• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use plotters::prelude::*;
2 use std::ops::Range;
3 
main() -> Result<(), Box<dyn std::error::Error>>4 fn main() -> Result<(), Box<dyn std::error::Error>> {
5     let root =
6         BitMapBackend::new("plotters-doc-data/mandelbrot.png", (800, 600)).into_drawing_area();
7 
8     root.fill(&WHITE)?;
9 
10     let mut chart = ChartBuilder::on(&root)
11         .margin(20)
12         .x_label_area_size(10)
13         .y_label_area_size(10)
14         .build_cartesian_2d(-2.1f64..0.6f64, -1.2f64..1.2f64)?;
15 
16     chart
17         .configure_mesh()
18         .disable_x_mesh()
19         .disable_y_mesh()
20         .draw()?;
21 
22     let plotting_area = chart.plotting_area();
23 
24     let range = plotting_area.get_pixel_range();
25 
26     let (pw, ph) = (range.0.end - range.0.start, range.1.end - range.1.start);
27     let (xr, yr) = (chart.x_range(), chart.y_range());
28 
29     for (x, y, c) in mandelbrot_set(xr, yr, (pw as usize, ph as usize), 100) {
30         if c != 100 {
31             plotting_area.draw_pixel((x, y), &HSLColor(c as f64 / 100.0, 1.0, 0.5))?;
32         } else {
33             plotting_area.draw_pixel((x, y), &BLACK)?;
34         }
35     }
36 
37     Ok(())
38 }
39 
mandelbrot_set( real: Range<f64>, complex: Range<f64>, samples: (usize, usize), max_iter: usize, ) -> impl Iterator<Item = (f64, f64, usize)>40 fn mandelbrot_set(
41     real: Range<f64>,
42     complex: Range<f64>,
43     samples: (usize, usize),
44     max_iter: usize,
45 ) -> impl Iterator<Item = (f64, f64, usize)> {
46     let step = (
47         (real.end - real.start) / samples.0 as f64,
48         (complex.end - complex.start) / samples.1 as f64,
49     );
50     return (0..(samples.0 * samples.1)).map(move |k| {
51         let c = (
52             real.start + step.0 * (k % samples.0) as f64,
53             complex.start + step.1 * (k / samples.0) as f64,
54         );
55         let mut z = (0.0, 0.0);
56         let mut cnt = 0;
57         while cnt < max_iter && z.0 * z.0 + z.1 * z.1 <= 1e10 {
58             z = (z.0 * z.0 - z.1 * z.1 + c.0, 2.0 * z.0 * z.1 + c.1);
59             cnt += 1;
60         }
61         return (c.0, c.1, cnt);
62     });
63 }
64 #[test]
entry_point()65 fn entry_point() {
66     main().unwrap()
67 }
68