exporters = append(s.exporters, opt)
209	case reporter:
210		s.reporters = append(s.reporters, opt)
211	default:
212		panic(fmt.Sprintf("unknown option %T", opt))
213	}
214}
215
216// statelessCompare compares two values and returns the result.
217// This function is stateless in that it does not alter the current result,
218// or output to any registered reporters.
219func (s *state) statelessCompare(step PathStep) diff.Result {
220	// We do not save and restore curPath and curPtrs because all of the
221	// compareX methods should properly push and pop from them.
222	// It is an implementation bug if the contents of the paths differ from
223	// when calling this function to when returning from it.
224
225	oldResult, oldReporters := s.result, s.reporters
226	s.result = diff.Result{} // Reset result
227	s.reporters = nil        // Remove reporters to avoid spurious printouts
228	s.compareAny(step)
229	res := s.result
230	s.result, s.reporters = oldResult, oldReporters
231	return res
232}
233
234func (s *state) compareAny(step PathStep) {
235	// Update the path stack.
236	s.curPath.push(step)
237	defer s.curPath.pop()
238	for _, r := range s.reporters {
239		r.PushStep(step)
240		defer r.PopStep()
241	}
242	s.recChecker.Check(s.curPath)
243
244	// Cycle-detection for slice elements (see NOTE in compareSlice).
245	t := step.Type()
246	vx, vy := step.Values()
247	if si, ok := step.(SliceIndex); ok && si.isSlice && vx.IsValid() && vy.IsValid() {
248		px, py := vx.Addr(), vy.Addr()
249		if eq, visited := s.curPtrs.Push(px, py); visited {
250			s.report(eq, reportByCycle)
251			return
252		}
253		defer s.curPtrs.Pop(px, py)
254	}
255
256	// Rule 1: Check whether an option applies on this node in the value tree.
257	if s.tryOptions(t, vx, vy) {
258		return
259	}
260
261	// Rule 2: Check whether the type has a valid Equal method.
262	if s.tryMethod(t, vx, vy) {
263		return
264	}
265
266	// Rule 3: Compare based on the underlying kind.
267	switch t.Kind() {
268	case reflect.Bool:
269		s.report(vx.Bool() == vy.Bool(), 0)
270	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
271		s.report(vx.Int() == vy.Int(), 0)
272	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
273		s.report(vx.Uint() == vy.Uint(), 0)
274	case reflect.Float32, reflect.Float64:
275		s.report(vx.Float() == vy.Float(), 0)
276	case reflect.Complex64, reflect.Complex128:
277		s.report(vx.Complex() == vy.Complex(), 0)
278	case reflect.String:
279		s.report(vx.String() == vy.String(), 0)
280	case reflect.Chan, reflect.UnsafePointer:
281		s.report(vx.Pointer() == vy.Pointer(), 0)
282	case reflect.Func:
283		s.report(vx.IsNil() && vy.IsNil(), 0)
284	case reflect.Struct:
285		s.compareStruct(t, vx, vy)
286	case reflect.Slice, reflect.Array:
287		s.compareSlice(t, vx, vy)
288	case reflect.Map:
289		s.compareMap(t, vx, vy)
290	case reflect.Ptr:
291		s.comparePtr(t, vx, vy)
292	case reflect.Interface:
293		s.compareInterface(t, vx, vy)
294	default:
295		panic(fmt.Sprintf("%v kind not handled", t.Kind()))
296	}
297}
298
299func (s *state) tryOptions(t reflect.Type, vx, vy reflect.Value) bool {
300	// Evaluate all filters and apply the remaining options.
301	if opt := s.opts.filter(s, t, vx, vy); opt != nil {
302		opt.apply(s, vx, vy)
303		return true
304	}
305	return false
306}
307
308func (s *state) tryMethod(t reflect.Type, vx, vy reflect.Value) bool {
309	// Check if this type even has an Equal method.
310	m, ok := t.MethodByName("Equal")
311	if !ok || !function.IsType(m.Type, function.EqualAssignable) {
312		return false
313	}
314
315	eq := s.callTTBFunc(m.Func, vx, vy)
316	s.report(eq, reportByMethod)
317	return true
318}
319
320func (s *state) callTRFunc(f, v reflect.Value, step Transform) reflect.Value {
321	if !s.dynChecker.Next() {
322		return f.Call([]reflect.Value{v})[0]
323	}
324
325	// Run the function twice and ensure that we get the same results back.
326	// We run in goroutines so that the race detector (if enabled) can detect
327	// unsafe mutations to the input.
328	c := make(chan reflect.Value)
329	go detectRaces(c, f, v)
330	got := <-c
331	want := f.Call([]reflect.Value{v})[0]
332	if step.vx, step.vy = got, want; !s.statelessCompare(step).Equal() {
333		// To avoid false-positives with non-reflexive equality operations,
334		// we sanity check whether a value is equal to itself.
335		if step.vx, step.vy = want, want; !s.statelessCompare(step).Equal() {
336			return want
337		}
338		panic(fmt.Sprintf("non-deterministic function detected: %s", function.NameOf(f)))
339	}
340	return want
341}
342
343func (s *state) callTTBFunc(f, x, y reflect.Value) bool {
344	if !s.dynChecker.Next() {
345		return f.Call([]reflect.Value{x, y})[0].Bool()
346	}
347
348	// Swapping the input arguments is sufficient to check that
349	// f is symmetric and deterministic.
350	// We run in goroutines so that the race detector (if enabled) can detect
351	// unsafe mutations to the input.
352	c := make(chan reflect.Value)
353	go detectRaces(c, f, y, x)
354	got := <-c
355	want := f.Call([]reflect.Value{x, y})[0].Bool()
356	if !got.IsValid() || got.Bool() != want {
357		panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", function.NameOf(f)))
358	}
359	return want
360}
361
362func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) {
363	var ret reflect.Value
364	defer func() {
365		recover() // Ignore panics, let the other call to f panic instead
366		c <- ret
367	}()
368	ret = f.Call(vs)[0]
369}
370
371func (s *state) compareStruct(t reflect.Type, vx, vy reflect.Value) {
372	var addr bool
373	var vax, vay reflect.Value // Addressable versions of vx and vy
374
375	var mayForce, mayForceInit bool
376	step := StructField{&structField{}}
377	for i := 0; i < t.NumField(); i++ {
378		step.typ = t.Field(i).Type
379		step.vx = vx.Field(i)
380		step.vy = vy.Field(i)
381		step.name = t.Field(i).Name
382		step.idx = i
383		step.unexported = !isExported(step.name)
384		if step.unexported {
385			if step.name == "_" {
386				continue
387			}
388			// Defer checking of unexported fields until later to give an
389			// Ignore a chance to ignore the field.
390			if !vax.IsValid() || !vay.IsValid() {
391				// For retrieveUnexportedField to work, the parent struct must
392				// be addressable. Create a new copy of the values if
393				// necessary to make them addressable.
394				addr = vx.CanAddr() || vy.CanAddr()
395				vax = makeAddressable(vx)
396				vay = makeAddressable(vy)
397			}
398			if !mayForceInit {
399				for _, xf := range s.exporters {
400					mayForce = mayForce || xf(t)
401				}
402				mayForceInit = true
403			}
404			step.mayForce = mayForce
405			step.paddr = addr
406			step.pvx = vax
407			step.pvy = vay
408			step.field = t.Field(i)
409		}
410		s.compareAny(step)
411	}
412}
413
414func (s *state) compareSlice(t reflect.Type, vx, vy reflect.Value) {
415	isSlice := t.Kind() == reflect.Slice
416	if isSlice && (vx.IsNil() || vy.IsNil()) {
417		s.report(vx.IsNil() && vy.IsNil(), 0)
418		return
419	}
420
421	// NOTE: It is incorrect to call curPtrs.Push on the slice header pointer
422	// since slices represents a list of pointers, rather than a single pointer.
423	// The pointer checking logic must be handled on a per-element basis
424	// in compareAny.
425	//
426	// A slice header (see reflect.SliceHeader) in Go is a tuple of a starting
427	// pointer P, a length N, and a capacity C. Supposing each slice element has
428	// a memory size of M, then the slice is equivalent to the list of pointers:
429	//	[P+i*M for i in range(N)]
430	//
431	// For example, v[:0] and v[:1] are slices with the same starting pointer,
432	// but they are clearly different values. Using the slice pointer alone
433	// violates the assumption that equal pointers implies equal values.
434
435	step := SliceIndex{&sliceIndex{pathStep: pathStep{typ: t.Elem()}, isSlice: isSlice}}
436	withIndexes := func(ix, iy int) SliceIndex {
437		if ix >= 0 {
438			step.vx, step.xkey = vx.Index(ix), ix
439		} else {
440			step.vx, step.xkey = reflect.Value{}, -1
441		}
442		if iy >= 0 {
443			step.vy, step.ykey = vy.Index(iy), iy
444		} else {
445			step.vy, step.ykey = reflect.Value{}, -1
446		}
447		return step
448	}
449
450	// Ignore options are able to ignore missing elements in a slice.
451	// However, detecting these reliably requires an optimal differencing
452	// algorithm, for which diff.Difference is not.
453	//
454	// Instead, we first iterate through both slices to detect which elements
455	// would be ignored if standing alone. The index of non-discarded elements
456	// are stored in a separate slice, which diffing is then performed on.
457	var indexesX, indexesY []int
458	var ignoredX, ignoredY []bool
459	for ix := 0; ix < vx.Len(); ix++ {
460		ignored := s.statelessCompare(withIndexes(ix, -1)).NumDiff == 0
461		if !ignored {
462			indexesX = append(indexesX, ix)
463		}
464		ignoredX = append(ignoredX, ignored)
465	}
466	for iy := 0; iy < vy.Len(); iy++ {
467		ignored := s.statelessCompare(withIndexes(-1, iy)).NumDiff == 0
468		if !ignored {
469			indexesY = append(indexesY, iy)
470		}
471		ignoredY = append(ignoredY, ignored)
472	}
473
474	// Compute an edit-script for slices vx and vy (excluding ignored elements).
475	edits := diff.Difference(len(indexesX), len(indexesY), func(ix, iy int) diff.Result {
476		return s.statelessCompare(withIndexes(indexesX[ix], indexesY[iy]))
477	})
478
479	// Replay the ignore-scripts and the edit-script.
480	var ix, iy int
481	for ix < vx.Len() || iy < vy.Len() {
482		var e diff.EditType
483		switch {
484		case ix < len(ignoredX) && ignoredX[ix]:
485			e = diff.UniqueX
486		case iy < len(ignoredY) && ignoredY[iy]:
487			e = diff.UniqueY
488		default:
489			e, edits = edits[0], edits[1:]
490		}
491		switch e {
492		case diff.UniqueX:
493			s.compareAny(withIndexes(ix, -1))
494			ix++
495		case diff.UniqueY:
496			s.compareAny(withIndexes(-1, iy))
497			iy++
498		default:
499			s.compareAny(withIndexes(ix, iy))
500			ix++
501			iy++
502		}
503	}
504}
505
506func (s *state) compareMap(t reflect.Type, vx, vy reflect.Value) {
507	if vx.IsNil() || vy.IsNil() {
508		s.report(vx.IsNil() && vy.IsNil(), 0)
509		return
510	}
511
512	// Cycle-detection for maps.
513	if eq, visited := s.curPtrs.Push(vx, vy); visited {
514		s.report(eq, reportByCycle)
515		return
516	}
517	defer s.curPtrs.Pop(vx, vy)
518
519	// We combine and sort the two map keys so that we can perform the
520	// comparisons in a deterministic order.
521	step := MapIndex{&mapIndex{pathStep: pathStep{typ: t.Elem()}}}
522	for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) {
523		step.vx = vx.MapIndex(k)
524		step.vy = vy.MapIndex(k)
525		step.key = k
526		if !step.vx.IsValid() && !step.vy.IsValid() {
527			// It is possible for both vx and vy to be invalid if the
528			// key contained a NaN value in it.
529			//
530			// Even with the ability to retrieve NaN keys in Go 1.12,
531			// there still isn't a sensible way to compare the values since
532			// a NaN key may map to multiple unordered values.
533			// The most reasonable way to compare NaNs would be to compare the
534			// set of values. However, this is impossible to do efficiently
535			// since set equality is provably an O(n^2) operation given only
536			// an Equal function. If we had a Less function or Hash function,
537			// this could be done in O(n*log(n)) or O(n), respectively.
538			//
539			// Rather than adding complex logic to deal with NaNs, make it
540			// the user's responsibility to compare such obscure maps.
541			const help = "consider providing a Comparer to compare the map"
542			panic(fmt.Sprintf("%#v has map key with NaNs\n%s", s.curPath, help))
543		}
544		s.compareAny(step)
545	}
546}
547
548func (s *state) comparePtr(t reflect.Type, vx, vy reflect.Value) {
549	if vx.IsNil() || vy.IsNil() {
550		s.report(vx.IsNil() && vy.IsNil(), 0)
551		return
552	}
553
554	// Cycle-detection for pointers.
555	if eq, visited := s.curPtrs.Push(vx, vy); visited {
556		s.report(eq, reportByCycle)
557		return
558	}
559	defer s.curPtrs.Pop(vx, vy)
560
561	vx, vy = vx.Elem(), vy.Elem()
562	s.compareAny(Indirect{&indirect{pathStep{t.Elem(), vx, vy}}})
563}
564
565func (s *state) compareInterface(t reflect.Type, vx, vy reflect.Value) {
566	if vx.IsNil() || vy.IsNil() {
567		s.report(vx.IsNil() && vy.IsNil(), 0)
568		return
569	}
570	vx, vy = vx.Elem(), vy.Elem()
571	if vx.Type() != vy.Type() {
572		s.report(false, 0)
573		return
574	}
575	s.compareAny(TypeAssertion{&typeAssertion{pathStep{vx.Type(), vx, vy}}})
576}
577
578func (s *state) report(eq bool, rf resultFlags) {
579	if rf&reportByIgnore == 0 {
580		if eq {
581			s.result.NumSame++
582			rf |= reportEqual
583		} else {
584			s.result.NumDiff++
585			rf |= reportUnequal
586		}
587	}
588	for _, r := range s.reporters {
589		r.Report(Result{flags: rf})
590	}
591}
592
593// recChecker tracks the state needed to periodically perform checks that
594// user provided transformers are not stuck in an infinitely recursive cycle.
595type recChecker struct{ next int }
596
597// Check scans the Path for any recursive transformers and panics when any
598// recursive transformers are detected. Note that the presence of a
599// recursive Transformer does not necessarily imply an infinite cycle.
600// As such, this check only activates after some minimal number of path steps.
601func (rc *recChecker) Check(p Path) {
602	const minLen = 1 << 16
603	if rc.next == 0 {
604		rc.next = minLen
605	}
606	if len(p) < rc.next {
607		return
608	}
609	rc.next <<= 1
610
611	// Check whether the same transformer has appeared at least twice.
612	var ss []string
613	m := map[Option]int{}
614	for _, ps := range p {
615		if t, ok := ps.(Transform); ok {
616			t := t.Option()
617			if m[t] == 1 { // Transformer was used exactly once before
618				tf := t.(*transformer).fnc.Type()
619				ss = append(ss, fmt.Sprintf("%v: %v => %v", t, tf.In(0), tf.Out(0)))
620			}
621			m[t]++
622		}
623	}
624	if len(ss) > 0 {
625		const warning = "recursive set of Transformers detected"
626		const help = "consider using cmpopts.AcyclicTransformer"
627		set := strings.Join(ss, "\n\t")
628		panic(fmt.Sprintf("%s:\n\t%s\n%s", warning, set, help))
629	}
630}
631
632// dynChecker tracks the state needed to periodically perform checks that
633// user provided functions are symmetric and deterministic.
634// The zero value is safe for immediate use.
635type dynChecker struct{ curr, next int }
636
637// Next increments the state and reports whether a check should be performed.
638//
639// Checks occur every Nth function call, where N is a triangular number:
640//	0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ...
641// See https://en.wikipedia.org/wiki/Triangular_number
642//
643// This sequence ensures that the cost of checks drops significantly as
644// the number of functions calls grows larger.
645func (dc *dynChecker) Next() bool {
646	ok := dc.curr == dc.next
647	if ok {
648		dc.curr = 0
649		dc.next++
650	}
651	dc.curr++
652	return ok
653}
654
655// makeAddressable returns a value that is always addressable.
656// It returns the input verbatim if it is already addressable,
657// otherwise it creates a new value and returns an addressable copy.
658func makeAddressable(v reflect.Value) reflect.Value {
659	if v.CanAddr() {
660		return v
661	}
662	vc := reflect.New(v.Type()).Elem()
663	vc.Set(v)
664	return vc
665}
666