• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.graph;
18 
19 import com.google.common.annotations.Beta;
20 import com.google.errorprone.annotations.DoNotMock;
21 import java.util.Set;
22 import javax.annotation.CheckForNull;
23 
24 /**
25  * An interface for <a
26  * href="https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)">graph</a>-structured data,
27  * whose edges are unique objects.
28  *
29  * <p>A graph is composed of a set of nodes and a set of edges connecting pairs of nodes.
30  *
31  * <p>There are three primary interfaces provided to represent graphs. In order of increasing
32  * complexity they are: {@link Graph}, {@link ValueGraph}, and {@link Network}. You should generally
33  * prefer the simplest interface that satisfies your use case. See the <a
34  * href="https://github.com/google/guava/wiki/GraphsExplained#choosing-the-right-graph-type">
35  * "Choosing the right graph type"</a> section of the Guava User Guide for more details.
36  *
37  * <h3>Capabilities</h3>
38  *
39  * <p>{@code Network} supports the following use cases (<a
40  * href="https://github.com/google/guava/wiki/GraphsExplained#definitions">definitions of
41  * terms</a>):
42  *
43  * <ul>
44  *   <li>directed graphs
45  *   <li>undirected graphs
46  *   <li>graphs that do/don't allow parallel edges
47  *   <li>graphs that do/don't allow self-loops
48  *   <li>graphs whose nodes/edges are insertion-ordered, sorted, or unordered
49  *   <li>graphs whose edges are unique objects
50  * </ul>
51  *
52  * <h3>Building a {@code Network}</h3>
53  *
54  * <p>The implementation classes that {@code common.graph} provides are not public, by design. To
55  * create an instance of one of the built-in implementations of {@code Network}, use the {@link
56  * NetworkBuilder} class:
57  *
58  * <pre>{@code
59  * MutableNetwork<Integer, MyEdge> graph = NetworkBuilder.directed().build();
60  * }</pre>
61  *
62  * <p>{@link NetworkBuilder#build()} returns an instance of {@link MutableNetwork}, which is a
63  * subtype of {@code Network} that provides methods for adding and removing nodes and edges. If you
64  * do not need to mutate a graph (e.g. if you write a method than runs a read-only algorithm on the
65  * graph), you should use the non-mutating {@link Network} interface, or an {@link
66  * ImmutableNetwork}.
67  *
68  * <p>You can create an immutable copy of an existing {@code Network} using {@link
69  * ImmutableNetwork#copyOf(Network)}:
70  *
71  * <pre>{@code
72  * ImmutableNetwork<Integer, MyEdge> immutableGraph = ImmutableNetwork.copyOf(graph);
73  * }</pre>
74  *
75  * <p>Instances of {@link ImmutableNetwork} do not implement {@link MutableNetwork} (obviously!) and
76  * are contractually guaranteed to be unmodifiable and thread-safe.
77  *
78  * <p>The Guava User Guide has <a
79  * href="https://github.com/google/guava/wiki/GraphsExplained#building-graph-instances">more
80  * information on (and examples of) building graphs</a>.
81  *
82  * <h3>Additional documentation</h3>
83  *
84  * <p>See the Guava User Guide for the {@code common.graph} package (<a
85  * href="https://github.com/google/guava/wiki/GraphsExplained">"Graphs Explained"</a>) for
86  * additional documentation, including:
87  *
88  * <ul>
89  *   <li><a
90  *       href="https://github.com/google/guava/wiki/GraphsExplained#equals-hashcode-and-graph-equivalence">
91  *       {@code equals()}, {@code hashCode()}, and graph equivalence</a>
92  *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#synchronization">
93  *       Synchronization policy</a>
94  *   <li><a href="https://github.com/google/guava/wiki/GraphsExplained#notes-for-implementors">Notes
95  *       for implementors</a>
96  * </ul>
97  *
98  * @author James Sexton
99  * @author Joshua O'Madadhain
100  * @param <N> Node parameter type
101  * @param <E> Edge parameter type
102  * @since 20.0
103  */
104 @Beta
105 @DoNotMock("Use NetworkBuilder to create a real instance")
106 @ElementTypesAreNonnullByDefault
107 public interface Network<N, E> extends SuccessorsFunction<N>, PredecessorsFunction<N> {
108   //
109   // Network-level accessors
110   //
111 
112   /** Returns all nodes in this network, in the order specified by {@link #nodeOrder()}. */
nodes()113   Set<N> nodes();
114 
115   /** Returns all edges in this network, in the order specified by {@link #edgeOrder()}. */
edges()116   Set<E> edges();
117 
118   /**
119    * Returns a live view of this network as a {@link Graph}. The resulting {@link Graph} will have
120    * an edge connecting node A to node B if this {@link Network} has an edge connecting A to B.
121    *
122    * <p>If this network {@link #allowsParallelEdges() allows parallel edges}, parallel edges will be
123    * treated as if collapsed into a single edge. For example, the {@link #degree(Object)} of a node
124    * in the {@link Graph} view may be less than the degree of the same node in this {@link Network}.
125    */
asGraph()126   Graph<N> asGraph();
127 
128   //
129   // Network properties
130   //
131 
132   /**
133    * Returns true if the edges in this network are directed. Directed edges connect a {@link
134    * EndpointPair#source() source node} to a {@link EndpointPair#target() target node}, while
135    * undirected edges connect a pair of nodes to each other.
136    */
isDirected()137   boolean isDirected();
138 
139   /**
140    * Returns true if this network allows parallel edges. Attempting to add a parallel edge to a
141    * network that does not allow them will throw an {@link IllegalArgumentException}.
142    */
allowsParallelEdges()143   boolean allowsParallelEdges();
144 
145   /**
146    * Returns true if this network allows self-loops (edges that connect a node to itself).
147    * Attempting to add a self-loop to a network that does not allow them will throw an {@link
148    * IllegalArgumentException}.
149    */
allowsSelfLoops()150   boolean allowsSelfLoops();
151 
152   /** Returns the order of iteration for the elements of {@link #nodes()}. */
nodeOrder()153   ElementOrder<N> nodeOrder();
154 
155   /** Returns the order of iteration for the elements of {@link #edges()}. */
edgeOrder()156   ElementOrder<E> edgeOrder();
157 
158   //
159   // Element-level accessors
160   //
161 
162   /**
163    * Returns the nodes which have an incident edge in common with {@code node} in this network.
164    *
165    * <p>This is equal to the union of {@link #predecessors(Object)} and {@link #successors(Object)}.
166    *
167    * @throws IllegalArgumentException if {@code node} is not an element of this network
168    */
adjacentNodes(N node)169   Set<N> adjacentNodes(N node);
170 
171   /**
172    * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
173    * {@code node}'s incoming edges <i>against</i> the direction (if any) of the edge.
174    *
175    * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
176    *
177    * @throws IllegalArgumentException if {@code node} is not an element of this network
178    */
179   @Override
predecessors(N node)180   Set<N> predecessors(N node);
181 
182   /**
183    * Returns all nodes in this network adjacent to {@code node} which can be reached by traversing
184    * {@code node}'s outgoing edges in the direction (if any) of the edge.
185    *
186    * <p>In an undirected network, this is equivalent to {@link #adjacentNodes(Object)}.
187    *
188    * <p>This is <i>not</i> the same as "all nodes reachable from {@code node} by following outgoing
189    * edges". For that functionality, see {@link Graphs#reachableNodes(Graph, Object)}.
190    *
191    * @throws IllegalArgumentException if {@code node} is not an element of this network
192    */
193   @Override
successors(N node)194   Set<N> successors(N node);
195 
196   /**
197    * Returns the edges whose {@link #incidentNodes(Object) incident nodes} in this network include
198    * {@code node}.
199    *
200    * <p>This is equal to the union of {@link #inEdges(Object)} and {@link #outEdges(Object)}.
201    *
202    * @throws IllegalArgumentException if {@code node} is not an element of this network
203    */
incidentEdges(N node)204   Set<E> incidentEdges(N node);
205 
206   /**
207    * Returns all edges in this network which can be traversed in the direction (if any) of the edge
208    * to end at {@code node}.
209    *
210    * <p>In a directed network, an incoming edge's {@link EndpointPair#target()} equals {@code node}.
211    *
212    * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
213    *
214    * @throws IllegalArgumentException if {@code node} is not an element of this network
215    */
inEdges(N node)216   Set<E> inEdges(N node);
217 
218   /**
219    * Returns all edges in this network which can be traversed in the direction (if any) of the edge
220    * starting from {@code node}.
221    *
222    * <p>In a directed network, an outgoing edge's {@link EndpointPair#source()} equals {@code node}.
223    *
224    * <p>In an undirected network, this is equivalent to {@link #incidentEdges(Object)}.
225    *
226    * @throws IllegalArgumentException if {@code node} is not an element of this network
227    */
outEdges(N node)228   Set<E> outEdges(N node);
229 
230   /**
231    * Returns the count of {@code node}'s {@link #incidentEdges(Object) incident edges}, counting
232    * self-loops twice (equivalently, the number of times an edge touches {@code node}).
233    *
234    * <p>For directed networks, this is equal to {@code inDegree(node) + outDegree(node)}.
235    *
236    * <p>For undirected networks, this is equal to {@code incidentEdges(node).size()} + (number of
237    * self-loops incident to {@code node}).
238    *
239    * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
240    *
241    * @throws IllegalArgumentException if {@code node} is not an element of this network
242    */
degree(N node)243   int degree(N node);
244 
245   /**
246    * Returns the count of {@code node}'s {@link #inEdges(Object) incoming edges} in a directed
247    * network. In an undirected network, returns the {@link #degree(Object)}.
248    *
249    * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
250    *
251    * @throws IllegalArgumentException if {@code node} is not an element of this network
252    */
inDegree(N node)253   int inDegree(N node);
254 
255   /**
256    * Returns the count of {@code node}'s {@link #outEdges(Object) outgoing edges} in a directed
257    * network. In an undirected network, returns the {@link #degree(Object)}.
258    *
259    * <p>If the count is greater than {@code Integer.MAX_VALUE}, returns {@code Integer.MAX_VALUE}.
260    *
261    * @throws IllegalArgumentException if {@code node} is not an element of this network
262    */
outDegree(N node)263   int outDegree(N node);
264 
265   /**
266    * Returns the nodes which are the endpoints of {@code edge} in this network.
267    *
268    * @throws IllegalArgumentException if {@code edge} is not an element of this network
269    */
incidentNodes(E edge)270   EndpointPair<N> incidentNodes(E edge);
271 
272   /**
273    * Returns the edges which have an {@link #incidentNodes(Object) incident node} in common with
274    * {@code edge}. An edge is not considered adjacent to itself.
275    *
276    * @throws IllegalArgumentException if {@code edge} is not an element of this network
277    */
adjacentEdges(E edge)278   Set<E> adjacentEdges(E edge);
279 
280   /**
281    * Returns the set of edges that each directly connect {@code nodeU} to {@code nodeV}.
282    *
283    * <p>In an undirected network, this is equal to {@code edgesConnecting(nodeV, nodeU)}.
284    *
285    * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
286    * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
287    * will contain at most one edge (equivalent to {@code edgeConnecting(nodeU, nodeV).asSet()}).
288    *
289    * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
290    *     network
291    */
edgesConnecting(N nodeU, N nodeV)292   Set<E> edgesConnecting(N nodeU, N nodeV);
293 
294   /**
295    * Returns the set of edges that each directly connect {@code endpoints} (in the order, if any,
296    * specified by {@code endpoints}).
297    *
298    * <p>The resulting set of edges will be parallel (i.e. have equal {@link #incidentNodes(Object)}.
299    * If this network does not {@link #allowsParallelEdges() allow parallel edges}, the resulting set
300    * will contain at most one edge (equivalent to {@code edgeConnecting(endpoints).asSet()}).
301    *
302    * <p>If this network is directed, {@code endpoints} must be ordered.
303    *
304    * @throws IllegalArgumentException if either endpoint is not an element of this network
305    * @throws IllegalArgumentException if the endpoints are unordered and the graph is directed
306    * @since 27.1
307    */
edgesConnecting(EndpointPair<N> endpoints)308   Set<E> edgesConnecting(EndpointPair<N> endpoints);
309 
310   /**
311    * Returns the single edge that directly connects {@code nodeU} to {@code nodeV}, if one is
312    * present, or {@code null} if no such edge exists.
313    *
314    * <p>In an undirected network, this is equal to {@code edgeConnectingOrNull(nodeV, nodeU)}.
315    *
316    * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
317    *     to {@code nodeV}
318    * @throws IllegalArgumentException if {@code nodeU} or {@code nodeV} is not an element of this
319    *     network
320    * @since 23.0
321    */
322   @CheckForNull
edgeConnectingOrNull(N nodeU, N nodeV)323   E edgeConnectingOrNull(N nodeU, N nodeV);
324 
325   /**
326    * Returns the single edge that directly connects {@code endpoints} (in the order, if any,
327    * specified by {@code endpoints}), if one is present, or {@code null} if no such edge exists.
328    *
329    * <p>If this graph is directed, the endpoints must be ordered.
330    *
331    * @throws IllegalArgumentException if there are multiple parallel edges connecting {@code nodeU}
332    *     to {@code nodeV}
333    * @throws IllegalArgumentException if either endpoint is not an element of this network
334    * @throws IllegalArgumentException if the endpoints are unordered and the graph is directed
335    * @since 27.1
336    */
337   @CheckForNull
edgeConnectingOrNull(EndpointPair<N> endpoints)338   E edgeConnectingOrNull(EndpointPair<N> endpoints);
339 
340   /**
341    * Returns true if there is an edge that directly connects {@code nodeU} to {@code nodeV}. This is
342    * equivalent to {@code nodes().contains(nodeU) && successors(nodeU).contains(nodeV)}, and to
343    * {@code edgeConnectingOrNull(nodeU, nodeV) != null}.
344    *
345    * <p>In an undirected graph, this is equal to {@code hasEdgeConnecting(nodeV, nodeU)}.
346    *
347    * @since 23.0
348    */
hasEdgeConnecting(N nodeU, N nodeV)349   boolean hasEdgeConnecting(N nodeU, N nodeV);
350 
351   /**
352    * Returns true if there is an edge that directly connects {@code endpoints} (in the order, if
353    * any, specified by {@code endpoints}).
354    *
355    * <p>Unlike the other {@code EndpointPair}-accepting methods, this method does not throw if the
356    * endpoints are unordered and the graph is directed; it simply returns {@code false}. This is for
357    * consistency with {@link Graph#hasEdgeConnecting(EndpointPair)} and {@link
358    * ValueGraph#hasEdgeConnecting(EndpointPair)}.
359    *
360    * @since 27.1
361    */
hasEdgeConnecting(EndpointPair<N> endpoints)362   boolean hasEdgeConnecting(EndpointPair<N> endpoints);
363 
364   //
365   // Network identity
366   //
367 
368   /**
369    * Returns {@code true} iff {@code object} is a {@link Network} that has the same elements and the
370    * same structural relationships as those in this network.
371    *
372    * <p>Thus, two networks A and B are equal if <b>all</b> of the following are true:
373    *
374    * <ul>
375    *   <li>A and B have equal {@link #isDirected() directedness}.
376    *   <li>A and B have equal {@link #nodes() node sets}.
377    *   <li>A and B have equal {@link #edges() edge sets}.
378    *   <li>Every edge in A and B connects the same nodes in the same direction (if any).
379    * </ul>
380    *
381    * <p>Network properties besides {@link #isDirected() directedness} do <b>not</b> affect equality.
382    * For example, two networks may be considered equal even if one allows parallel edges and the
383    * other doesn't. Additionally, the order in which nodes or edges are added to the network, and
384    * the order in which they are iterated over, are irrelevant.
385    *
386    * <p>A reference implementation of this is provided by {@link AbstractNetwork#equals(Object)}.
387    */
388   @Override
equals(@heckForNull Object object)389   boolean equals(@CheckForNull Object object);
390 
391   /**
392    * Returns the hash code for this network. The hash code of a network is defined as the hash code
393    * of a map from each of its {@link #edges() edges} to their {@link #incidentNodes(Object)
394    * incident nodes}.
395    *
396    * <p>A reference implementation of this is provided by {@link AbstractNetwork#hashCode()}.
397    */
398   @Override
hashCode()399   int hashCode();
400 }
401