1 //! Fast, SIMD-accelerated CRC32 (IEEE) checksum computation.
2 //!
3 //! ## Usage
4 //!
5 //! ### Simple usage
6 //!
7 //! For simple use-cases, you can call the [`hash()`] convenience function to
8 //! directly compute the CRC32 checksum for a given byte slice:
9 //!
10 //! ```rust
11 //! let checksum = crc32fast::hash(b"foo bar baz");
12 //! ```
13 //!
14 //! ### Advanced usage
15 //!
16 //! For use-cases that require more flexibility or performance, for example when
17 //! processing large amounts of data, you can create and manipulate a [`Hasher`]:
18 //!
19 //! ```rust
20 //! use crc32fast::Hasher;
21 //!
22 //! let mut hasher = Hasher::new();
23 //! hasher.update(b"foo bar baz");
24 //! let checksum = hasher.finalize();
25 //! ```
26 //!
27 //! ## Performance
28 //!
29 //! This crate contains multiple CRC32 implementations:
30 //!
31 //! - A fast baseline implementation which processes up to 16 bytes per iteration
32 //! - An optimized implementation for modern `x86` using `sse` and `pclmulqdq` instructions
33 //!
34 //! Calling the [`Hasher::new`] constructor at runtime will perform a feature detection to select the most
35 //! optimal implementation for the current CPU feature set.
36
37 #![cfg_attr(not(feature = "std"), no_std)]
38 #![cfg_attr(
39 all(feature = "nightly", target_arch = "aarch64"),
40 feature(stdsimd, aarch64_target_feature)
41 )]
42
43 #[deny(missing_docs)]
44 #[cfg(test)]
45 #[macro_use]
46 extern crate quickcheck;
47
48 #[macro_use]
49 extern crate cfg_if;
50
51 #[cfg(feature = "std")]
52 use std as core;
53
54 use core::fmt;
55 use core::hash;
56
57 mod baseline;
58 mod combine;
59 mod specialized;
60 mod table;
61
62 /// Computes the CRC32 hash of a byte slice.
63 ///
64 /// Check out [`Hasher`] for more advanced use-cases.
hash(buf: &[u8]) -> u3265 pub fn hash(buf: &[u8]) -> u32 {
66 let mut h = Hasher::new();
67 h.update(buf);
68 h.finalize()
69 }
70
71 #[derive(Clone)]
72 enum State {
73 Baseline(baseline::State),
74 Specialized(specialized::State),
75 }
76
77 #[derive(Clone)]
78 /// Represents an in-progress CRC32 computation.
79 pub struct Hasher {
80 amount: u64,
81 state: State,
82 }
83
84 const DEFAULT_INIT_STATE: u32 = 0;
85
86 impl Hasher {
87 /// Create a new `Hasher`.
88 ///
89 /// This will perform a CPU feature detection at runtime to select the most
90 /// optimal implementation for the current processor architecture.
new() -> Self91 pub fn new() -> Self {
92 Self::new_with_initial(DEFAULT_INIT_STATE)
93 }
94
95 /// Create a new `Hasher` with an initial CRC32 state.
96 ///
97 /// This works just like `Hasher::new`, except that it allows for an initial
98 /// CRC32 state to be passed in.
new_with_initial(init: u32) -> Self99 pub fn new_with_initial(init: u32) -> Self {
100 Self::new_with_initial_len(init, 0)
101 }
102
103 /// Create a new `Hasher` with an initial CRC32 state.
104 ///
105 /// As `new_with_initial`, but also accepts a length (in bytes). The
106 /// resulting object can then be used with `combine` to compute `crc(a ||
107 /// b)` from `crc(a)`, `crc(b)`, and `len(b)`.
new_with_initial_len(init: u32, amount: u64) -> Self108 pub fn new_with_initial_len(init: u32, amount: u64) -> Self {
109 Self::internal_new_specialized(init, amount)
110 .unwrap_or_else(|| Self::internal_new_baseline(init, amount))
111 }
112
113 #[doc(hidden)]
114 // Internal-only API. Don't use.
internal_new_baseline(init: u32, amount: u64) -> Self115 pub fn internal_new_baseline(init: u32, amount: u64) -> Self {
116 Hasher {
117 amount,
118 state: State::Baseline(baseline::State::new(init)),
119 }
120 }
121
122 #[doc(hidden)]
123 // Internal-only API. Don't use.
internal_new_specialized(init: u32, amount: u64) -> Option<Self>124 pub fn internal_new_specialized(init: u32, amount: u64) -> Option<Self> {
125 {
126 if let Some(state) = specialized::State::new(init) {
127 return Some(Hasher {
128 amount,
129 state: State::Specialized(state),
130 });
131 }
132 }
133 None
134 }
135
136 /// Process the given byte slice and update the hash state.
update(&mut self, buf: &[u8])137 pub fn update(&mut self, buf: &[u8]) {
138 self.amount += buf.len() as u64;
139 match self.state {
140 State::Baseline(ref mut state) => state.update(buf),
141 State::Specialized(ref mut state) => state.update(buf),
142 }
143 }
144
145 /// Finalize the hash state and return the computed CRC32 value.
finalize(self) -> u32146 pub fn finalize(self) -> u32 {
147 match self.state {
148 State::Baseline(state) => state.finalize(),
149 State::Specialized(state) => state.finalize(),
150 }
151 }
152
153 /// Reset the hash state.
reset(&mut self)154 pub fn reset(&mut self) {
155 self.amount = 0;
156 match self.state {
157 State::Baseline(ref mut state) => state.reset(),
158 State::Specialized(ref mut state) => state.reset(),
159 }
160 }
161
162 /// Combine the hash state with the hash state for the subsequent block of bytes.
combine(&mut self, other: &Self)163 pub fn combine(&mut self, other: &Self) {
164 self.amount += other.amount;
165 let other_crc = other.clone().finalize();
166 match self.state {
167 State::Baseline(ref mut state) => state.combine(other_crc, other.amount),
168 State::Specialized(ref mut state) => state.combine(other_crc, other.amount),
169 }
170 }
171 }
172
173 impl fmt::Debug for Hasher {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result174 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
175 f.debug_struct("crc32fast::Hasher").finish()
176 }
177 }
178
179 impl Default for Hasher {
default() -> Self180 fn default() -> Self {
181 Self::new()
182 }
183 }
184
185 impl hash::Hasher for Hasher {
write(&mut self, bytes: &[u8])186 fn write(&mut self, bytes: &[u8]) {
187 self.update(bytes)
188 }
189
finish(&self) -> u64190 fn finish(&self) -> u64 {
191 u64::from(self.clone().finalize())
192 }
193 }
194
195 #[cfg(test)]
196 mod test {
197 use super::Hasher;
198
199 quickcheck! {
200 fn combine(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
201 let mut hash_a = Hasher::new();
202 hash_a.update(&bytes_1);
203 hash_a.update(&bytes_2);
204 let mut hash_b = Hasher::new();
205 hash_b.update(&bytes_2);
206 let mut hash_c = Hasher::new();
207 hash_c.update(&bytes_1);
208 hash_c.combine(&hash_b);
209
210 hash_a.finalize() == hash_c.finalize()
211 }
212
213 fn combine_from_len(bytes_1: Vec<u8>, bytes_2: Vec<u8>) -> bool {
214 let mut hash_a = Hasher::new();
215 hash_a.update(&bytes_1);
216 let a = hash_a.finalize();
217
218 let mut hash_b = Hasher::new();
219 hash_b.update(&bytes_2);
220 let b = hash_b.finalize();
221
222 let mut hash_ab = Hasher::new();
223 hash_ab.update(&bytes_1);
224 hash_ab.update(&bytes_2);
225 let ab = hash_ab.finalize();
226
227 let mut reconstructed = Hasher::new_with_initial_len(a, bytes_1.len() as u64);
228 let hash_b_reconstructed = Hasher::new_with_initial_len(b, bytes_2.len() as u64);
229
230 reconstructed.combine(&hash_b_reconstructed);
231
232 reconstructed.finalize() == ab
233 }
234 }
235 }
236