1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/profiling/perf/event_reader.h"
18
19 #include <linux/perf_event.h>
20 #include <sys/ioctl.h>
21 #include <sys/mman.h>
22 #include <sys/syscall.h>
23 #include <sys/types.h>
24 #include <unistd.h>
25
26 #include "perfetto/ext/base/utils.h"
27 #include "src/profiling/perf/regs_parsing.h"
28
29 namespace perfetto {
30 namespace profiling {
31
32 namespace {
33
34 template <typename T>
ReadValue(T * value_out,const char * ptr)35 const char* ReadValue(T* value_out, const char* ptr) {
36 memcpy(value_out, reinterpret_cast<const void*>(ptr), sizeof(T));
37 return ptr + sizeof(T);
38 }
39
40 template <typename T>
ReadValues(T * out,const char * ptr,size_t num_values)41 const char* ReadValues(T* out, const char* ptr, size_t num_values) {
42 size_t sz = sizeof(T) * num_values;
43 memcpy(out, reinterpret_cast<const void*>(ptr), sz);
44 return ptr + sz;
45 }
46
IsPowerOfTwo(size_t v)47 bool IsPowerOfTwo(size_t v) {
48 return (v != 0 && ((v & (v - 1)) == 0));
49 }
50
perf_event_open(perf_event_attr * attr,pid_t pid,int cpu,int group_fd,unsigned long flags)51 static int perf_event_open(perf_event_attr* attr,
52 pid_t pid,
53 int cpu,
54 int group_fd,
55 unsigned long flags) {
56 return static_cast<int>(
57 syscall(__NR_perf_event_open, attr, pid, cpu, group_fd, flags));
58 }
59
PerfEventOpen(uint32_t cpu,perf_event_attr * perf_attr,int group_fd=-1)60 base::ScopedFile PerfEventOpen(uint32_t cpu,
61 perf_event_attr* perf_attr,
62 int group_fd = -1) {
63 base::ScopedFile perf_fd{perf_event_open(perf_attr, /*pid=*/-1,
64 static_cast<int>(cpu), group_fd,
65 PERF_FLAG_FD_CLOEXEC)};
66 return perf_fd;
67 }
68
69 // If counting tracepoints, set an event filter if requested.
MaybeApplyTracepointFilter(int fd,const PerfCounter & event)70 bool MaybeApplyTracepointFilter(int fd, const PerfCounter& event) {
71 if (event.type != PerfCounter::Type::kTracepoint ||
72 event.tracepoint_filter.empty()) {
73 return true;
74 }
75 PERFETTO_DCHECK(event.attr_type == PERF_TYPE_TRACEPOINT);
76
77 if (ioctl(fd, PERF_EVENT_IOC_SET_FILTER, event.tracepoint_filter.c_str())) {
78 PERFETTO_PLOG("Failed ioctl to set event filter");
79 return false;
80 }
81 return true;
82 }
83
84 } // namespace
85
PerfRingBuffer(PerfRingBuffer && other)86 PerfRingBuffer::PerfRingBuffer(PerfRingBuffer&& other) noexcept
87 : metadata_page_(other.metadata_page_),
88 mmap_sz_(other.mmap_sz_),
89 data_buf_(other.data_buf_),
90 data_buf_sz_(other.data_buf_sz_) {
91 other.metadata_page_ = nullptr;
92 other.mmap_sz_ = 0;
93 other.data_buf_ = nullptr;
94 other.data_buf_sz_ = 0;
95 }
96
operator =(PerfRingBuffer && other)97 PerfRingBuffer& PerfRingBuffer::operator=(PerfRingBuffer&& other) noexcept {
98 if (this == &other)
99 return *this;
100
101 this->~PerfRingBuffer();
102 new (this) PerfRingBuffer(std::move(other));
103 return *this;
104 }
105
~PerfRingBuffer()106 PerfRingBuffer::~PerfRingBuffer() {
107 if (!valid())
108 return;
109
110 if (munmap(reinterpret_cast<void*>(metadata_page_), mmap_sz_) != 0)
111 PERFETTO_PLOG("failed munmap");
112 }
113
Allocate(int perf_fd,size_t data_page_count)114 base::Optional<PerfRingBuffer> PerfRingBuffer::Allocate(
115 int perf_fd,
116 size_t data_page_count) {
117 // perf_event_open requires the ring buffer to be a power of two in size.
118 PERFETTO_DCHECK(IsPowerOfTwo(data_page_count));
119
120 PerfRingBuffer ret;
121
122 // mmap request is one page larger than the buffer size (for the metadata).
123 ret.data_buf_sz_ = data_page_count * base::kPageSize;
124 ret.mmap_sz_ = ret.data_buf_sz_ + base::kPageSize;
125
126 // If PROT_WRITE, kernel won't overwrite unread samples.
127 void* mmap_addr = mmap(nullptr, ret.mmap_sz_, PROT_READ | PROT_WRITE,
128 MAP_SHARED, perf_fd, 0);
129 if (mmap_addr == MAP_FAILED) {
130 PERFETTO_PLOG("failed mmap");
131 return base::nullopt;
132 }
133
134 // Expected layout is [ metadata page ] [ data pages ... ]
135 ret.metadata_page_ = reinterpret_cast<perf_event_mmap_page*>(mmap_addr);
136 ret.data_buf_ = reinterpret_cast<char*>(mmap_addr) + base::kPageSize;
137 PERFETTO_CHECK(ret.metadata_page_->data_offset == base::kPageSize);
138 PERFETTO_CHECK(ret.metadata_page_->data_size == ret.data_buf_sz_);
139
140 PERFETTO_DCHECK(IsPowerOfTwo(ret.data_buf_sz_));
141
142 return base::make_optional(std::move(ret));
143 }
144
145 // See |perf_output_put_handle| for the necessary synchronization between the
146 // kernel and this userspace thread (which are using the same shared memory, but
147 // might be on different cores).
148 // TODO(rsavitski): is there false sharing between |data_tail| and |data_head|?
149 // Is there an argument for maintaining our own copy of |data_tail| instead of
150 // reloading it?
ReadRecordNonconsuming()151 char* PerfRingBuffer::ReadRecordNonconsuming() {
152 static_assert(sizeof(std::atomic<uint64_t>) == sizeof(uint64_t), "");
153
154 PERFETTO_DCHECK(valid());
155
156 // |data_tail| is written only by this userspace thread, so we can safely read
157 // it without any synchronization.
158 uint64_t read_offset = metadata_page_->data_tail;
159
160 // |data_head| is written by the kernel, perform an acquiring load such that
161 // the payload reads below are ordered after this load.
162 uint64_t write_offset =
163 reinterpret_cast<std::atomic<uint64_t>*>(&metadata_page_->data_head)
164 ->load(std::memory_order_acquire);
165
166 PERFETTO_DCHECK(read_offset <= write_offset);
167 if (write_offset == read_offset)
168 return nullptr; // no new data
169
170 size_t read_pos = static_cast<size_t>(read_offset & (data_buf_sz_ - 1));
171
172 // event header (64 bits) guaranteed to be contiguous
173 PERFETTO_DCHECK(read_pos <= data_buf_sz_ - sizeof(perf_event_header));
174 PERFETTO_DCHECK(0 == reinterpret_cast<size_t>(data_buf_ + read_pos) %
175 alignof(perf_event_header));
176
177 perf_event_header* evt_header =
178 reinterpret_cast<perf_event_header*>(data_buf_ + read_pos);
179 uint16_t evt_size = evt_header->size;
180
181 // event wrapped - reconstruct it, and return a pointer to the buffer
182 if (read_pos + evt_size > data_buf_sz_) {
183 PERFETTO_DLOG("PerfRingBuffer: returning reconstructed event");
184
185 size_t prefix_sz = data_buf_sz_ - read_pos;
186 memcpy(&reconstructed_record_[0], data_buf_ + read_pos, prefix_sz);
187 memcpy(&reconstructed_record_[0] + prefix_sz, data_buf_,
188 evt_size - prefix_sz);
189 return &reconstructed_record_[0];
190 } else {
191 // usual case - contiguous sample
192 return data_buf_ + read_pos;
193 }
194 }
195
Consume(size_t bytes)196 void PerfRingBuffer::Consume(size_t bytes) {
197 PERFETTO_DCHECK(valid());
198
199 // Advance |data_tail|, which is written only by this thread. The store of the
200 // updated value needs to have release semantics such that the preceding
201 // payload reads are ordered before it. The reader in this case is the kernel,
202 // which reads |data_tail| to calculate the available ring buffer capacity
203 // before trying to store a new record.
204 uint64_t updated_tail = metadata_page_->data_tail + bytes;
205 reinterpret_cast<std::atomic<uint64_t>*>(&metadata_page_->data_tail)
206 ->store(updated_tail, std::memory_order_release);
207 }
208
EventReader(uint32_t cpu,perf_event_attr event_attr,base::ScopedFile perf_fd,PerfRingBuffer ring_buffer)209 EventReader::EventReader(uint32_t cpu,
210 perf_event_attr event_attr,
211 base::ScopedFile perf_fd,
212 PerfRingBuffer ring_buffer)
213 : cpu_(cpu),
214 event_attr_(event_attr),
215 perf_fd_(std::move(perf_fd)),
216 ring_buffer_(std::move(ring_buffer)) {}
217
operator =(EventReader && other)218 EventReader& EventReader::operator=(EventReader&& other) noexcept {
219 if (this == &other)
220 return *this;
221
222 this->~EventReader();
223 new (this) EventReader(std::move(other));
224 return *this;
225 }
226
ConfigureEvents(uint32_t cpu,const EventConfig & event_cfg)227 base::Optional<EventReader> EventReader::ConfigureEvents(
228 uint32_t cpu,
229 const EventConfig& event_cfg) {
230 auto leader_fd = PerfEventOpen(cpu, event_cfg.perf_attr());
231 if (!leader_fd) {
232 PERFETTO_PLOG("Failed perf_event_open");
233 return base::nullopt;
234 }
235 if (!MaybeApplyTracepointFilter(leader_fd.get(), event_cfg.timebase_event()))
236 return base::nullopt;
237
238 auto ring_buffer =
239 PerfRingBuffer::Allocate(leader_fd.get(), event_cfg.ring_buffer_pages());
240 if (!ring_buffer.has_value()) {
241 return base::nullopt;
242 }
243
244 return base::make_optional<EventReader>(cpu, *event_cfg.perf_attr(),
245 std::move(leader_fd),
246 std::move(ring_buffer.value()));
247 }
248
ReadUntilSample(std::function<void (uint64_t)> records_lost_callback)249 base::Optional<ParsedSample> EventReader::ReadUntilSample(
250 std::function<void(uint64_t)> records_lost_callback) {
251 for (;;) {
252 char* event = ring_buffer_.ReadRecordNonconsuming();
253 if (!event)
254 return base::nullopt; // caught up with the writer
255
256 auto* event_hdr = reinterpret_cast<const perf_event_header*>(event);
257
258 if (event_hdr->type == PERF_RECORD_SAMPLE) {
259 ParsedSample sample = ParseSampleRecord(cpu_, event);
260 ring_buffer_.Consume(event_hdr->size);
261 return base::make_optional(std::move(sample));
262 }
263
264 if (event_hdr->type == PERF_RECORD_LOST) {
265 /*
266 * struct {
267 * struct perf_event_header header;
268 * u64 id;
269 * u64 lost;
270 * struct sample_id sample_id;
271 * };
272 */
273 uint64_t records_lost = *reinterpret_cast<const uint64_t*>(
274 event + sizeof(perf_event_header) + sizeof(uint64_t));
275
276 records_lost_callback(records_lost);
277 ring_buffer_.Consume(event_hdr->size);
278 continue; // keep looking for a sample
279 }
280
281 // Kernel had to throttle irqs.
282 if (event_hdr->type == PERF_RECORD_THROTTLE ||
283 event_hdr->type == PERF_RECORD_UNTHROTTLE) {
284 ring_buffer_.Consume(event_hdr->size);
285 continue; // keep looking for a sample
286 }
287
288 PERFETTO_DFATAL_OR_ELOG("Unsupported event type [%zu]",
289 static_cast<size_t>(event_hdr->type));
290 ring_buffer_.Consume(event_hdr->size);
291 }
292 }
293
294 // Generally, samples can belong to any cpu (which can be recorded with
295 // PERF_SAMPLE_CPU). However, this producer uses only cpu-scoped events,
296 // therefore it is already known.
ParseSampleRecord(uint32_t cpu,const char * record_start)297 ParsedSample EventReader::ParseSampleRecord(uint32_t cpu,
298 const char* record_start) {
299 if (event_attr_.sample_type &
300 (~uint64_t(PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_STACK_USER |
301 PERF_SAMPLE_REGS_USER | PERF_SAMPLE_CALLCHAIN |
302 PERF_SAMPLE_READ))) {
303 PERFETTO_FATAL("Unsupported sampling option");
304 }
305
306 auto* event_hdr = reinterpret_cast<const perf_event_header*>(record_start);
307 size_t sample_size = event_hdr->size;
308
309 ParsedSample sample = {};
310 sample.common.cpu = cpu;
311 sample.common.cpu_mode = event_hdr->misc & PERF_RECORD_MISC_CPUMODE_MASK;
312
313 // Parse the payload, which consists of concatenated data for each
314 // |attr.sample_type| flag.
315 const char* parse_pos = record_start + sizeof(perf_event_header);
316
317 if (event_attr_.sample_type & PERF_SAMPLE_TID) {
318 uint32_t pid = 0;
319 uint32_t tid = 0;
320 parse_pos = ReadValue(&pid, parse_pos);
321 parse_pos = ReadValue(&tid, parse_pos);
322 sample.common.pid = static_cast<pid_t>(pid);
323 sample.common.tid = static_cast<pid_t>(tid);
324 }
325
326 if (event_attr_.sample_type & PERF_SAMPLE_TIME) {
327 parse_pos = ReadValue(&sample.common.timestamp, parse_pos);
328 }
329
330 if (event_attr_.sample_type & PERF_SAMPLE_READ) {
331 parse_pos = ReadValue(&sample.common.timebase_count, parse_pos);
332 }
333
334 if (event_attr_.sample_type & PERF_SAMPLE_CALLCHAIN) {
335 uint64_t chain_len = 0;
336 parse_pos = ReadValue(&chain_len, parse_pos);
337 sample.kernel_ips.resize(static_cast<size_t>(chain_len));
338 parse_pos = ReadValues<uint64_t>(sample.kernel_ips.data(), parse_pos,
339 static_cast<size_t>(chain_len));
340 }
341
342 if (event_attr_.sample_type & PERF_SAMPLE_REGS_USER) {
343 // Can be empty, e.g. if we sampled a kernel thread.
344 sample.regs = ReadPerfUserRegsData(&parse_pos);
345 }
346
347 if (event_attr_.sample_type & PERF_SAMPLE_STACK_USER) {
348 // Maximum possible sampled stack size for this sample. Can be lower than
349 // the requested size if there wasn't enough room in the sample (which is
350 // limited to 64k).
351 uint64_t max_stack_size;
352 parse_pos = ReadValue(&max_stack_size, parse_pos);
353
354 const char* stack_start = parse_pos;
355 parse_pos += max_stack_size; // skip to dyn_size
356
357 // Payload written conditionally, e.g. kernel threads don't have a
358 // user stack.
359 if (max_stack_size > 0) {
360 uint64_t filled_stack_size;
361 parse_pos = ReadValue(&filled_stack_size, parse_pos);
362 PERFETTO_DLOG("sampled stack size: %" PRIu64 " / %" PRIu64 "",
363 filled_stack_size, max_stack_size);
364
365 // copy stack bytes into a vector
366 size_t payload_sz = static_cast<size_t>(filled_stack_size);
367 sample.stack.resize(payload_sz);
368 memcpy(sample.stack.data(), stack_start, payload_sz);
369
370 // remember whether the stack sample is (most likely) truncated
371 sample.stack_maxed = (filled_stack_size == max_stack_size);
372 }
373 }
374
375 PERFETTO_CHECK(parse_pos == record_start + sample_size);
376 return sample;
377 }
378
EnableEvents()379 void EventReader::EnableEvents() {
380 int ret = ioctl(perf_fd_.get(), PERF_EVENT_IOC_ENABLE);
381 PERFETTO_CHECK(ret == 0);
382 }
383
DisableEvents()384 void EventReader::DisableEvents() {
385 int ret = ioctl(perf_fd_.get(), PERF_EVENT_IOC_DISABLE);
386 PERFETTO_CHECK(ret == 0);
387 }
388
389 } // namespace profiling
390 } // namespace perfetto
391