1 // Copyright 2019 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: inlined_vector.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file contains the declaration and definition of an "inlined
20 // vector" which behaves in an equivalent fashion to a `std::vector`, except
21 // that storage for small sequences of the vector are provided inline without
22 // requiring any heap allocation.
23 //
24 // An `absl::InlinedVector<T, N>` specifies the default capacity `N` as one of
25 // its template parameters. Instances where `size() <= N` hold contained
26 // elements in inline space. Typically `N` is very small so that sequences that
27 // are expected to be short do not require allocations.
28 //
29 // An `absl::InlinedVector` does not usually require a specific allocator. If
30 // the inlined vector grows beyond its initial constraints, it will need to
31 // allocate (as any normal `std::vector` would). This is usually performed with
32 // the default allocator (defined as `std::allocator<T>`). Optionally, a custom
33 // allocator type may be specified as `A` in `absl::InlinedVector<T, N, A>`.
34
35 #ifndef ABSL_CONTAINER_INLINED_VECTOR_H_
36 #define ABSL_CONTAINER_INLINED_VECTOR_H_
37
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdlib>
42 #include <cstring>
43 #include <initializer_list>
44 #include <iterator>
45 #include <memory>
46 #include <type_traits>
47 #include <utility>
48
49 #include "absl/algorithm/algorithm.h"
50 #include "absl/base/internal/throw_delegate.h"
51 #include "absl/base/macros.h"
52 #include "absl/base/optimization.h"
53 #include "absl/base/port.h"
54 #include "absl/container/internal/inlined_vector.h"
55 #include "absl/memory/memory.h"
56
57 namespace absl {
58 ABSL_NAMESPACE_BEGIN
59 // -----------------------------------------------------------------------------
60 // InlinedVector
61 // -----------------------------------------------------------------------------
62 //
63 // An `absl::InlinedVector` is designed to be a drop-in replacement for
64 // `std::vector` for use cases where the vector's size is sufficiently small
65 // that it can be inlined. If the inlined vector does grow beyond its estimated
66 // capacity, it will trigger an initial allocation on the heap, and will behave
67 // as a `std::vector`. The API of the `absl::InlinedVector` within this file is
68 // designed to cover the same API footprint as covered by `std::vector`.
69 template <typename T, size_t N, typename A = std::allocator<T>>
70 class InlinedVector {
71 static_assert(N > 0, "`absl::InlinedVector` requires an inlined capacity.");
72
73 using Storage = inlined_vector_internal::Storage<T, N, A>;
74
75 using AllocatorTraits = typename Storage::AllocatorTraits;
76 using RValueReference = typename Storage::RValueReference;
77 using MoveIterator = typename Storage::MoveIterator;
78 using IsMemcpyOk = typename Storage::IsMemcpyOk;
79
80 template <typename Iterator>
81 using IteratorValueAdapter =
82 typename Storage::template IteratorValueAdapter<Iterator>;
83 using CopyValueAdapter = typename Storage::CopyValueAdapter;
84 using DefaultValueAdapter = typename Storage::DefaultValueAdapter;
85
86 template <typename Iterator>
87 using EnableIfAtLeastForwardIterator = absl::enable_if_t<
88 inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
89 template <typename Iterator>
90 using DisableIfAtLeastForwardIterator = absl::enable_if_t<
91 !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
92
93 public:
94 using allocator_type = typename Storage::allocator_type;
95 using value_type = typename Storage::value_type;
96 using pointer = typename Storage::pointer;
97 using const_pointer = typename Storage::const_pointer;
98 using size_type = typename Storage::size_type;
99 using difference_type = typename Storage::difference_type;
100 using reference = typename Storage::reference;
101 using const_reference = typename Storage::const_reference;
102 using iterator = typename Storage::iterator;
103 using const_iterator = typename Storage::const_iterator;
104 using reverse_iterator = typename Storage::reverse_iterator;
105 using const_reverse_iterator = typename Storage::const_reverse_iterator;
106
107 // ---------------------------------------------------------------------------
108 // InlinedVector Constructors and Destructor
109 // ---------------------------------------------------------------------------
110
111 // Creates an empty inlined vector with a value-initialized allocator.
noexcept(noexcept (allocator_type ()))112 InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
113
114 // Creates an empty inlined vector with a copy of `alloc`.
InlinedVector(const allocator_type & alloc)115 explicit InlinedVector(const allocator_type& alloc) noexcept
116 : storage_(alloc) {}
117
118 // Creates an inlined vector with `n` copies of `value_type()`.
119 explicit InlinedVector(size_type n,
120 const allocator_type& alloc = allocator_type())
storage_(alloc)121 : storage_(alloc) {
122 storage_.Initialize(DefaultValueAdapter(), n);
123 }
124
125 // Creates an inlined vector with `n` copies of `v`.
126 InlinedVector(size_type n, const_reference v,
127 const allocator_type& alloc = allocator_type())
storage_(alloc)128 : storage_(alloc) {
129 storage_.Initialize(CopyValueAdapter(v), n);
130 }
131
132 // Creates an inlined vector with copies of the elements of `list`.
133 InlinedVector(std::initializer_list<value_type> list,
134 const allocator_type& alloc = allocator_type())
135 : InlinedVector(list.begin(), list.end(), alloc) {}
136
137 // Creates an inlined vector with elements constructed from the provided
138 // forward iterator range [`first`, `last`).
139 //
140 // NOTE: the `enable_if` prevents ambiguous interpretation between a call to
141 // this constructor with two integral arguments and a call to the above
142 // `InlinedVector(size_type, const_reference)` constructor.
143 template <typename ForwardIterator,
144 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
145 InlinedVector(ForwardIterator first, ForwardIterator last,
146 const allocator_type& alloc = allocator_type())
storage_(alloc)147 : storage_(alloc) {
148 storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
149 std::distance(first, last));
150 }
151
152 // Creates an inlined vector with elements constructed from the provided input
153 // iterator range [`first`, `last`).
154 template <typename InputIterator,
155 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
156 InlinedVector(InputIterator first, InputIterator last,
157 const allocator_type& alloc = allocator_type())
storage_(alloc)158 : storage_(alloc) {
159 std::copy(first, last, std::back_inserter(*this));
160 }
161
162 // Creates an inlined vector by copying the contents of `other` using
163 // `other`'s allocator.
InlinedVector(const InlinedVector & other)164 InlinedVector(const InlinedVector& other)
165 : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
166
167 // Creates an inlined vector by copying the contents of `other` using `alloc`.
InlinedVector(const InlinedVector & other,const allocator_type & alloc)168 InlinedVector(const InlinedVector& other, const allocator_type& alloc)
169 : storage_(alloc) {
170 if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
171 storage_.MemcpyFrom(other.storage_);
172 } else {
173 storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
174 other.size());
175 }
176 }
177
178 // Creates an inlined vector by moving in the contents of `other` without
179 // allocating. If `other` contains allocated memory, the newly-created inlined
180 // vector will take ownership of that memory. However, if `other` does not
181 // contain allocated memory, the newly-created inlined vector will perform
182 // element-wise move construction of the contents of `other`.
183 //
184 // NOTE: since no allocation is performed for the inlined vector in either
185 // case, the `noexcept(...)` specification depends on whether moving the
186 // underlying objects can throw. It is assumed assumed that...
187 // a) move constructors should only throw due to allocation failure.
188 // b) if `value_type`'s move constructor allocates, it uses the same
189 // allocation function as the inlined vector's allocator.
190 // Thus, the move constructor is non-throwing if the allocator is non-throwing
191 // or `value_type`'s move constructor is specified as `noexcept`.
192 InlinedVector(InlinedVector&& other) noexcept(
193 absl::allocator_is_nothrow<allocator_type>::value ||
194 std::is_nothrow_move_constructible<value_type>::value)
195 : storage_(*other.storage_.GetAllocPtr()) {
196 if (IsMemcpyOk::value) {
197 storage_.MemcpyFrom(other.storage_);
198
199 other.storage_.SetInlinedSize(0);
200 } else if (other.storage_.GetIsAllocated()) {
201 storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
202 other.storage_.GetAllocatedCapacity());
203 storage_.SetAllocatedSize(other.storage_.GetSize());
204
205 other.storage_.SetInlinedSize(0);
206 } else {
207 IteratorValueAdapter<MoveIterator> other_values(
208 MoveIterator(other.storage_.GetInlinedData()));
209
210 inlined_vector_internal::ConstructElements(
211 storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
212 other.storage_.GetSize());
213
214 storage_.SetInlinedSize(other.storage_.GetSize());
215 }
216 }
217
218 // Creates an inlined vector by moving in the contents of `other` with a copy
219 // of `alloc`.
220 //
221 // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
222 // contains allocated memory, this move constructor will still allocate. Since
223 // allocation is performed, this constructor can only be `noexcept` if the
224 // specified allocator is also `noexcept`.
InlinedVector(InlinedVector && other,const allocator_type & alloc)225 InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
226 absl::allocator_is_nothrow<allocator_type>::value)
227 : storage_(alloc) {
228 if (IsMemcpyOk::value) {
229 storage_.MemcpyFrom(other.storage_);
230
231 other.storage_.SetInlinedSize(0);
232 } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
233 other.storage_.GetIsAllocated()) {
234 storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
235 other.storage_.GetAllocatedCapacity());
236 storage_.SetAllocatedSize(other.storage_.GetSize());
237
238 other.storage_.SetInlinedSize(0);
239 } else {
240 storage_.Initialize(
241 IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
242 other.size());
243 }
244 }
245
~InlinedVector()246 ~InlinedVector() {}
247
248 // ---------------------------------------------------------------------------
249 // InlinedVector Member Accessors
250 // ---------------------------------------------------------------------------
251
252 // `InlinedVector::empty()`
253 //
254 // Returns whether the inlined vector contains no elements.
empty()255 bool empty() const noexcept { return !size(); }
256
257 // `InlinedVector::size()`
258 //
259 // Returns the number of elements in the inlined vector.
size()260 size_type size() const noexcept { return storage_.GetSize(); }
261
262 // `InlinedVector::max_size()`
263 //
264 // Returns the maximum number of elements the inlined vector can hold.
max_size()265 size_type max_size() const noexcept {
266 // One bit of the size storage is used to indicate whether the inlined
267 // vector contains allocated memory. As a result, the maximum size that the
268 // inlined vector can express is half of the max for `size_type`.
269 return (std::numeric_limits<size_type>::max)() / 2;
270 }
271
272 // `InlinedVector::capacity()`
273 //
274 // Returns the number of elements that could be stored in the inlined vector
275 // without requiring a reallocation.
276 //
277 // NOTE: for most inlined vectors, `capacity()` should be equal to the
278 // template parameter `N`. For inlined vectors which exceed this capacity,
279 // they will no longer be inlined and `capacity()` will equal the capactity of
280 // the allocated memory.
capacity()281 size_type capacity() const noexcept {
282 return storage_.GetIsAllocated() ? storage_.GetAllocatedCapacity()
283 : storage_.GetInlinedCapacity();
284 }
285
286 // `InlinedVector::data()`
287 //
288 // Returns a `pointer` to the elements of the inlined vector. This pointer
289 // can be used to access and modify the contained elements.
290 //
291 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()292 pointer data() noexcept {
293 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
294 : storage_.GetInlinedData();
295 }
296
297 // Overload of `InlinedVector::data()` that returns a `const_pointer` to the
298 // elements of the inlined vector. This pointer can be used to access but not
299 // modify the contained elements.
300 //
301 // NOTE: only elements within [`data()`, `data() + size()`) are valid.
data()302 const_pointer data() const noexcept {
303 return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
304 : storage_.GetInlinedData();
305 }
306
307 // `InlinedVector::operator[](...)`
308 //
309 // Returns a `reference` to the `i`th element of the inlined vector.
310 reference operator[](size_type i) {
311 ABSL_HARDENING_ASSERT(i < size());
312 return data()[i];
313 }
314
315 // Overload of `InlinedVector::operator[](...)` that returns a
316 // `const_reference` to the `i`th element of the inlined vector.
317 const_reference operator[](size_type i) const {
318 ABSL_HARDENING_ASSERT(i < size());
319 return data()[i];
320 }
321
322 // `InlinedVector::at(...)`
323 //
324 // Returns a `reference` to the `i`th element of the inlined vector.
325 //
326 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
327 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)328 reference at(size_type i) {
329 if (ABSL_PREDICT_FALSE(i >= size())) {
330 base_internal::ThrowStdOutOfRange(
331 "`InlinedVector::at(size_type)` failed bounds check");
332 }
333 return data()[i];
334 }
335
336 // Overload of `InlinedVector::at(...)` that returns a `const_reference` to
337 // the `i`th element of the inlined vector.
338 //
339 // NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
340 // in both debug and non-debug builds, `std::out_of_range` will be thrown.
at(size_type i)341 const_reference at(size_type i) const {
342 if (ABSL_PREDICT_FALSE(i >= size())) {
343 base_internal::ThrowStdOutOfRange(
344 "`InlinedVector::at(size_type) const` failed bounds check");
345 }
346 return data()[i];
347 }
348
349 // `InlinedVector::front()`
350 //
351 // Returns a `reference` to the first element of the inlined vector.
front()352 reference front() {
353 ABSL_HARDENING_ASSERT(!empty());
354 return data()[0];
355 }
356
357 // Overload of `InlinedVector::front()` that returns a `const_reference` to
358 // the first element of the inlined vector.
front()359 const_reference front() const {
360 ABSL_HARDENING_ASSERT(!empty());
361 return data()[0];
362 }
363
364 // `InlinedVector::back()`
365 //
366 // Returns a `reference` to the last element of the inlined vector.
back()367 reference back() {
368 ABSL_HARDENING_ASSERT(!empty());
369 return data()[size() - 1];
370 }
371
372 // Overload of `InlinedVector::back()` that returns a `const_reference` to the
373 // last element of the inlined vector.
back()374 const_reference back() const {
375 ABSL_HARDENING_ASSERT(!empty());
376 return data()[size() - 1];
377 }
378
379 // `InlinedVector::begin()`
380 //
381 // Returns an `iterator` to the beginning of the inlined vector.
begin()382 iterator begin() noexcept { return data(); }
383
384 // Overload of `InlinedVector::begin()` that returns a `const_iterator` to
385 // the beginning of the inlined vector.
begin()386 const_iterator begin() const noexcept { return data(); }
387
388 // `InlinedVector::end()`
389 //
390 // Returns an `iterator` to the end of the inlined vector.
end()391 iterator end() noexcept { return data() + size(); }
392
393 // Overload of `InlinedVector::end()` that returns a `const_iterator` to the
394 // end of the inlined vector.
end()395 const_iterator end() const noexcept { return data() + size(); }
396
397 // `InlinedVector::cbegin()`
398 //
399 // Returns a `const_iterator` to the beginning of the inlined vector.
cbegin()400 const_iterator cbegin() const noexcept { return begin(); }
401
402 // `InlinedVector::cend()`
403 //
404 // Returns a `const_iterator` to the end of the inlined vector.
cend()405 const_iterator cend() const noexcept { return end(); }
406
407 // `InlinedVector::rbegin()`
408 //
409 // Returns a `reverse_iterator` from the end of the inlined vector.
rbegin()410 reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
411
412 // Overload of `InlinedVector::rbegin()` that returns a
413 // `const_reverse_iterator` from the end of the inlined vector.
rbegin()414 const_reverse_iterator rbegin() const noexcept {
415 return const_reverse_iterator(end());
416 }
417
418 // `InlinedVector::rend()`
419 //
420 // Returns a `reverse_iterator` from the beginning of the inlined vector.
rend()421 reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
422
423 // Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
424 // from the beginning of the inlined vector.
rend()425 const_reverse_iterator rend() const noexcept {
426 return const_reverse_iterator(begin());
427 }
428
429 // `InlinedVector::crbegin()`
430 //
431 // Returns a `const_reverse_iterator` from the end of the inlined vector.
crbegin()432 const_reverse_iterator crbegin() const noexcept { return rbegin(); }
433
434 // `InlinedVector::crend()`
435 //
436 // Returns a `const_reverse_iterator` from the beginning of the inlined
437 // vector.
crend()438 const_reverse_iterator crend() const noexcept { return rend(); }
439
440 // `InlinedVector::get_allocator()`
441 //
442 // Returns a copy of the inlined vector's allocator.
get_allocator()443 allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
444
445 // ---------------------------------------------------------------------------
446 // InlinedVector Member Mutators
447 // ---------------------------------------------------------------------------
448
449 // `InlinedVector::operator=(...)`
450 //
451 // Replaces the elements of the inlined vector with copies of the elements of
452 // `list`.
453 InlinedVector& operator=(std::initializer_list<value_type> list) {
454 assign(list.begin(), list.end());
455
456 return *this;
457 }
458
459 // Overload of `InlinedVector::operator=(...)` that replaces the elements of
460 // the inlined vector with copies of the elements of `other`.
461 InlinedVector& operator=(const InlinedVector& other) {
462 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
463 const_pointer other_data = other.data();
464 assign(other_data, other_data + other.size());
465 }
466
467 return *this;
468 }
469
470 // Overload of `InlinedVector::operator=(...)` that moves the elements of
471 // `other` into the inlined vector.
472 //
473 // NOTE: as a result of calling this overload, `other` is left in a valid but
474 // unspecified state.
475 InlinedVector& operator=(InlinedVector&& other) {
476 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
477 if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
478 inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
479 size());
480 storage_.DeallocateIfAllocated();
481 storage_.MemcpyFrom(other.storage_);
482
483 other.storage_.SetInlinedSize(0);
484 } else {
485 storage_.Assign(IteratorValueAdapter<MoveIterator>(
486 MoveIterator(other.storage_.GetInlinedData())),
487 other.size());
488 }
489 }
490
491 return *this;
492 }
493
494 // `InlinedVector::assign(...)`
495 //
496 // Replaces the contents of the inlined vector with `n` copies of `v`.
assign(size_type n,const_reference v)497 void assign(size_type n, const_reference v) {
498 storage_.Assign(CopyValueAdapter(v), n);
499 }
500
501 // Overload of `InlinedVector::assign(...)` that replaces the contents of the
502 // inlined vector with copies of the elements of `list`.
assign(std::initializer_list<value_type> list)503 void assign(std::initializer_list<value_type> list) {
504 assign(list.begin(), list.end());
505 }
506
507 // Overload of `InlinedVector::assign(...)` to replace the contents of the
508 // inlined vector with the range [`first`, `last`).
509 //
510 // NOTE: this overload is for iterators that are "forward" category or better.
511 template <typename ForwardIterator,
512 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
assign(ForwardIterator first,ForwardIterator last)513 void assign(ForwardIterator first, ForwardIterator last) {
514 storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
515 std::distance(first, last));
516 }
517
518 // Overload of `InlinedVector::assign(...)` to replace the contents of the
519 // inlined vector with the range [`first`, `last`).
520 //
521 // NOTE: this overload is for iterators that are "input" category.
522 template <typename InputIterator,
523 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
assign(InputIterator first,InputIterator last)524 void assign(InputIterator first, InputIterator last) {
525 size_type i = 0;
526 for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
527 data()[i] = *first;
528 }
529
530 erase(data() + i, data() + size());
531 std::copy(first, last, std::back_inserter(*this));
532 }
533
534 // `InlinedVector::resize(...)`
535 //
536 // Resizes the inlined vector to contain `n` elements.
537 //
538 // NOTE: If `n` is smaller than `size()`, extra elements are destroyed. If `n`
539 // is larger than `size()`, new elements are value-initialized.
resize(size_type n)540 void resize(size_type n) {
541 ABSL_HARDENING_ASSERT(n <= max_size());
542 storage_.Resize(DefaultValueAdapter(), n);
543 }
544
545 // Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
546 // contain `n` elements.
547 //
548 // NOTE: if `n` is smaller than `size()`, extra elements are destroyed. If `n`
549 // is larger than `size()`, new elements are copied-constructed from `v`.
resize(size_type n,const_reference v)550 void resize(size_type n, const_reference v) {
551 ABSL_HARDENING_ASSERT(n <= max_size());
552 storage_.Resize(CopyValueAdapter(v), n);
553 }
554
555 // `InlinedVector::insert(...)`
556 //
557 // Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
558 // inserted element.
insert(const_iterator pos,const_reference v)559 iterator insert(const_iterator pos, const_reference v) {
560 return emplace(pos, v);
561 }
562
563 // Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
564 // move semantics, returning an `iterator` to the newly inserted element.
insert(const_iterator pos,RValueReference v)565 iterator insert(const_iterator pos, RValueReference v) {
566 return emplace(pos, std::move(v));
567 }
568
569 // Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
570 // of `v` starting at `pos`, returning an `iterator` pointing to the first of
571 // the newly inserted elements.
insert(const_iterator pos,size_type n,const_reference v)572 iterator insert(const_iterator pos, size_type n, const_reference v) {
573 ABSL_HARDENING_ASSERT(pos >= begin());
574 ABSL_HARDENING_ASSERT(pos <= end());
575
576 if (ABSL_PREDICT_TRUE(n != 0)) {
577 value_type dealias = v;
578 return storage_.Insert(pos, CopyValueAdapter(dealias), n);
579 } else {
580 return const_cast<iterator>(pos);
581 }
582 }
583
584 // Overload of `InlinedVector::insert(...)` that inserts copies of the
585 // elements of `list` starting at `pos`, returning an `iterator` pointing to
586 // the first of the newly inserted elements.
insert(const_iterator pos,std::initializer_list<value_type> list)587 iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
588 return insert(pos, list.begin(), list.end());
589 }
590
591 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
592 // `last`) starting at `pos`, returning an `iterator` pointing to the first
593 // of the newly inserted elements.
594 //
595 // NOTE: this overload is for iterators that are "forward" category or better.
596 template <typename ForwardIterator,
597 EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
insert(const_iterator pos,ForwardIterator first,ForwardIterator last)598 iterator insert(const_iterator pos, ForwardIterator first,
599 ForwardIterator last) {
600 ABSL_HARDENING_ASSERT(pos >= begin());
601 ABSL_HARDENING_ASSERT(pos <= end());
602
603 if (ABSL_PREDICT_TRUE(first != last)) {
604 return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
605 std::distance(first, last));
606 } else {
607 return const_cast<iterator>(pos);
608 }
609 }
610
611 // Overload of `InlinedVector::insert(...)` that inserts the range [`first`,
612 // `last`) starting at `pos`, returning an `iterator` pointing to the first
613 // of the newly inserted elements.
614 //
615 // NOTE: this overload is for iterators that are "input" category.
616 template <typename InputIterator,
617 DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
insert(const_iterator pos,InputIterator first,InputIterator last)618 iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
619 ABSL_HARDENING_ASSERT(pos >= begin());
620 ABSL_HARDENING_ASSERT(pos <= end());
621
622 size_type index = std::distance(cbegin(), pos);
623 for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
624 insert(data() + i, *first);
625 }
626
627 return iterator(data() + index);
628 }
629
630 // `InlinedVector::emplace(...)`
631 //
632 // Constructs and inserts an element using `args...` in the inlined vector at
633 // `pos`, returning an `iterator` pointing to the newly emplaced element.
634 template <typename... Args>
emplace(const_iterator pos,Args &&...args)635 iterator emplace(const_iterator pos, Args&&... args) {
636 ABSL_HARDENING_ASSERT(pos >= begin());
637 ABSL_HARDENING_ASSERT(pos <= end());
638
639 value_type dealias(std::forward<Args>(args)...);
640 return storage_.Insert(pos,
641 IteratorValueAdapter<MoveIterator>(
642 MoveIterator(std::addressof(dealias))),
643 1);
644 }
645
646 // `InlinedVector::emplace_back(...)`
647 //
648 // Constructs and inserts an element using `args...` in the inlined vector at
649 // `end()`, returning a `reference` to the newly emplaced element.
650 template <typename... Args>
emplace_back(Args &&...args)651 reference emplace_back(Args&&... args) {
652 return storage_.EmplaceBack(std::forward<Args>(args)...);
653 }
654
655 // `InlinedVector::push_back(...)`
656 //
657 // Inserts a copy of `v` in the inlined vector at `end()`.
push_back(const_reference v)658 void push_back(const_reference v) { static_cast<void>(emplace_back(v)); }
659
660 // Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
661 // using move semantics.
push_back(RValueReference v)662 void push_back(RValueReference v) {
663 static_cast<void>(emplace_back(std::move(v)));
664 }
665
666 // `InlinedVector::pop_back()`
667 //
668 // Destroys the element at `back()`, reducing the size by `1`.
pop_back()669 void pop_back() noexcept {
670 ABSL_HARDENING_ASSERT(!empty());
671
672 AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
673 storage_.SubtractSize(1);
674 }
675
676 // `InlinedVector::erase(...)`
677 //
678 // Erases the element at `pos`, returning an `iterator` pointing to where the
679 // erased element was located.
680 //
681 // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator pos)682 iterator erase(const_iterator pos) {
683 ABSL_HARDENING_ASSERT(pos >= begin());
684 ABSL_HARDENING_ASSERT(pos < end());
685
686 return storage_.Erase(pos, pos + 1);
687 }
688
689 // Overload of `InlinedVector::erase(...)` that erases every element in the
690 // range [`from`, `to`), returning an `iterator` pointing to where the first
691 // erased element was located.
692 //
693 // NOTE: may return `end()`, which is not dereferencable.
erase(const_iterator from,const_iterator to)694 iterator erase(const_iterator from, const_iterator to) {
695 ABSL_HARDENING_ASSERT(from >= begin());
696 ABSL_HARDENING_ASSERT(from <= to);
697 ABSL_HARDENING_ASSERT(to <= end());
698
699 if (ABSL_PREDICT_TRUE(from != to)) {
700 return storage_.Erase(from, to);
701 } else {
702 return const_cast<iterator>(from);
703 }
704 }
705
706 // `InlinedVector::clear()`
707 //
708 // Destroys all elements in the inlined vector, setting the size to `0` and
709 // deallocating any held memory.
clear()710 void clear() noexcept {
711 inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
712 size());
713 storage_.DeallocateIfAllocated();
714
715 storage_.SetInlinedSize(0);
716 }
717
718 // `InlinedVector::reserve(...)`
719 //
720 // Ensures that there is enough room for at least `n` elements.
reserve(size_type n)721 void reserve(size_type n) { storage_.Reserve(n); }
722
723 // `InlinedVector::shrink_to_fit()`
724 //
725 // Reduces memory usage by freeing unused memory. After being called, calls to
726 // `capacity()` will be equal to `max(N, size())`.
727 //
728 // If `size() <= N` and the inlined vector contains allocated memory, the
729 // elements will all be moved to the inlined space and the allocated memory
730 // will be deallocated.
731 //
732 // If `size() > N` and `size() < capacity()`, the elements will be moved to a
733 // smaller allocation.
shrink_to_fit()734 void shrink_to_fit() {
735 if (storage_.GetIsAllocated()) {
736 storage_.ShrinkToFit();
737 }
738 }
739
740 // `InlinedVector::swap(...)`
741 //
742 // Swaps the contents of the inlined vector with `other`.
swap(InlinedVector & other)743 void swap(InlinedVector& other) {
744 if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
745 storage_.Swap(std::addressof(other.storage_));
746 }
747 }
748
749 private:
750 template <typename H, typename TheT, size_t TheN, typename TheA>
751 friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
752
753 Storage storage_;
754 };
755
756 // -----------------------------------------------------------------------------
757 // InlinedVector Non-Member Functions
758 // -----------------------------------------------------------------------------
759
760 // `swap(...)`
761 //
762 // Swaps the contents of two inlined vectors.
763 template <typename T, size_t N, typename A>
swap(absl::InlinedVector<T,N,A> & a,absl::InlinedVector<T,N,A> & b)764 void swap(absl::InlinedVector<T, N, A>& a,
765 absl::InlinedVector<T, N, A>& b) noexcept(noexcept(a.swap(b))) {
766 a.swap(b);
767 }
768
769 // `operator==(...)`
770 //
771 // Tests for value-equality of two inlined vectors.
772 template <typename T, size_t N, typename A>
773 bool operator==(const absl::InlinedVector<T, N, A>& a,
774 const absl::InlinedVector<T, N, A>& b) {
775 auto a_data = a.data();
776 auto b_data = b.data();
777 return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
778 }
779
780 // `operator!=(...)`
781 //
782 // Tests for value-inequality of two inlined vectors.
783 template <typename T, size_t N, typename A>
784 bool operator!=(const absl::InlinedVector<T, N, A>& a,
785 const absl::InlinedVector<T, N, A>& b) {
786 return !(a == b);
787 }
788
789 // `operator<(...)`
790 //
791 // Tests whether the value of an inlined vector is less than the value of
792 // another inlined vector using a lexicographical comparison algorithm.
793 template <typename T, size_t N, typename A>
794 bool operator<(const absl::InlinedVector<T, N, A>& a,
795 const absl::InlinedVector<T, N, A>& b) {
796 auto a_data = a.data();
797 auto b_data = b.data();
798 return std::lexicographical_compare(a_data, a_data + a.size(), b_data,
799 b_data + b.size());
800 }
801
802 // `operator>(...)`
803 //
804 // Tests whether the value of an inlined vector is greater than the value of
805 // another inlined vector using a lexicographical comparison algorithm.
806 template <typename T, size_t N, typename A>
807 bool operator>(const absl::InlinedVector<T, N, A>& a,
808 const absl::InlinedVector<T, N, A>& b) {
809 return b < a;
810 }
811
812 // `operator<=(...)`
813 //
814 // Tests whether the value of an inlined vector is less than or equal to the
815 // value of another inlined vector using a lexicographical comparison algorithm.
816 template <typename T, size_t N, typename A>
817 bool operator<=(const absl::InlinedVector<T, N, A>& a,
818 const absl::InlinedVector<T, N, A>& b) {
819 return !(b < a);
820 }
821
822 // `operator>=(...)`
823 //
824 // Tests whether the value of an inlined vector is greater than or equal to the
825 // value of another inlined vector using a lexicographical comparison algorithm.
826 template <typename T, size_t N, typename A>
827 bool operator>=(const absl::InlinedVector<T, N, A>& a,
828 const absl::InlinedVector<T, N, A>& b) {
829 return !(a < b);
830 }
831
832 // `AbslHashValue(...)`
833 //
834 // Provides `absl::Hash` support for `absl::InlinedVector`. It is uncommon to
835 // call this directly.
836 template <typename H, typename T, size_t N, typename A>
AbslHashValue(H h,const absl::InlinedVector<T,N,A> & a)837 H AbslHashValue(H h, const absl::InlinedVector<T, N, A>& a) {
838 auto size = a.size();
839 return H::combine(H::combine_contiguous(std::move(h), a.data(), size), size);
840 }
841
842 ABSL_NAMESPACE_END
843 } // namespace absl
844
845 #endif // ABSL_CONTAINER_INLINED_VECTOR_H_
846