• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ***************************************************************************
5 *   Copyright (C) 1999-2016 International Business Machines Corporation
6 *   and others. All rights reserved.
7 ***************************************************************************
8 */
9 //
10 //  file:  rbbi.cpp  Contains the implementation of the rule based break iterator
11 //                   runtime engine and the API implementation for
12 //                   class RuleBasedBreakIterator
13 //
14 
15 #include "utypeinfo.h"  // for 'typeid' to work
16 
17 #include "unicode/utypes.h"
18 
19 #if !UCONFIG_NO_BREAK_ITERATION
20 
21 #include <cinttypes>
22 
23 #include "unicode/rbbi.h"
24 #include "unicode/schriter.h"
25 #include "unicode/uchriter.h"
26 #include "unicode/uclean.h"
27 #include "unicode/udata.h"
28 
29 #include "brkeng.h"
30 #include "ucln_cmn.h"
31 #include "cmemory.h"
32 #include "cstring.h"
33 #include "localsvc.h"
34 #include "rbbidata.h"
35 #include "rbbi_cache.h"
36 #include "rbbirb.h"
37 #include "uassert.h"
38 #include "umutex.h"
39 #include "uvectr32.h"
40 
41 #ifdef RBBI_DEBUG
42 static UBool gTrace = FALSE;
43 #endif
44 
45 U_NAMESPACE_BEGIN
46 
47 // The state number of the starting state
48 constexpr int32_t START_STATE = 1;
49 
50 // The state-transition value indicating "stop"
51 constexpr int32_t STOP_STATE = 0;
52 
53 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)54 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator)
55 
56 
57 //=======================================================================
58 // constructors
59 //=======================================================================
60 
61 /**
62  * Constructs a RuleBasedBreakIterator that uses the already-created
63  * tables object that is passed in as a parameter.
64  */
65 RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status)
66  : fSCharIter(UnicodeString())
67 {
68     init(status);
69     fData = new RBBIDataWrapper(data, status); // status checked in constructor
70     if (U_FAILURE(status)) {return;}
71     if(fData == nullptr) {
72         status = U_MEMORY_ALLOCATION_ERROR;
73         return;
74     }
75     if (fData->fForwardTable->fLookAheadResultsSize > 0) {
76         fLookAheadMatches = static_cast<int32_t *>(
77             uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
78         if (fLookAheadMatches == nullptr) {
79             status = U_MEMORY_ALLOCATION_ERROR;
80             return;
81         }
82     }
83 }
84 
85 //-------------------------------------------------------------------------------
86 //
87 //   Constructor   from a UDataMemory handle to precompiled break rules
88 //                 stored in an ICU data file. This construcotr is private API,
89 //                 only for internal use.
90 //
91 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(UDataMemory * udm,UBool isPhraseBreaking,UErrorCode & status)92 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UBool isPhraseBreaking,
93         UErrorCode &status) : RuleBasedBreakIterator(udm, status)
94 {
95     fIsPhraseBreaking = isPhraseBreaking;
96 }
97 
98 //
99 //  Construct from precompiled binary rules (tables).  This constructor is public API,
100 //  taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules().
101 //
RuleBasedBreakIterator(const uint8_t * compiledRules,uint32_t ruleLength,UErrorCode & status)102 RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules,
103                        uint32_t       ruleLength,
104                        UErrorCode     &status)
105  : fSCharIter(UnicodeString())
106 {
107     init(status);
108     if (U_FAILURE(status)) {
109         return;
110     }
111     if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) {
112         status = U_ILLEGAL_ARGUMENT_ERROR;
113         return;
114     }
115     const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules;
116     if (data->fLength > ruleLength) {
117         status = U_ILLEGAL_ARGUMENT_ERROR;
118         return;
119     }
120     fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status);
121     if (U_FAILURE(status)) {return;}
122     if(fData == nullptr) {
123         status = U_MEMORY_ALLOCATION_ERROR;
124         return;
125     }
126     if (fData->fForwardTable->fLookAheadResultsSize > 0) {
127         fLookAheadMatches = static_cast<int32_t *>(
128             uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
129         if (fLookAheadMatches == nullptr) {
130             status = U_MEMORY_ALLOCATION_ERROR;
131             return;
132         }
133     }
134 }
135 
136 
137 //-------------------------------------------------------------------------------
138 //
139 //   Constructor   from a UDataMemory handle to precompiled break rules
140 //                 stored in an ICU data file.
141 //
142 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(UDataMemory * udm,UErrorCode & status)143 RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status)
144  : fSCharIter(UnicodeString())
145 {
146     init(status);
147     fData = new RBBIDataWrapper(udm, status); // status checked in constructor
148     if (U_FAILURE(status)) {return;}
149     if(fData == nullptr) {
150         status = U_MEMORY_ALLOCATION_ERROR;
151         return;
152     }
153     if (fData->fForwardTable->fLookAheadResultsSize > 0) {
154         fLookAheadMatches = static_cast<int32_t *>(
155             uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
156         if (fLookAheadMatches == nullptr) {
157             status = U_MEMORY_ALLOCATION_ERROR;
158             return;
159         }
160     }
161 }
162 
163 
164 
165 //-------------------------------------------------------------------------------
166 //
167 //   Constructor       from a set of rules supplied as a string.
168 //
169 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const UnicodeString & rules,UParseError & parseError,UErrorCode & status)170 RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString  &rules,
171                                                 UParseError          &parseError,
172                                                 UErrorCode           &status)
173  : fSCharIter(UnicodeString())
174 {
175     init(status);
176     if (U_FAILURE(status)) {return;}
177     RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *)
178         RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status);
179     // Note:  This is a bit awkward.  The RBBI ruleBuilder has a factory method that
180     //        creates and returns a complete RBBI.  From here, in a constructor, we
181     //        can't just return the object created by the builder factory, hence
182     //        the assignment of the factory created object to "this".
183     if (U_SUCCESS(status)) {
184         *this = *bi;
185         delete bi;
186     }
187 }
188 
189 
190 //-------------------------------------------------------------------------------
191 //
192 // Default Constructor.      Create an empty shell that can be set up later.
193 //                           Used when creating a RuleBasedBreakIterator from a set
194 //                           of rules.
195 //-------------------------------------------------------------------------------
RuleBasedBreakIterator()196 RuleBasedBreakIterator::RuleBasedBreakIterator()
197  : fSCharIter(UnicodeString())
198 {
199     UErrorCode status = U_ZERO_ERROR;
200     init(status);
201 }
202 
203 
204 //-------------------------------------------------------------------------------
205 //
206 //   Copy constructor.  Will produce a break iterator with the same behavior,
207 //                      and which iterates over the same text, as the one passed in.
208 //
209 //-------------------------------------------------------------------------------
RuleBasedBreakIterator(const RuleBasedBreakIterator & other)210 RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other)
211 : BreakIterator(other),
212   fSCharIter(UnicodeString())
213 {
214     UErrorCode status = U_ZERO_ERROR;
215     this->init(status);
216     *this = other;
217 }
218 
219 
220 /**
221  * Destructor
222  */
~RuleBasedBreakIterator()223 RuleBasedBreakIterator::~RuleBasedBreakIterator() {
224     if (fCharIter != &fSCharIter) {
225         // fCharIter was adopted from the outside.
226         delete fCharIter;
227     }
228     fCharIter = nullptr;
229 
230     utext_close(&fText);
231 
232     if (fData != nullptr) {
233         fData->removeReference();
234         fData = nullptr;
235     }
236     delete fBreakCache;
237     fBreakCache = nullptr;
238 
239     delete fDictionaryCache;
240     fDictionaryCache = nullptr;
241 
242     delete fLanguageBreakEngines;
243     fLanguageBreakEngines = nullptr;
244 
245     delete fUnhandledBreakEngine;
246     fUnhandledBreakEngine = nullptr;
247 
248     uprv_free(fLookAheadMatches);
249     fLookAheadMatches = nullptr;
250 }
251 
252 /**
253  * Assignment operator.  Sets this iterator to have the same behavior,
254  * and iterate over the same text, as the one passed in.
255  * TODO: needs better handling of memory allocation errors.
256  */
257 RuleBasedBreakIterator&
operator =(const RuleBasedBreakIterator & that)258 RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) {
259     if (this == &that) {
260         return *this;
261     }
262     BreakIterator::operator=(that);
263 
264     if (fLanguageBreakEngines != NULL) {
265         delete fLanguageBreakEngines;
266         fLanguageBreakEngines = NULL;   // Just rebuild for now
267     }
268     // TODO: clone fLanguageBreakEngines from "that"
269     UErrorCode status = U_ZERO_ERROR;
270     utext_clone(&fText, &that.fText, FALSE, TRUE, &status);
271 
272     if (fCharIter != &fSCharIter) {
273         delete fCharIter;
274     }
275     fCharIter = &fSCharIter;
276 
277     if (that.fCharIter != NULL && that.fCharIter != &that.fSCharIter) {
278         // This is a little bit tricky - it will initially appear that
279         //  this->fCharIter is adopted, even if that->fCharIter was
280         //  not adopted.  That's ok.
281         fCharIter = that.fCharIter->clone();
282     }
283     fSCharIter = that.fSCharIter;
284     if (fCharIter == NULL) {
285         fCharIter = &fSCharIter;
286     }
287 
288     if (fData != NULL) {
289         fData->removeReference();
290         fData = NULL;
291     }
292     if (that.fData != NULL) {
293         fData = that.fData->addReference();
294     }
295 
296     uprv_free(fLookAheadMatches);
297     fLookAheadMatches = nullptr;
298     if (fData && fData->fForwardTable->fLookAheadResultsSize > 0) {
299         fLookAheadMatches = static_cast<int32_t *>(
300             uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t)));
301     }
302 
303 
304     fPosition = that.fPosition;
305     fRuleStatusIndex = that.fRuleStatusIndex;
306     fDone = that.fDone;
307 
308     // TODO: both the dictionary and the main cache need to be copied.
309     //       Current position could be within a dictionary range. Trying to continue
310     //       the iteration without the caches present would go to the rules, with
311     //       the assumption that the current position is on a rule boundary.
312     fBreakCache->reset(fPosition, fRuleStatusIndex);
313     fDictionaryCache->reset();
314 
315     return *this;
316 }
317 
318 
319 
320 //-----------------------------------------------------------------------------
321 //
322 //    init()      Shared initialization routine.   Used by all the constructors.
323 //                Initializes all fields, leaving the object in a consistent state.
324 //
325 //-----------------------------------------------------------------------------
init(UErrorCode & status)326 void RuleBasedBreakIterator::init(UErrorCode &status) {
327     fCharIter             = nullptr;
328     fData                 = nullptr;
329     fPosition             = 0;
330     fRuleStatusIndex      = 0;
331     fDone                 = false;
332     fDictionaryCharCount  = 0;
333     fLanguageBreakEngines = nullptr;
334     fUnhandledBreakEngine = nullptr;
335     fBreakCache           = nullptr;
336     fDictionaryCache      = nullptr;
337     fLookAheadMatches     = nullptr;
338     fIsPhraseBreaking     = false;
339 
340     // Note: IBM xlC is unable to assign or initialize member fText from UTEXT_INITIALIZER.
341     // fText                 = UTEXT_INITIALIZER;
342     static const UText initializedUText = UTEXT_INITIALIZER;
343     uprv_memcpy(&fText, &initializedUText, sizeof(UText));
344 
345    if (U_FAILURE(status)) {
346         return;
347     }
348 
349     utext_openUChars(&fText, NULL, 0, &status);
350     fDictionaryCache = new DictionaryCache(this, status);
351     fBreakCache      = new BreakCache(this, status);
352     if (U_SUCCESS(status) && (fDictionaryCache == NULL || fBreakCache == NULL)) {
353         status = U_MEMORY_ALLOCATION_ERROR;
354     }
355 
356 #ifdef RBBI_DEBUG
357     static UBool debugInitDone = FALSE;
358     if (debugInitDone == FALSE) {
359         char *debugEnv = getenv("U_RBBIDEBUG");
360         if (debugEnv && uprv_strstr(debugEnv, "trace")) {
361             gTrace = TRUE;
362         }
363         debugInitDone = TRUE;
364     }
365 #endif
366 }
367 
368 
369 
370 //-----------------------------------------------------------------------------
371 //
372 //    clone - Returns a newly-constructed RuleBasedBreakIterator with the same
373 //            behavior, and iterating over the same text, as this one.
374 //            Virtual function: does the right thing with subclasses.
375 //
376 //-----------------------------------------------------------------------------
377 RuleBasedBreakIterator*
clone() const378 RuleBasedBreakIterator::clone() const {
379     return new RuleBasedBreakIterator(*this);
380 }
381 
382 /**
383  * Equality operator.  Returns true if both BreakIterators are of the
384  * same class, have the same behavior, and iterate over the same text.
385  */
386 bool
operator ==(const BreakIterator & that) const387 RuleBasedBreakIterator::operator==(const BreakIterator& that) const {
388     if (typeid(*this) != typeid(that)) {
389         return false;
390     }
391     if (this == &that) {
392         return true;
393     }
394 
395     // The base class BreakIterator carries no state that participates in equality,
396     // and does not implement an equality function that would otherwise be
397     // checked at this point.
398 
399     const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that;
400 
401     if (!utext_equals(&fText, &that2.fText)) {
402         // The two break iterators are operating on different text,
403         //   or have a different iteration position.
404         //   Note that fText's position is always the same as the break iterator's position.
405         return false;
406     }
407 
408     if (!(fPosition == that2.fPosition &&
409             fRuleStatusIndex == that2.fRuleStatusIndex &&
410             fDone == that2.fDone)) {
411         return false;
412     }
413 
414     if (that2.fData == fData ||
415         (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) {
416             // The two break iterators are using the same rules.
417             return true;
418         }
419     return false;
420 }
421 
422 /**
423  * Compute a hash code for this BreakIterator
424  * @return A hash code
425  */
426 int32_t
hashCode(void) const427 RuleBasedBreakIterator::hashCode(void) const {
428     int32_t   hash = 0;
429     if (fData != NULL) {
430         hash = fData->hashCode();
431     }
432     return hash;
433 }
434 
435 
setText(UText * ut,UErrorCode & status)436 void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) {
437     if (U_FAILURE(status)) {
438         return;
439     }
440     fBreakCache->reset();
441     fDictionaryCache->reset();
442     utext_clone(&fText, ut, FALSE, TRUE, &status);
443 
444     // Set up a dummy CharacterIterator to be returned if anyone
445     //   calls getText().  With input from UText, there is no reasonable
446     //   way to return a characterIterator over the actual input text.
447     //   Return one over an empty string instead - this is the closest
448     //   we can come to signaling a failure.
449     //   (GetText() is obsolete, this failure is sort of OK)
450     fSCharIter.setText(UnicodeString());
451 
452     if (fCharIter != &fSCharIter) {
453         // existing fCharIter was adopted from the outside.  Delete it now.
454         delete fCharIter;
455     }
456     fCharIter = &fSCharIter;
457 
458     this->first();
459 }
460 
461 
getUText(UText * fillIn,UErrorCode & status) const462 UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const {
463     UText *result = utext_clone(fillIn, &fText, FALSE, TRUE, &status);
464     return result;
465 }
466 
467 
468 //=======================================================================
469 // BreakIterator overrides
470 //=======================================================================
471 
472 /**
473  * Return a CharacterIterator over the text being analyzed.
474  */
475 CharacterIterator&
getText() const476 RuleBasedBreakIterator::getText() const {
477     return *fCharIter;
478 }
479 
480 /**
481  * Set the iterator to analyze a new piece of text.  This function resets
482  * the current iteration position to the beginning of the text.
483  * @param newText An iterator over the text to analyze.
484  */
485 void
adoptText(CharacterIterator * newText)486 RuleBasedBreakIterator::adoptText(CharacterIterator* newText) {
487     // If we are holding a CharacterIterator adopted from a
488     //   previous call to this function, delete it now.
489     if (fCharIter != &fSCharIter) {
490         delete fCharIter;
491     }
492 
493     fCharIter = newText;
494     UErrorCode status = U_ZERO_ERROR;
495     fBreakCache->reset();
496     fDictionaryCache->reset();
497     if (newText==NULL || newText->startIndex() != 0) {
498         // startIndex !=0 wants to be an error, but there's no way to report it.
499         // Make the iterator text be an empty string.
500         utext_openUChars(&fText, NULL, 0, &status);
501     } else {
502         utext_openCharacterIterator(&fText, newText, &status);
503     }
504     this->first();
505 }
506 
507 /**
508  * Set the iterator to analyze a new piece of text.  This function resets
509  * the current iteration position to the beginning of the text.
510  * @param newText An iterator over the text to analyze.
511  */
512 void
setText(const UnicodeString & newText)513 RuleBasedBreakIterator::setText(const UnicodeString& newText) {
514     UErrorCode status = U_ZERO_ERROR;
515     fBreakCache->reset();
516     fDictionaryCache->reset();
517     utext_openConstUnicodeString(&fText, &newText, &status);
518 
519     // Set up a character iterator on the string.
520     //   Needed in case someone calls getText().
521     //  Can not, unfortunately, do this lazily on the (probably never)
522     //  call to getText(), because getText is const.
523     fSCharIter.setText(newText);
524 
525     if (fCharIter != &fSCharIter) {
526         // old fCharIter was adopted from the outside.  Delete it.
527         delete fCharIter;
528     }
529     fCharIter = &fSCharIter;
530 
531     this->first();
532 }
533 
534 
535 /**
536  *  Provide a new UText for the input text.  Must reference text with contents identical
537  *  to the original.
538  *  Intended for use with text data originating in Java (garbage collected) environments
539  *  where the data may be moved in memory at arbitrary times.
540  */
refreshInputText(UText * input,UErrorCode & status)541 RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) {
542     if (U_FAILURE(status)) {
543         return *this;
544     }
545     if (input == NULL) {
546         status = U_ILLEGAL_ARGUMENT_ERROR;
547         return *this;
548     }
549     int64_t pos = utext_getNativeIndex(&fText);
550     //  Shallow read-only clone of the new UText into the existing input UText
551     utext_clone(&fText, input, FALSE, TRUE, &status);
552     if (U_FAILURE(status)) {
553         return *this;
554     }
555     utext_setNativeIndex(&fText, pos);
556     if (utext_getNativeIndex(&fText) != pos) {
557         // Sanity check.  The new input utext is supposed to have the exact same
558         // contents as the old.  If we can't set to the same position, it doesn't.
559         // The contents underlying the old utext might be invalid at this point,
560         // so it's not safe to check directly.
561         status = U_ILLEGAL_ARGUMENT_ERROR;
562     }
563     return *this;
564 }
565 
566 
567 /**
568  * Sets the current iteration position to the beginning of the text, position zero.
569  * @return The new iterator position, which is zero.
570  */
first(void)571 int32_t RuleBasedBreakIterator::first(void) {
572     UErrorCode status = U_ZERO_ERROR;
573     if (!fBreakCache->seek(0)) {
574         fBreakCache->populateNear(0, status);
575     }
576     fBreakCache->current();
577     U_ASSERT(fPosition == 0);
578     return 0;
579 }
580 
581 /**
582  * Sets the current iteration position to the end of the text.
583  * @return The text's past-the-end offset.
584  */
last(void)585 int32_t RuleBasedBreakIterator::last(void) {
586     int32_t endPos = (int32_t)utext_nativeLength(&fText);
587     UBool endShouldBeBoundary = isBoundary(endPos);      // Has side effect of setting iterator position.
588     (void)endShouldBeBoundary;
589     U_ASSERT(endShouldBeBoundary);
590     U_ASSERT(fPosition == endPos);
591     return endPos;
592 }
593 
594 /**
595  * Advances the iterator either forward or backward the specified number of steps.
596  * Negative values move backward, and positive values move forward.  This is
597  * equivalent to repeatedly calling next() or previous().
598  * @param n The number of steps to move.  The sign indicates the direction
599  * (negative is backwards, and positive is forwards).
600  * @return The character offset of the boundary position n boundaries away from
601  * the current one.
602  */
next(int32_t n)603 int32_t RuleBasedBreakIterator::next(int32_t n) {
604     int32_t result = 0;
605     if (n > 0) {
606         for (; n > 0 && result != UBRK_DONE; --n) {
607             result = next();
608         }
609     } else if (n < 0) {
610         for (; n < 0 && result != UBRK_DONE; ++n) {
611             result = previous();
612         }
613     } else {
614         result = current();
615     }
616     return result;
617 }
618 
619 /**
620  * Advances the iterator to the next boundary position.
621  * @return The position of the first boundary after this one.
622  */
next(void)623 int32_t RuleBasedBreakIterator::next(void) {
624     fBreakCache->next();
625     return fDone ? UBRK_DONE : fPosition;
626 }
627 
628 /**
629  * Move the iterator backwards, to the boundary preceding the current one.
630  *
631  *         Starts from the current position within fText.
632  *         Starting position need not be on a boundary.
633  *
634  * @return The position of the boundary position immediately preceding the starting position.
635  */
previous(void)636 int32_t RuleBasedBreakIterator::previous(void) {
637     UErrorCode status = U_ZERO_ERROR;
638     fBreakCache->previous(status);
639     return fDone ? UBRK_DONE : fPosition;
640 }
641 
642 /**
643  * Sets the iterator to refer to the first boundary position following
644  * the specified position.
645  * @param startPos The position from which to begin searching for a break position.
646  * @return The position of the first break after the current position.
647  */
following(int32_t startPos)648 int32_t RuleBasedBreakIterator::following(int32_t startPos) {
649     // if the supplied position is before the beginning, return the
650     // text's starting offset
651     if (startPos < 0) {
652         return first();
653     }
654 
655     // Move requested offset to a code point start. It might be on a trail surrogate,
656     // or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text.
657     utext_setNativeIndex(&fText, startPos);
658     startPos = (int32_t)utext_getNativeIndex(&fText);
659 
660     UErrorCode status = U_ZERO_ERROR;
661     fBreakCache->following(startPos, status);
662     return fDone ? UBRK_DONE : fPosition;
663 }
664 
665 /**
666  * Sets the iterator to refer to the last boundary position before the
667  * specified position.
668  * @param offset The position to begin searching for a break from.
669  * @return The position of the last boundary before the starting position.
670  */
preceding(int32_t offset)671 int32_t RuleBasedBreakIterator::preceding(int32_t offset) {
672     if (offset > utext_nativeLength(&fText)) {
673         return last();
674     }
675 
676     // Move requested offset to a code point start. It might be on a trail surrogate,
677     // or on a trail byte if the input is UTF-8.
678 
679     utext_setNativeIndex(&fText, offset);
680     int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
681 
682     UErrorCode status = U_ZERO_ERROR;
683     fBreakCache->preceding(adjustedOffset, status);
684     return fDone ? UBRK_DONE : fPosition;
685 }
686 
687 /**
688  * Returns true if the specified position is a boundary position.  As a side
689  * effect, leaves the iterator pointing to the first boundary position at
690  * or after "offset".
691  *
692  * @param offset the offset to check.
693  * @return True if "offset" is a boundary position.
694  */
isBoundary(int32_t offset)695 UBool RuleBasedBreakIterator::isBoundary(int32_t offset) {
696     // out-of-range indexes are never boundary positions
697     if (offset < 0) {
698         first();       // For side effects on current position, tag values.
699         return FALSE;
700     }
701 
702     // Adjust offset to be on a code point boundary and not beyond the end of the text.
703     // Note that isBoundary() is always false for offsets that are not on code point boundaries.
704     // But we still need the side effect of leaving iteration at the following boundary.
705 
706     utext_setNativeIndex(&fText, offset);
707     int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText));
708 
709     bool result = false;
710     UErrorCode status = U_ZERO_ERROR;
711     if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) {
712         result = (fBreakCache->current() == offset);
713     }
714 
715     if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) {
716         // Original offset is beyond the end of the text. Return FALSE, it's not a boundary,
717         // but the iteration position remains set to the end of the text, which is a boundary.
718         return FALSE;
719     }
720     if (!result) {
721         // Not on a boundary. isBoundary() must leave iterator on the following boundary.
722         // Cache->seek(), above, left us on the preceding boundary, so advance one.
723         next();
724     }
725     return result;
726 }
727 
728 
729 /**
730  * Returns the current iteration position.
731  * @return The current iteration position.
732  */
current(void) const733 int32_t RuleBasedBreakIterator::current(void) const {
734     return fPosition;
735 }
736 
737 
738 //=======================================================================
739 // implementation
740 //=======================================================================
741 
742 //
743 // RBBIRunMode  -  the state machine runs an extra iteration at the beginning and end
744 //                 of user text.  A variable with this enum type keeps track of where we
745 //                 are.  The state machine only fetches user input while in the RUN mode.
746 //
747 enum RBBIRunMode {
748     RBBI_START,     // state machine processing is before first char of input
749     RBBI_RUN,       // state machine processing is in the user text
750     RBBI_END        // state machine processing is after end of user text.
751 };
752 
753 
754 // Wrapper functions to select the appropriate handleNext() or handleSafePrevious()
755 // instantiation, based on whether an 8 or 16 bit table is required.
756 //
757 // These Trie access functions will be inlined within the handleNext()/Previous() instantions.
TrieFunc8(const UCPTrie * trie,UChar32 c)758 static inline uint16_t TrieFunc8(const UCPTrie *trie, UChar32 c) {
759     return UCPTRIE_FAST_GET(trie, UCPTRIE_8, c);
760 }
761 
TrieFunc16(const UCPTrie * trie,UChar32 c)762 static inline uint16_t TrieFunc16(const UCPTrie *trie, UChar32 c) {
763     return UCPTRIE_FAST_GET(trie, UCPTRIE_16, c);
764 }
765 
handleNext()766 int32_t RuleBasedBreakIterator::handleNext() {
767     const RBBIStateTable *statetable = fData->fForwardTable;
768     bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
769     if (statetable->fFlags & RBBI_8BITS_ROWS) {
770         if (use8BitsTrie) {
771             return handleNext<RBBIStateTableRow8, TrieFunc8>();
772         } else {
773             return handleNext<RBBIStateTableRow8, TrieFunc16>();
774         }
775     } else {
776         if (use8BitsTrie) {
777             return handleNext<RBBIStateTableRow16, TrieFunc8>();
778         } else {
779             return handleNext<RBBIStateTableRow16, TrieFunc16>();
780         }
781     }
782 }
783 
handleSafePrevious(int32_t fromPosition)784 int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
785     const RBBIStateTable *statetable = fData->fReverseTable;
786     bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8;
787     if (statetable->fFlags & RBBI_8BITS_ROWS) {
788         if (use8BitsTrie) {
789             return handleSafePrevious<RBBIStateTableRow8, TrieFunc8>(fromPosition);
790         } else {
791             return handleSafePrevious<RBBIStateTableRow8, TrieFunc16>(fromPosition);
792         }
793     } else {
794         if (use8BitsTrie) {
795             return handleSafePrevious<RBBIStateTableRow16, TrieFunc8>(fromPosition);
796         } else {
797             return handleSafePrevious<RBBIStateTableRow16, TrieFunc16>(fromPosition);
798         }
799     }
800 }
801 
802 
803 //-----------------------------------------------------------------------------------
804 //
805 //  handleNext()
806 //     Run the state machine to find a boundary
807 //
808 //-----------------------------------------------------------------------------------
809 template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
handleNext()810 int32_t RuleBasedBreakIterator::handleNext() {
811     int32_t             state;
812     uint16_t            category        = 0;
813     RBBIRunMode         mode;
814 
815     RowType             *row;
816     UChar32             c;
817     int32_t             result             = 0;
818     int32_t             initialPosition    = 0;
819     const RBBIStateTable *statetable       = fData->fForwardTable;
820     const char         *tableData          = statetable->fTableData;
821     uint32_t            tableRowLen        = statetable->fRowLen;
822     uint32_t            dictStart          = statetable->fDictCategoriesStart;
823     #ifdef RBBI_DEBUG
824         if (gTrace) {
825             RBBIDebugPuts("Handle Next   pos   char  state category");
826         }
827     #endif
828 
829     // handleNext always sets the break tag value.
830     // Set the default for it.
831     fRuleStatusIndex = 0;
832 
833     fDictionaryCharCount = 0;
834 
835     // if we're already at the end of the text, return DONE.
836     initialPosition = fPosition;
837     UTEXT_SETNATIVEINDEX(&fText, initialPosition);
838     result          = initialPosition;
839     c               = UTEXT_NEXT32(&fText);
840     if (c==U_SENTINEL) {
841         fDone = TRUE;
842         return UBRK_DONE;
843     }
844 
845     //  Set the initial state for the state machine
846     state = START_STATE;
847     row = (RowType *)
848             //(statetable->fTableData + (statetable->fRowLen * state));
849             (tableData + tableRowLen * state);
850 
851 
852     mode     = RBBI_RUN;
853     if (statetable->fFlags & RBBI_BOF_REQUIRED) {
854         category = 2;
855         mode     = RBBI_START;
856     }
857 
858 
859     // loop until we reach the end of the text or transition to state 0
860     //
861     for (;;) {
862         if (c == U_SENTINEL) {
863             // Reached end of input string.
864             if (mode == RBBI_END) {
865                 // We have already run the loop one last time with the
866                 //   character set to the psueudo {eof} value.  Now it is time
867                 //   to unconditionally bail out.
868                 break;
869             }
870             // Run the loop one last time with the fake end-of-input character category.
871             mode = RBBI_END;
872             category = 1;
873         }
874 
875         //
876         // Get the char category.  An incoming category of 1 or 2 means that
877         //      we are preset for doing the beginning or end of input, and
878         //      that we shouldn't get a category from an actual text input character.
879         //
880         if (mode == RBBI_RUN) {
881             // look up the current character's character category, which tells us
882             // which column in the state table to look at.
883             category = trieFunc(fData->fTrie, c);
884             fDictionaryCharCount += (category >= dictStart);
885         }
886 
887        #ifdef RBBI_DEBUG
888             if (gTrace) {
889                 RBBIDebugPrintf("             %4" PRId64 "   ", utext_getNativeIndex(&fText));
890                 if (0x20<=c && c<0x7f) {
891                     RBBIDebugPrintf("\"%c\"  ", c);
892                 } else {
893                     RBBIDebugPrintf("%5x  ", c);
894                 }
895                 RBBIDebugPrintf("%3d  %3d\n", state, category);
896             }
897         #endif
898 
899         // State Transition - move machine to its next state
900         //
901 
902         // fNextState is a variable-length array.
903         U_ASSERT(category<fData->fHeader->fCatCount);
904         state = row->fNextState[category];  /*Not accessing beyond memory*/
905         row = (RowType *)
906             // (statetable->fTableData + (statetable->fRowLen * state));
907             (tableData + tableRowLen * state);
908 
909 
910         uint16_t accepting = row->fAccepting;
911         if (accepting == ACCEPTING_UNCONDITIONAL) {
912             // Match found, common case.
913             if (mode != RBBI_START) {
914                 result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
915             }
916             fRuleStatusIndex = row->fTagsIdx;   // Remember the break status (tag) values.
917         } else if (accepting > ACCEPTING_UNCONDITIONAL) {
918             // Lookahead match is completed.
919             U_ASSERT(accepting < fData->fForwardTable->fLookAheadResultsSize);
920             int32_t lookaheadResult = fLookAheadMatches[accepting];
921             if (lookaheadResult >= 0) {
922                 fRuleStatusIndex = row->fTagsIdx;
923                 fPosition = lookaheadResult;
924                 return lookaheadResult;
925             }
926         }
927 
928         // If we are at the position of the '/' in a look-ahead (hard break) rule;
929         // record the current position, to be returned later, if the full rule matches.
930         // TODO: Move this check before the previous check of fAccepting.
931         //       This would enable hard-break rules with no following context.
932         //       But there are line break test failures when trying this. Investigate.
933         //       Issue ICU-20837
934         uint16_t rule = row->fLookAhead;
935         U_ASSERT(rule == 0 || rule > ACCEPTING_UNCONDITIONAL);
936         U_ASSERT(rule == 0 || rule < fData->fForwardTable->fLookAheadResultsSize);
937         if (rule > ACCEPTING_UNCONDITIONAL) {
938             int32_t  pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
939             fLookAheadMatches[rule] = pos;
940         }
941 
942         if (state == STOP_STATE) {
943             // This is the normal exit from the lookup state machine.
944             // We have advanced through the string until it is certain that no
945             //   longer match is possible, no matter what characters follow.
946             break;
947         }
948 
949         // Advance to the next character.
950         // If this is a beginning-of-input loop iteration, don't advance
951         //    the input position.  The next iteration will be processing the
952         //    first real input character.
953         if (mode == RBBI_RUN) {
954             c = UTEXT_NEXT32(&fText);
955         } else {
956             if (mode == RBBI_START) {
957                 mode = RBBI_RUN;
958             }
959         }
960     }
961 
962     // The state machine is done.  Check whether it found a match...
963 
964     // If the iterator failed to advance in the match engine, force it ahead by one.
965     //   (This really indicates a defect in the break rules.  They should always match
966     //    at least one character.)
967     if (result == initialPosition) {
968         utext_setNativeIndex(&fText, initialPosition);
969         utext_next32(&fText);
970         result = (int32_t)utext_getNativeIndex(&fText);
971         fRuleStatusIndex = 0;
972     }
973 
974     // Leave the iterator at our result position.
975     fPosition = result;
976     #ifdef RBBI_DEBUG
977         if (gTrace) {
978             RBBIDebugPrintf("result = %d\n\n", result);
979         }
980     #endif
981     return result;
982 }
983 
984 
985 //-----------------------------------------------------------------------------------
986 //
987 //  handleSafePrevious()
988 //
989 //      Iterate backwards using the safe reverse rules.
990 //      The logic of this function is similar to handleNext(), but simpler
991 //      because the safe table does not require as many options.
992 //
993 //-----------------------------------------------------------------------------------
994 template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc>
handleSafePrevious(int32_t fromPosition)995 int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) {
996 
997     int32_t             state;
998     uint16_t            category        = 0;
999     RowType            *row;
1000     UChar32             c;
1001     int32_t             result          = 0;
1002 
1003     const RBBIStateTable *stateTable = fData->fReverseTable;
1004     UTEXT_SETNATIVEINDEX(&fText, fromPosition);
1005     #ifdef RBBI_DEBUG
1006         if (gTrace) {
1007             RBBIDebugPuts("Handle Previous   pos   char  state category");
1008         }
1009     #endif
1010 
1011     // if we're already at the start of the text, return DONE.
1012     if (fData == NULL || UTEXT_GETNATIVEINDEX(&fText)==0) {
1013         return BreakIterator::DONE;
1014     }
1015 
1016     //  Set the initial state for the state machine
1017     c = UTEXT_PREVIOUS32(&fText);
1018     state = START_STATE;
1019     row = (RowType *)
1020             (stateTable->fTableData + (stateTable->fRowLen * state));
1021 
1022     // loop until we reach the start of the text or transition to state 0
1023     //
1024     for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) {
1025 
1026         // look up the current character's character category, which tells us
1027         // which column in the state table to look at.
1028         //
1029         //  Off the dictionary flag bit. For reverse iteration it is not used.
1030         category = trieFunc(fData->fTrie, c);
1031 
1032         #ifdef RBBI_DEBUG
1033             if (gTrace) {
1034                 RBBIDebugPrintf("             %4d   ", (int32_t)utext_getNativeIndex(&fText));
1035                 if (0x20<=c && c<0x7f) {
1036                     RBBIDebugPrintf("\"%c\"  ", c);
1037                 } else {
1038                     RBBIDebugPrintf("%5x  ", c);
1039                 }
1040                 RBBIDebugPrintf("%3d  %3d\n", state, category);
1041             }
1042         #endif
1043 
1044         // State Transition - move machine to its next state
1045         //
1046         // fNextState is a variable-length array.
1047         U_ASSERT(category<fData->fHeader->fCatCount);
1048         state = row->fNextState[category];  /*Not accessing beyond memory*/
1049         row = (RowType *)
1050             (stateTable->fTableData + (stateTable->fRowLen * state));
1051 
1052         if (state == STOP_STATE) {
1053             // This is the normal exit from the lookup state machine.
1054             // Transition to state zero means we have found a safe point.
1055             break;
1056         }
1057     }
1058 
1059     // The state machine is done.  Check whether it found a match...
1060     result = (int32_t)UTEXT_GETNATIVEINDEX(&fText);
1061     #ifdef RBBI_DEBUG
1062         if (gTrace) {
1063             RBBIDebugPrintf("result = %d\n\n", result);
1064         }
1065     #endif
1066     return result;
1067 }
1068 
1069 
1070 //-------------------------------------------------------------------------------
1071 //
1072 //   getRuleStatus()   Return the break rule tag associated with the current
1073 //                     iterator position.  If the iterator arrived at its current
1074 //                     position by iterating forwards, the value will have been
1075 //                     cached by the handleNext() function.
1076 //
1077 //-------------------------------------------------------------------------------
1078 
getRuleStatus() const1079 int32_t  RuleBasedBreakIterator::getRuleStatus() const {
1080 
1081     // fLastRuleStatusIndex indexes to the start of the appropriate status record
1082     //                                                 (the number of status values.)
1083     //   This function returns the last (largest) of the array of status values.
1084     int32_t  idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex];
1085     int32_t  tagVal = fData->fRuleStatusTable[idx];
1086 
1087     return tagVal;
1088 }
1089 
1090 
getRuleStatusVec(int32_t * fillInVec,int32_t capacity,UErrorCode & status)1091 int32_t RuleBasedBreakIterator::getRuleStatusVec(
1092              int32_t *fillInVec, int32_t capacity, UErrorCode &status) {
1093     if (U_FAILURE(status)) {
1094         return 0;
1095     }
1096 
1097     int32_t  numVals = fData->fRuleStatusTable[fRuleStatusIndex];
1098     int32_t  numValsToCopy = numVals;
1099     if (numVals > capacity) {
1100         status = U_BUFFER_OVERFLOW_ERROR;
1101         numValsToCopy = capacity;
1102     }
1103     int i;
1104     for (i=0; i<numValsToCopy; i++) {
1105         fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1];
1106     }
1107     return numVals;
1108 }
1109 
1110 
1111 
1112 //-------------------------------------------------------------------------------
1113 //
1114 //   getBinaryRules        Access to the compiled form of the rules,
1115 //                         for use by build system tools that save the data
1116 //                         for standard iterator types.
1117 //
1118 //-------------------------------------------------------------------------------
getBinaryRules(uint32_t & length)1119 const uint8_t  *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) {
1120     const uint8_t  *retPtr = NULL;
1121     length = 0;
1122 
1123     if (fData != NULL) {
1124         retPtr = (const uint8_t *)fData->fHeader;
1125         length = fData->fHeader->fLength;
1126     }
1127     return retPtr;
1128 }
1129 
1130 
createBufferClone(void *,int32_t & bufferSize,UErrorCode & status)1131 RuleBasedBreakIterator *RuleBasedBreakIterator::createBufferClone(
1132         void * /*stackBuffer*/, int32_t &bufferSize, UErrorCode &status) {
1133     if (U_FAILURE(status)){
1134         return NULL;
1135     }
1136 
1137     if (bufferSize == 0) {
1138         bufferSize = 1;  // preflighting for deprecated functionality
1139         return NULL;
1140     }
1141 
1142     BreakIterator *clonedBI = clone();
1143     if (clonedBI == NULL) {
1144         status = U_MEMORY_ALLOCATION_ERROR;
1145     } else {
1146         status = U_SAFECLONE_ALLOCATED_WARNING;
1147     }
1148     return (RuleBasedBreakIterator *)clonedBI;
1149 }
1150 
1151 U_NAMESPACE_END
1152 
1153 
1154 static icu::UStack *gLanguageBreakFactories = nullptr;
1155 static const icu::UnicodeString *gEmptyString = nullptr;
1156 static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER;
1157 static icu::UInitOnce gRBBIInitOnce = U_INITONCE_INITIALIZER;
1158 
1159 /**
1160  * Release all static memory held by breakiterator.
1161  */
1162 U_CDECL_BEGIN
rbbi_cleanup(void)1163 UBool U_CALLCONV rbbi_cleanup(void) {
1164     delete gLanguageBreakFactories;
1165     gLanguageBreakFactories = nullptr;
1166     delete gEmptyString;
1167     gEmptyString = nullptr;
1168     gLanguageBreakFactoriesInitOnce.reset();
1169     gRBBIInitOnce.reset();
1170     return TRUE;
1171 }
1172 U_CDECL_END
1173 
1174 U_CDECL_BEGIN
_deleteFactory(void * obj)1175 static void U_CALLCONV _deleteFactory(void *obj) {
1176     delete (icu::LanguageBreakFactory *) obj;
1177 }
1178 U_CDECL_END
1179 U_NAMESPACE_BEGIN
1180 
rbbiInit()1181 static void U_CALLCONV rbbiInit() {
1182     gEmptyString = new UnicodeString();
1183     ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
1184 }
1185 
initLanguageFactories()1186 static void U_CALLCONV initLanguageFactories() {
1187     UErrorCode status = U_ZERO_ERROR;
1188     U_ASSERT(gLanguageBreakFactories == NULL);
1189     gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status);
1190     if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) {
1191         ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status);
1192         gLanguageBreakFactories->push(builtIn, status);
1193 #ifdef U_LOCAL_SERVICE_HOOK
1194         LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status);
1195         if (extra != NULL) {
1196             gLanguageBreakFactories->push(extra, status);
1197         }
1198 #endif
1199     }
1200     ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup);
1201 }
1202 
1203 
1204 static const LanguageBreakEngine*
getLanguageBreakEngineFromFactory(UChar32 c)1205 getLanguageBreakEngineFromFactory(UChar32 c)
1206 {
1207     umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories);
1208     if (gLanguageBreakFactories == NULL) {
1209         return NULL;
1210     }
1211 
1212     int32_t i = gLanguageBreakFactories->size();
1213     const LanguageBreakEngine *lbe = NULL;
1214     while (--i >= 0) {
1215         LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i));
1216         lbe = factory->getEngineFor(c);
1217         if (lbe != NULL) {
1218             break;
1219         }
1220     }
1221     return lbe;
1222 }
1223 
1224 
1225 //-------------------------------------------------------------------------------
1226 //
1227 //  getLanguageBreakEngine  Find an appropriate LanguageBreakEngine for the
1228 //                          the character c.
1229 //
1230 //-------------------------------------------------------------------------------
1231 const LanguageBreakEngine *
getLanguageBreakEngine(UChar32 c)1232 RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) {
1233     const LanguageBreakEngine *lbe = NULL;
1234     UErrorCode status = U_ZERO_ERROR;
1235 
1236     if (fLanguageBreakEngines == NULL) {
1237         fLanguageBreakEngines = new UStack(status);
1238         if (fLanguageBreakEngines == NULL || U_FAILURE(status)) {
1239             delete fLanguageBreakEngines;
1240             fLanguageBreakEngines = 0;
1241             return NULL;
1242         }
1243     }
1244 
1245     int32_t i = fLanguageBreakEngines->size();
1246     while (--i >= 0) {
1247         lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i));
1248         if (lbe->handles(c)) {
1249             return lbe;
1250         }
1251     }
1252 
1253     // No existing dictionary took the character. See if a factory wants to
1254     // give us a new LanguageBreakEngine for this character.
1255     lbe = getLanguageBreakEngineFromFactory(c);
1256 
1257     // If we got one, use it and push it on our stack.
1258     if (lbe != NULL) {
1259         fLanguageBreakEngines->push((void *)lbe, status);
1260         // Even if we can't remember it, we can keep looking it up, so
1261         // return it even if the push fails.
1262         return lbe;
1263     }
1264 
1265     // No engine is forthcoming for this character. Add it to the
1266     // reject set. Create the reject break engine if needed.
1267     if (fUnhandledBreakEngine == NULL) {
1268         fUnhandledBreakEngine = new UnhandledEngine(status);
1269         if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) {
1270             status = U_MEMORY_ALLOCATION_ERROR;
1271             return nullptr;
1272         }
1273         // Put it last so that scripts for which we have an engine get tried
1274         // first.
1275         fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status);
1276         // If we can't insert it, or creation failed, get rid of it
1277         U_ASSERT(!fLanguageBreakEngines->hasDeleter());
1278         if (U_FAILURE(status)) {
1279             delete fUnhandledBreakEngine;
1280             fUnhandledBreakEngine = 0;
1281             return NULL;
1282         }
1283     }
1284 
1285     // Tell the reject engine about the character; at its discretion, it may
1286     // add more than just the one character.
1287     fUnhandledBreakEngine->handleCharacter(c);
1288 
1289     return fUnhandledBreakEngine;
1290 }
1291 
dumpCache()1292 void RuleBasedBreakIterator::dumpCache() {
1293     fBreakCache->dumpCache();
1294 }
1295 
dumpTables()1296 void RuleBasedBreakIterator::dumpTables() {
1297     fData->printData();
1298 }
1299 
1300 /**
1301  * Returns the description used to create this iterator
1302  */
1303 
1304 const UnicodeString&
getRules() const1305 RuleBasedBreakIterator::getRules() const {
1306     if (fData != NULL) {
1307         return fData->getRuleSourceString();
1308     } else {
1309         umtx_initOnce(gRBBIInitOnce, &rbbiInit);
1310         return *gEmptyString;
1311     }
1312 }
1313 
1314 U_NAMESPACE_END
1315 
1316 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1317