• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Google Inc.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 #include <algorithm>
16 #include <functional>
17 #include <memory>
18 #include <string>
19 #include <vector>
20 
21 #include <assert.h>
22 #include <errno.h>
23 #include <stdint.h>
24 #include <stdlib.h>
25 #include <string.h>
26 
27 #include <openssl/aead.h>
28 #include <openssl/aes.h>
29 #include <openssl/bn.h>
30 #include <openssl/curve25519.h>
31 #include <openssl/crypto.h>
32 #include <openssl/digest.h>
33 #include <openssl/err.h>
34 #include <openssl/ec.h>
35 #include <openssl/ecdsa.h>
36 #include <openssl/ec_key.h>
37 #include <openssl/evp.h>
38 #include <openssl/hrss.h>
39 #include <openssl/mem.h>
40 #include <openssl/nid.h>
41 #include <openssl/rand.h>
42 #include <openssl/rsa.h>
43 #include <openssl/trust_token.h>
44 
45 #if defined(OPENSSL_WINDOWS)
46 OPENSSL_MSVC_PRAGMA(warning(push, 3))
47 #include <windows.h>
48 OPENSSL_MSVC_PRAGMA(warning(pop))
49 #elif defined(OPENSSL_APPLE)
50 #include <sys/time.h>
51 #else
52 #include <time.h>
53 #endif
54 
55 #include "../crypto/ec_extra/internal.h"
56 #include "../crypto/fipsmodule/ec/internal.h"
57 #include "../crypto/internal.h"
58 #include "../crypto/trust_token/internal.h"
59 #include "internal.h"
60 
61 // g_print_json is true if printed output is JSON formatted.
62 static bool g_print_json = false;
63 
64 // TimeResults represents the results of benchmarking a function.
65 struct TimeResults {
66   // num_calls is the number of function calls done in the time period.
67   unsigned num_calls;
68   // us is the number of microseconds that elapsed in the time period.
69   unsigned us;
70 
PrintTimeResults71   void Print(const std::string &description) const {
72     if (g_print_json) {
73       PrintJSON(description);
74     } else {
75       printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls,
76              description.c_str(), us,
77              (static_cast<double>(num_calls) / us) * 1000000);
78     }
79   }
80 
PrintWithBytesTimeResults81   void PrintWithBytes(const std::string &description,
82                       size_t bytes_per_call) const {
83     if (g_print_json) {
84       PrintJSON(description, bytes_per_call);
85     } else {
86       printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n",
87              num_calls, description.c_str(), us,
88              (static_cast<double>(num_calls) / us) * 1000000,
89              static_cast<double>(bytes_per_call * num_calls) / us);
90     }
91   }
92 
93  private:
PrintJSONTimeResults94   void PrintJSON(const std::string &description,
95                  size_t bytes_per_call = 0) const {
96     if (first_json_printed) {
97       puts(",");
98     }
99 
100     printf("{\"description\": \"%s\", \"numCalls\": %u, \"microseconds\": %u",
101            description.c_str(), num_calls, us);
102 
103     if (bytes_per_call > 0) {
104       printf(", \"bytesPerCall\": %zu", bytes_per_call);
105     }
106 
107     printf("}");
108     first_json_printed = true;
109   }
110 
111   // first_json_printed is true if |g_print_json| is true and the first item in
112   // the JSON results has been printed already. This is used to handle the
113   // commas between each item in the result list.
114   static bool first_json_printed;
115 };
116 
117 bool TimeResults::first_json_printed = false;
118 
119 #if defined(OPENSSL_WINDOWS)
time_now()120 static uint64_t time_now() { return GetTickCount64() * 1000; }
121 #elif defined(OPENSSL_APPLE)
time_now()122 static uint64_t time_now() {
123   struct timeval tv;
124   uint64_t ret;
125 
126   gettimeofday(&tv, NULL);
127   ret = tv.tv_sec;
128   ret *= 1000000;
129   ret += tv.tv_usec;
130   return ret;
131 }
132 #else
time_now()133 static uint64_t time_now() {
134   struct timespec ts;
135   clock_gettime(CLOCK_MONOTONIC, &ts);
136 
137   uint64_t ret = ts.tv_sec;
138   ret *= 1000000;
139   ret += ts.tv_nsec / 1000;
140   return ret;
141 }
142 #endif
143 
144 static uint64_t g_timeout_seconds = 1;
145 static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384};
146 
TimeFunction(TimeResults * results,std::function<bool ()> func)147 static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
148   // total_us is the total amount of time that we'll aim to measure a function
149   // for.
150   const uint64_t total_us = g_timeout_seconds * 1000000;
151   uint64_t start = time_now(), now, delta;
152   unsigned done = 0, iterations_between_time_checks;
153 
154   if (!func()) {
155     return false;
156   }
157   now = time_now();
158   delta = now - start;
159   if (delta == 0) {
160     iterations_between_time_checks = 250;
161   } else {
162     // Aim for about 100ms between time checks.
163     iterations_between_time_checks =
164         static_cast<double>(100000) / static_cast<double>(delta);
165     if (iterations_between_time_checks > 1000) {
166       iterations_between_time_checks = 1000;
167     } else if (iterations_between_time_checks < 1) {
168       iterations_between_time_checks = 1;
169     }
170   }
171 
172   for (;;) {
173     for (unsigned i = 0; i < iterations_between_time_checks; i++) {
174       if (!func()) {
175         return false;
176       }
177       done++;
178     }
179 
180     now = time_now();
181     if (now - start > total_us) {
182       break;
183     }
184   }
185 
186   results->us = now - start;
187   results->num_calls = done;
188   return true;
189 }
190 
SpeedRSA(const std::string & selected)191 static bool SpeedRSA(const std::string &selected) {
192   if (!selected.empty() && selected.find("RSA") == std::string::npos) {
193     return true;
194   }
195 
196   static const struct {
197     const char *name;
198     const uint8_t *key;
199     const size_t key_len;
200   } kRSAKeys[] = {
201     {"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len},
202     {"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len},
203   };
204 
205   for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) {
206     const std::string name = kRSAKeys[i].name;
207 
208     bssl::UniquePtr<RSA> key(
209         RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len));
210     if (key == nullptr) {
211       fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
212       ERR_print_errors_fp(stderr);
213       return false;
214     }
215 
216     std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key.get())]);
217     const uint8_t fake_sha256_hash[32] = {0};
218     unsigned sig_len;
219 
220     TimeResults results;
221     if (!TimeFunction(&results,
222                       [&key, &sig, &fake_sha256_hash, &sig_len]() -> bool {
223           // Usually during RSA signing we're using a long-lived |RSA| that has
224           // already had all of its |BN_MONT_CTX|s constructed, so it makes
225           // sense to use |key| directly here.
226           return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
227                           sig.get(), &sig_len, key.get());
228         })) {
229       fprintf(stderr, "RSA_sign failed.\n");
230       ERR_print_errors_fp(stderr);
231       return false;
232     }
233     results.Print(name + " signing");
234 
235     if (!TimeFunction(&results,
236                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
237           return RSA_verify(
238               NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash),
239               sig.get(), sig_len, key.get());
240         })) {
241       fprintf(stderr, "RSA_verify failed.\n");
242       ERR_print_errors_fp(stderr);
243       return false;
244     }
245     results.Print(name + " verify (same key)");
246 
247     if (!TimeFunction(&results,
248                       [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
249           // Usually during RSA verification we have to parse an RSA key from a
250           // certificate or similar, in which case we'd need to construct a new
251           // RSA key, with a new |BN_MONT_CTX| for the public modulus. If we
252           // were to use |key| directly instead, then these costs wouldn't be
253           // accounted for.
254           bssl::UniquePtr<RSA> verify_key(RSA_new());
255           if (!verify_key) {
256             return false;
257           }
258           verify_key->n = BN_dup(key->n);
259           verify_key->e = BN_dup(key->e);
260           if (!verify_key->n ||
261               !verify_key->e) {
262             return false;
263           }
264           return RSA_verify(NID_sha256, fake_sha256_hash,
265                             sizeof(fake_sha256_hash), sig.get(), sig_len,
266                             verify_key.get());
267         })) {
268       fprintf(stderr, "RSA_verify failed.\n");
269       ERR_print_errors_fp(stderr);
270       return false;
271     }
272     results.Print(name + " verify (fresh key)");
273   }
274 
275   return true;
276 }
277 
SpeedRSAKeyGen(const std::string & selected)278 static bool SpeedRSAKeyGen(const std::string &selected) {
279   // Don't run this by default because it's so slow.
280   if (selected != "RSAKeyGen") {
281     return true;
282   }
283 
284   bssl::UniquePtr<BIGNUM> e(BN_new());
285   if (!BN_set_word(e.get(), 65537)) {
286     return false;
287   }
288 
289   const std::vector<int> kSizes = {2048, 3072, 4096};
290   for (int size : kSizes) {
291     const uint64_t start = time_now();
292     unsigned num_calls = 0;
293     unsigned us;
294     std::vector<unsigned> durations;
295 
296     for (;;) {
297       bssl::UniquePtr<RSA> rsa(RSA_new());
298 
299       const uint64_t iteration_start = time_now();
300       if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) {
301         fprintf(stderr, "RSA_generate_key_ex failed.\n");
302         ERR_print_errors_fp(stderr);
303         return false;
304       }
305       const uint64_t iteration_end = time_now();
306 
307       num_calls++;
308       durations.push_back(iteration_end - iteration_start);
309 
310       us = iteration_end - start;
311       if (us > 30 * 1000000 /* 30 secs */) {
312         break;
313       }
314     }
315 
316     std::sort(durations.begin(), durations.end());
317     const std::string description =
318         std::string("RSA ") + std::to_string(size) + std::string(" key-gen");
319     const TimeResults results = {num_calls, us};
320     results.Print(description);
321     const size_t n = durations.size();
322     assert(n > 0);
323 
324     // Distribution information is useful, but doesn't fit into the standard
325     // format used by |g_print_json|.
326     if (!g_print_json) {
327       // |min| and |max| must be stored in temporary variables to avoid an MSVC
328       // bug on x86. There, size_t is a typedef for unsigned, but MSVC's printf
329       // warning tries to retain the distinction and suggest %zu for size_t
330       // instead of %u. It gets confused if std::vector<unsigned> and
331       // std::vector<size_t> are both instantiated. Being typedefs, the two
332       // instantiations are identical, which somehow breaks the size_t vs
333       // unsigned metadata.
334       unsigned min = durations[0];
335       unsigned median = n & 1 ? durations[n / 2]
336                               : (durations[n / 2 - 1] + durations[n / 2]) / 2;
337       unsigned max = durations[n - 1];
338       printf("  min: %uus, median: %uus, max: %uus\n", min, median, max);
339     }
340   }
341 
342   return true;
343 }
344 
align(uint8_t * in,unsigned alignment)345 static uint8_t *align(uint8_t *in, unsigned alignment) {
346   return reinterpret_cast<uint8_t *>(
347       (reinterpret_cast<uintptr_t>(in) + alignment) &
348       ~static_cast<size_t>(alignment - 1));
349 }
350 
ChunkLenSuffix(size_t chunk_len)351 static std::string ChunkLenSuffix(size_t chunk_len) {
352   char buf[32];
353   snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len,
354            chunk_len != 1 ? "s" : "");
355   return buf;
356 }
357 
SpeedAEADChunk(const EVP_AEAD * aead,std::string name,size_t chunk_len,size_t ad_len,evp_aead_direction_t direction)358 static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name,
359                            size_t chunk_len, size_t ad_len,
360                            evp_aead_direction_t direction) {
361   static const unsigned kAlignment = 16;
362 
363   name += ChunkLenSuffix(chunk_len);
364   bssl::ScopedEVP_AEAD_CTX ctx;
365   const size_t key_len = EVP_AEAD_key_length(aead);
366   const size_t nonce_len = EVP_AEAD_nonce_length(aead);
367   const size_t overhead_len = EVP_AEAD_max_overhead(aead);
368 
369   std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]);
370   OPENSSL_memset(key.get(), 0, key_len);
371   std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]);
372   OPENSSL_memset(nonce.get(), 0, nonce_len);
373   std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]);
374   // N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the
375   // same size. However, in the direction == evp_aead_open case we still use
376   // non-scattering seal, hence we add overhead_len to the size of this buffer.
377   std::unique_ptr<uint8_t[]> out_storage(
378       new uint8_t[chunk_len + overhead_len + kAlignment]);
379   std::unique_ptr<uint8_t[]> in2_storage(
380       new uint8_t[chunk_len + overhead_len + kAlignment]);
381   std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]);
382   OPENSSL_memset(ad.get(), 0, ad_len);
383   std::unique_ptr<uint8_t[]> tag_storage(
384       new uint8_t[overhead_len + kAlignment]);
385 
386 
387   uint8_t *const in = align(in_storage.get(), kAlignment);
388   OPENSSL_memset(in, 0, chunk_len);
389   uint8_t *const out = align(out_storage.get(), kAlignment);
390   OPENSSL_memset(out, 0, chunk_len + overhead_len);
391   uint8_t *const tag = align(tag_storage.get(), kAlignment);
392   OPENSSL_memset(tag, 0, overhead_len);
393   uint8_t *const in2 = align(in2_storage.get(), kAlignment);
394 
395   if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
396                                         EVP_AEAD_DEFAULT_TAG_LENGTH,
397                                         evp_aead_seal)) {
398     fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
399     ERR_print_errors_fp(stderr);
400     return false;
401   }
402 
403   TimeResults results;
404   if (direction == evp_aead_seal) {
405     if (!TimeFunction(&results,
406                       [chunk_len, nonce_len, ad_len, overhead_len, in, out, tag,
407                        &ctx, &nonce, &ad]() -> bool {
408                         size_t tag_len;
409                         return EVP_AEAD_CTX_seal_scatter(
410                             ctx.get(), out, tag, &tag_len, overhead_len,
411                             nonce.get(), nonce_len, in, chunk_len, nullptr, 0,
412                             ad.get(), ad_len);
413                       })) {
414       fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
415       ERR_print_errors_fp(stderr);
416       return false;
417     }
418   } else {
419     size_t out_len;
420     EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
421                       nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
422 
423     ctx.Reset();
424     if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
425                                           EVP_AEAD_DEFAULT_TAG_LENGTH,
426                                           evp_aead_open)) {
427       fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
428       ERR_print_errors_fp(stderr);
429       return false;
430     }
431 
432     if (!TimeFunction(&results,
433                       [chunk_len, overhead_len, nonce_len, ad_len, in2, out,
434                        out_len, &ctx, &nonce, &ad]() -> bool {
435                         size_t in2_len;
436                         // N.B. EVP_AEAD_CTX_open_gather is not implemented for
437                         // all AEADs.
438                         return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len,
439                                                  chunk_len + overhead_len,
440                                                  nonce.get(), nonce_len, out,
441                                                  out_len, ad.get(), ad_len);
442                       })) {
443       fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
444       ERR_print_errors_fp(stderr);
445       return false;
446     }
447   }
448 
449   results.PrintWithBytes(
450       name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
451   return true;
452 }
453 
SpeedAEAD(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)454 static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
455                       size_t ad_len, const std::string &selected) {
456   if (!selected.empty() && name.find(selected) == std::string::npos) {
457     return true;
458   }
459 
460   for (size_t chunk_len : g_chunk_lengths) {
461     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) {
462       return false;
463     }
464   }
465   return true;
466 }
467 
SpeedAEADOpen(const EVP_AEAD * aead,const std::string & name,size_t ad_len,const std::string & selected)468 static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
469                           size_t ad_len, const std::string &selected) {
470   if (!selected.empty() && name.find(selected) == std::string::npos) {
471     return true;
472   }
473 
474   for (size_t chunk_len : g_chunk_lengths) {
475     if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) {
476       return false;
477     }
478   }
479 
480   return true;
481 }
482 
SpeedAESBlock(const std::string & name,unsigned bits,const std::string & selected)483 static bool SpeedAESBlock(const std::string &name, unsigned bits,
484                           const std::string &selected) {
485   if (!selected.empty() && name.find(selected) == std::string::npos) {
486     return true;
487   }
488 
489   static const uint8_t kZero[32] = {0};
490 
491   {
492     TimeResults results;
493     if (!TimeFunction(&results, [&]() -> bool {
494           AES_KEY key;
495           return AES_set_encrypt_key(kZero, bits, &key) == 0;
496         })) {
497       fprintf(stderr, "AES_set_encrypt_key failed.\n");
498       return false;
499     }
500     results.Print(name + " encrypt setup");
501   }
502 
503   {
504     AES_KEY key;
505     if (AES_set_encrypt_key(kZero, bits, &key) != 0) {
506       return false;
507     }
508     uint8_t block[16] = {0};
509     TimeResults results;
510     if (!TimeFunction(&results, [&]() -> bool {
511           AES_encrypt(block, block, &key);
512           return true;
513         })) {
514       fprintf(stderr, "AES_encrypt failed.\n");
515       return false;
516     }
517     results.Print(name + " encrypt");
518   }
519 
520   {
521     TimeResults results;
522     if (!TimeFunction(&results, [&]() -> bool {
523           AES_KEY key;
524           return AES_set_decrypt_key(kZero, bits, &key) == 0;
525         })) {
526       fprintf(stderr, "AES_set_decrypt_key failed.\n");
527       return false;
528     }
529     results.Print(name + " decrypt setup");
530   }
531 
532   {
533     AES_KEY key;
534     if (AES_set_decrypt_key(kZero, bits, &key) != 0) {
535       return false;
536     }
537     uint8_t block[16] = {0};
538     TimeResults results;
539     if (!TimeFunction(&results, [&]() -> bool {
540           AES_decrypt(block, block, &key);
541           return true;
542         })) {
543       fprintf(stderr, "AES_decrypt failed.\n");
544       return false;
545     }
546     results.Print(name + " decrypt");
547   }
548 
549   return true;
550 }
551 
SpeedHashChunk(const EVP_MD * md,std::string name,size_t chunk_len)552 static bool SpeedHashChunk(const EVP_MD *md, std::string name,
553                            size_t chunk_len) {
554   bssl::ScopedEVP_MD_CTX ctx;
555   uint8_t scratch[16384];
556 
557   if (chunk_len > sizeof(scratch)) {
558     return false;
559   }
560 
561   name += ChunkLenSuffix(chunk_len);
562   TimeResults results;
563   if (!TimeFunction(&results, [&ctx, md, chunk_len, &scratch]() -> bool {
564         uint8_t digest[EVP_MAX_MD_SIZE];
565         unsigned int md_len;
566 
567         return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) &&
568                EVP_DigestUpdate(ctx.get(), scratch, chunk_len) &&
569                EVP_DigestFinal_ex(ctx.get(), digest, &md_len);
570       })) {
571     fprintf(stderr, "EVP_DigestInit_ex failed.\n");
572     ERR_print_errors_fp(stderr);
573     return false;
574   }
575 
576   results.PrintWithBytes(name, chunk_len);
577   return true;
578 }
579 
SpeedHash(const EVP_MD * md,const std::string & name,const std::string & selected)580 static bool SpeedHash(const EVP_MD *md, const std::string &name,
581                       const std::string &selected) {
582   if (!selected.empty() && name.find(selected) == std::string::npos) {
583     return true;
584   }
585 
586   for (size_t chunk_len : g_chunk_lengths) {
587     if (!SpeedHashChunk(md, name, chunk_len)) {
588       return false;
589     }
590   }
591 
592   return true;
593 }
594 
SpeedRandomChunk(std::string name,size_t chunk_len)595 static bool SpeedRandomChunk(std::string name, size_t chunk_len) {
596   uint8_t scratch[16384];
597 
598   if (chunk_len > sizeof(scratch)) {
599     return false;
600   }
601 
602   name += ChunkLenSuffix(chunk_len);
603   TimeResults results;
604   if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool {
605         RAND_bytes(scratch, chunk_len);
606         return true;
607       })) {
608     return false;
609   }
610 
611   results.PrintWithBytes(name, chunk_len);
612   return true;
613 }
614 
SpeedRandom(const std::string & selected)615 static bool SpeedRandom(const std::string &selected) {
616   if (!selected.empty() && selected != "RNG") {
617     return true;
618   }
619 
620   for (size_t chunk_len : g_chunk_lengths) {
621     if (!SpeedRandomChunk("RNG", chunk_len)) {
622       return false;
623     }
624   }
625 
626   return true;
627 }
628 
SpeedECDHCurve(const std::string & name,int nid,const std::string & selected)629 static bool SpeedECDHCurve(const std::string &name, int nid,
630                            const std::string &selected) {
631   if (!selected.empty() && name.find(selected) == std::string::npos) {
632     return true;
633   }
634 
635   bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new_by_curve_name(nid));
636   if (!peer_key ||
637       !EC_KEY_generate_key(peer_key.get())) {
638     return false;
639   }
640 
641   size_t peer_value_len = EC_POINT_point2oct(
642       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
643       POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr);
644   if (peer_value_len == 0) {
645     return false;
646   }
647   std::unique_ptr<uint8_t[]> peer_value(new uint8_t[peer_value_len]);
648   peer_value_len = EC_POINT_point2oct(
649       EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
650       POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr);
651   if (peer_value_len == 0) {
652     return false;
653   }
654 
655   TimeResults results;
656   if (!TimeFunction(&results, [nid, peer_value_len, &peer_value]() -> bool {
657         bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
658         if (!key ||
659             !EC_KEY_generate_key(key.get())) {
660           return false;
661         }
662         const EC_GROUP *const group = EC_KEY_get0_group(key.get());
663         bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
664         bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group));
665         bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
666         bssl::UniquePtr<BIGNUM> x(BN_new());
667         if (!point || !peer_point || !ctx || !x ||
668             !EC_POINT_oct2point(group, peer_point.get(), peer_value.get(),
669                                 peer_value_len, ctx.get()) ||
670             !EC_POINT_mul(group, point.get(), nullptr, peer_point.get(),
671                           EC_KEY_get0_private_key(key.get()), ctx.get()) ||
672             !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(),
673                                                  nullptr, ctx.get())) {
674           return false;
675         }
676 
677         return true;
678       })) {
679     return false;
680   }
681 
682   results.Print(name);
683   return true;
684 }
685 
SpeedECDSACurve(const std::string & name,int nid,const std::string & selected)686 static bool SpeedECDSACurve(const std::string &name, int nid,
687                             const std::string &selected) {
688   if (!selected.empty() && name.find(selected) == std::string::npos) {
689     return true;
690   }
691 
692   bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid));
693   if (!key ||
694       !EC_KEY_generate_key(key.get())) {
695     return false;
696   }
697 
698   uint8_t signature[256];
699   if (ECDSA_size(key.get()) > sizeof(signature)) {
700     return false;
701   }
702   uint8_t digest[20];
703   OPENSSL_memset(digest, 42, sizeof(digest));
704   unsigned sig_len;
705 
706   TimeResults results;
707   if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool {
708         return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len,
709                           key.get()) == 1;
710       })) {
711     return false;
712   }
713 
714   results.Print(name + " signing");
715 
716   if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool {
717         return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
718                             key.get()) == 1;
719       })) {
720     return false;
721   }
722 
723   results.Print(name + " verify");
724 
725   return true;
726 }
727 
SpeedECDH(const std::string & selected)728 static bool SpeedECDH(const std::string &selected) {
729   return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) &&
730          SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) &&
731          SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) &&
732          SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected);
733 }
734 
SpeedECDSA(const std::string & selected)735 static bool SpeedECDSA(const std::string &selected) {
736   return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) &&
737          SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) &&
738          SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) &&
739          SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected);
740 }
741 
Speed25519(const std::string & selected)742 static bool Speed25519(const std::string &selected) {
743   if (!selected.empty() && selected.find("25519") == std::string::npos) {
744     return true;
745   }
746 
747   TimeResults results;
748 
749   uint8_t public_key[32], private_key[64];
750 
751   if (!TimeFunction(&results, [&public_key, &private_key]() -> bool {
752         ED25519_keypair(public_key, private_key);
753         return true;
754       })) {
755     return false;
756   }
757 
758   results.Print("Ed25519 key generation");
759 
760   static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
761   uint8_t signature[64];
762 
763   if (!TimeFunction(&results, [&private_key, &signature]() -> bool {
764         return ED25519_sign(signature, kMessage, sizeof(kMessage),
765                             private_key) == 1;
766       })) {
767     return false;
768   }
769 
770   results.Print("Ed25519 signing");
771 
772   if (!TimeFunction(&results, [&public_key, &signature]() -> bool {
773         return ED25519_verify(kMessage, sizeof(kMessage), signature,
774                               public_key) == 1;
775       })) {
776     fprintf(stderr, "Ed25519 verify failed.\n");
777     return false;
778   }
779 
780   results.Print("Ed25519 verify");
781 
782   if (!TimeFunction(&results, []() -> bool {
783         uint8_t out[32], in[32];
784         OPENSSL_memset(in, 0, sizeof(in));
785         X25519_public_from_private(out, in);
786         return true;
787       })) {
788     fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
789     return false;
790   }
791 
792   results.Print("Curve25519 base-point multiplication");
793 
794   if (!TimeFunction(&results, []() -> bool {
795         uint8_t out[32], in1[32], in2[32];
796         OPENSSL_memset(in1, 0, sizeof(in1));
797         OPENSSL_memset(in2, 0, sizeof(in2));
798         in1[0] = 1;
799         in2[0] = 9;
800         return X25519(out, in1, in2) == 1;
801       })) {
802     fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
803     return false;
804   }
805 
806   results.Print("Curve25519 arbitrary point multiplication");
807 
808   return true;
809 }
810 
SpeedSPAKE2(const std::string & selected)811 static bool SpeedSPAKE2(const std::string &selected) {
812   if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
813     return true;
814   }
815 
816   TimeResults results;
817 
818   static const uint8_t kAliceName[] = {'A'};
819   static const uint8_t kBobName[] = {'B'};
820   static const uint8_t kPassword[] = "password";
821   bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice,
822                                     kAliceName, sizeof(kAliceName), kBobName,
823                                     sizeof(kBobName)));
824   uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
825   size_t alice_msg_len;
826 
827   if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
828                            sizeof(alice_msg),
829                            kPassword, sizeof(kPassword))) {
830     fprintf(stderr, "SPAKE2_generate_msg failed.\n");
831     return false;
832   }
833 
834   if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool {
835         bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob,
836                                         kBobName, sizeof(kBobName), kAliceName,
837                                         sizeof(kAliceName)));
838         uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
839         size_t bob_msg_len, bob_key_len;
840         if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
841                                  sizeof(bob_msg), kPassword,
842                                  sizeof(kPassword)) ||
843             !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
844                                 sizeof(bob_key), alice_msg, alice_msg_len)) {
845           return false;
846         }
847 
848         return true;
849       })) {
850     fprintf(stderr, "SPAKE2 failed.\n");
851   }
852 
853   results.Print("SPAKE2 over Ed25519");
854 
855   return true;
856 }
857 
SpeedScrypt(const std::string & selected)858 static bool SpeedScrypt(const std::string &selected) {
859   if (!selected.empty() && selected.find("scrypt") == std::string::npos) {
860     return true;
861   }
862 
863   TimeResults results;
864 
865   static const char kPassword[] = "password";
866   static const uint8_t kSalt[] = "NaCl";
867 
868   if (!TimeFunction(&results, [&]() -> bool {
869         uint8_t out[64];
870         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
871                                 sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */,
872                                 out, sizeof(out));
873       })) {
874     fprintf(stderr, "scrypt failed.\n");
875     return false;
876   }
877   results.Print("scrypt (N = 1024, r = 8, p = 16)");
878 
879   if (!TimeFunction(&results, [&]() -> bool {
880         uint8_t out[64];
881         return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
882                                 sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */,
883                                 out, sizeof(out));
884       })) {
885     fprintf(stderr, "scrypt failed.\n");
886     return false;
887   }
888   results.Print("scrypt (N = 16384, r = 8, p = 1)");
889 
890   return true;
891 }
892 
SpeedHRSS(const std::string & selected)893 static bool SpeedHRSS(const std::string &selected) {
894   if (!selected.empty() && selected != "HRSS") {
895     return true;
896   }
897 
898   TimeResults results;
899 
900   if (!TimeFunction(&results, []() -> bool {
901     struct HRSS_public_key pub;
902     struct HRSS_private_key priv;
903     uint8_t entropy[HRSS_GENERATE_KEY_BYTES];
904     RAND_bytes(entropy, sizeof(entropy));
905     HRSS_generate_key(&pub, &priv, entropy);
906     return true;
907   })) {
908     fprintf(stderr, "Failed to time HRSS_generate_key.\n");
909     return false;
910   }
911 
912   results.Print("HRSS generate");
913 
914   struct HRSS_public_key pub;
915   struct HRSS_private_key priv;
916   uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES];
917   RAND_bytes(key_entropy, sizeof(key_entropy));
918   HRSS_generate_key(&pub, &priv, key_entropy);
919 
920   uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
921   if (!TimeFunction(&results, [&pub, &ciphertext]() -> bool {
922     uint8_t entropy[HRSS_ENCAP_BYTES];
923     uint8_t shared_key[HRSS_KEY_BYTES];
924     RAND_bytes(entropy, sizeof(entropy));
925     HRSS_encap(ciphertext, shared_key, &pub, entropy);
926     return true;
927   })) {
928     fprintf(stderr, "Failed to time HRSS_encap.\n");
929     return false;
930   }
931 
932   results.Print("HRSS encap");
933 
934   if (!TimeFunction(&results, [&priv, &ciphertext]() -> bool {
935     uint8_t shared_key[HRSS_KEY_BYTES];
936     HRSS_decap(shared_key, &priv, ciphertext, sizeof(ciphertext));
937     return true;
938   })) {
939     fprintf(stderr, "Failed to time HRSS_encap.\n");
940     return false;
941   }
942 
943   results.Print("HRSS decap");
944 
945   return true;
946 }
947 
SpeedHashToCurve(const std::string & selected)948 static bool SpeedHashToCurve(const std::string &selected) {
949   if (!selected.empty() && selected.find("hashtocurve") == std::string::npos) {
950     return true;
951   }
952 
953   uint8_t input[64];
954   RAND_bytes(input, sizeof(input));
955 
956   static const uint8_t kLabel[] = "label";
957 
958   TimeResults results;
959   {
960     EC_GROUP *group = EC_GROUP_new_by_curve_name(NID_secp384r1);
961     if (group == NULL) {
962       return false;
963     }
964     if (!TimeFunction(&results, [&]() -> bool {
965           EC_RAW_POINT out;
966           return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
967               group, &out, kLabel, sizeof(kLabel), input, sizeof(input));
968         })) {
969       fprintf(stderr, "hash-to-curve failed.\n");
970       return false;
971     }
972     results.Print("hash-to-curve P384_XMD:SHA-512_SSWU_RO_");
973 
974     if (!TimeFunction(&results, [&]() -> bool {
975           EC_SCALAR out;
976           return ec_hash_to_scalar_p384_xmd_sha512_draft07(
977               group, &out, kLabel, sizeof(kLabel), input, sizeof(input));
978         })) {
979       fprintf(stderr, "hash-to-scalar failed.\n");
980       return false;
981     }
982     results.Print("hash-to-scalar P384_XMD:SHA-512");
983   }
984 
985   return true;
986 }
987 
trust_token_pretoken_dup(TRUST_TOKEN_PRETOKEN * in)988 static TRUST_TOKEN_PRETOKEN *trust_token_pretoken_dup(
989     TRUST_TOKEN_PRETOKEN *in) {
990   TRUST_TOKEN_PRETOKEN *out =
991       (TRUST_TOKEN_PRETOKEN *)OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN));
992   if (out) {
993     OPENSSL_memcpy(out, in, sizeof(TRUST_TOKEN_PRETOKEN));
994   }
995   return out;
996 }
997 
SpeedTrustToken(std::string name,const TRUST_TOKEN_METHOD * method,size_t batchsize,const std::string & selected)998 static bool SpeedTrustToken(std::string name, const TRUST_TOKEN_METHOD *method,
999                             size_t batchsize, const std::string &selected) {
1000   if (!selected.empty() && selected.find("trusttoken") == std::string::npos) {
1001     return true;
1002   }
1003 
1004   TimeResults results;
1005   if (!TimeFunction(&results, [&]() -> bool {
1006         uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
1007         uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
1008         size_t priv_key_len, pub_key_len;
1009         return TRUST_TOKEN_generate_key(
1010             method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
1011             pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0);
1012       })) {
1013     fprintf(stderr, "TRUST_TOKEN_generate_key failed.\n");
1014     return false;
1015   }
1016   results.Print(name + " generate_key");
1017 
1018   bssl::UniquePtr<TRUST_TOKEN_CLIENT> client(
1019       TRUST_TOKEN_CLIENT_new(method, batchsize));
1020   bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer(
1021       TRUST_TOKEN_ISSUER_new(method, batchsize));
1022   uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
1023   uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
1024   size_t priv_key_len, pub_key_len, key_index;
1025   if (!client || !issuer ||
1026       !TRUST_TOKEN_generate_key(
1027           method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
1028           pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0) ||
1029       !TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key,
1030                                   pub_key_len) ||
1031       !TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)) {
1032     fprintf(stderr, "failed to generate trust token key.\n");
1033     return false;
1034   }
1035 
1036   uint8_t public_key[32], private_key[64];
1037   ED25519_keypair(public_key, private_key);
1038   bssl::UniquePtr<EVP_PKEY> priv(
1039       EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32));
1040   bssl::UniquePtr<EVP_PKEY> pub(
1041       EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32));
1042   if (!priv || !pub) {
1043     fprintf(stderr, "failed to generate trust token SRR key.\n");
1044     return false;
1045   }
1046 
1047   TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get());
1048   TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get());
1049   uint8_t metadata_key[32];
1050   RAND_bytes(metadata_key, sizeof(metadata_key));
1051   if (!TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key,
1052                                            sizeof(metadata_key))) {
1053     fprintf(stderr, "failed to generate trust token metadata key.\n");
1054     return false;
1055   }
1056 
1057   if (!TimeFunction(&results, [&]() -> bool {
1058         uint8_t *issue_msg = NULL;
1059         size_t msg_len;
1060         int ok = TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
1061                                                    &msg_len, batchsize);
1062         OPENSSL_free(issue_msg);
1063         // Clear pretokens.
1064         sk_TRUST_TOKEN_PRETOKEN_pop_free(client->pretokens,
1065                                          TRUST_TOKEN_PRETOKEN_free);
1066         client->pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null();
1067         return ok;
1068       })) {
1069     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
1070     return false;
1071   }
1072   results.Print(name + " begin_issuance");
1073 
1074   uint8_t *issue_msg = NULL;
1075   size_t msg_len;
1076   if (!TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len,
1077                                          batchsize)) {
1078     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
1079     return false;
1080   }
1081   bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
1082 
1083   bssl::UniquePtr<STACK_OF(TRUST_TOKEN_PRETOKEN)> pretokens(
1084       sk_TRUST_TOKEN_PRETOKEN_deep_copy(client->pretokens,
1085                                         trust_token_pretoken_dup,
1086                                         TRUST_TOKEN_PRETOKEN_free));
1087 
1088   if (!TimeFunction(&results, [&]() -> bool {
1089         uint8_t *issue_resp = NULL;
1090         size_t resp_len, tokens_issued;
1091         int ok = TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
1092                                           &tokens_issued, issue_msg, msg_len,
1093                                           /*public_metadata=*/0,
1094                                           /*private_metadata=*/0,
1095                                           /*max_issuance=*/batchsize);
1096         OPENSSL_free(issue_resp);
1097         return ok;
1098       })) {
1099     fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
1100     return false;
1101   }
1102   results.Print(name + " issue");
1103 
1104   uint8_t *issue_resp = NULL;
1105   size_t resp_len, tokens_issued;
1106   if (!TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
1107                                 &tokens_issued, issue_msg, msg_len,
1108                                 /*public_metadata=*/0, /*private_metadata=*/0,
1109                                 /*max_issuance=*/batchsize)) {
1110     fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
1111     return false;
1112   }
1113   bssl::UniquePtr<uint8_t> free_issue_resp(issue_resp);
1114 
1115   if (!TimeFunction(&results, [&]() -> bool {
1116         size_t key_index2;
1117         bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
1118             TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index2,
1119                                                issue_resp, resp_len));
1120 
1121         // Reset pretokens.
1122         client->pretokens = sk_TRUST_TOKEN_PRETOKEN_deep_copy(
1123             pretokens.get(), trust_token_pretoken_dup,
1124             TRUST_TOKEN_PRETOKEN_free);
1125         return !!tokens;
1126       })) {
1127     fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
1128     return false;
1129   }
1130   results.Print(name + " finish_issuance");
1131 
1132   bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
1133       TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
1134                                          resp_len));
1135   if (!tokens || sk_TRUST_TOKEN_num(tokens.get()) < 1) {
1136     fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
1137     return false;
1138   }
1139 
1140   const TRUST_TOKEN *token = sk_TRUST_TOKEN_value(tokens.get(), 0);
1141 
1142   const uint8_t kClientData[] = "\x70TEST CLIENT DATA";
1143   uint64_t kRedemptionTime = 13374242;
1144 
1145   if (!TimeFunction(&results, [&]() -> bool {
1146         uint8_t *redeem_msg = NULL;
1147         size_t redeem_msg_len;
1148         int ok = TRUST_TOKEN_CLIENT_begin_redemption(
1149             client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
1150             sizeof(kClientData) - 1, kRedemptionTime);
1151         OPENSSL_free(redeem_msg);
1152         return ok;
1153       })) {
1154     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
1155     return false;
1156   }
1157   results.Print(name + " begin_redemption");
1158 
1159   uint8_t *redeem_msg = NULL;
1160   size_t redeem_msg_len;
1161   if (!TRUST_TOKEN_CLIENT_begin_redemption(
1162           client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
1163           sizeof(kClientData) - 1, kRedemptionTime)) {
1164     fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
1165     return false;
1166   }
1167   bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
1168 
1169   if (!TimeFunction(&results, [&]() -> bool {
1170         uint8_t *redeem_resp = NULL;
1171         size_t redeem_resp_len;
1172         TRUST_TOKEN *rtoken = NULL;
1173         uint8_t *client_data = NULL;
1174         size_t client_data_len;
1175         uint64_t redemption_time;
1176         int ok = TRUST_TOKEN_ISSUER_redeem(
1177             issuer.get(), &redeem_resp, &redeem_resp_len, &rtoken, &client_data,
1178             &client_data_len, &redemption_time, redeem_msg, redeem_msg_len,
1179             /*lifetime=*/600);
1180         OPENSSL_free(redeem_resp);
1181         OPENSSL_free(client_data);
1182         TRUST_TOKEN_free(rtoken);
1183         return ok;
1184       })) {
1185     fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
1186     return false;
1187   }
1188   results.Print(name + " redeem");
1189 
1190   uint8_t *redeem_resp = NULL;
1191   size_t redeem_resp_len;
1192   TRUST_TOKEN *rtoken = NULL;
1193   uint8_t *client_data = NULL;
1194   size_t client_data_len;
1195   uint64_t redemption_time;
1196   if (!TRUST_TOKEN_ISSUER_redeem(issuer.get(), &redeem_resp, &redeem_resp_len,
1197                                  &rtoken, &client_data, &client_data_len,
1198                                  &redemption_time, redeem_msg, redeem_msg_len,
1199                                  /*lifetime=*/600)) {
1200     fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
1201     return false;
1202   }
1203   bssl::UniquePtr<uint8_t> free_redeem_resp(redeem_resp);
1204   bssl::UniquePtr<uint8_t> free_client_data(client_data);
1205   bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken);
1206 
1207   if (!TimeFunction(&results, [&]() -> bool {
1208         uint8_t *srr = NULL, *sig = NULL;
1209         size_t srr_len, sig_len;
1210         int ok = TRUST_TOKEN_CLIENT_finish_redemption(
1211             client.get(), &srr, &srr_len, &sig, &sig_len, redeem_resp,
1212             redeem_resp_len);
1213         OPENSSL_free(srr);
1214         OPENSSL_free(sig);
1215         return ok;
1216       })) {
1217     fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_redemption failed.\n");
1218     return false;
1219   }
1220   results.Print(name + " finish_redemption");
1221 
1222   return true;
1223 }
1224 
1225 #if defined(BORINGSSL_FIPS)
SpeedSelfTest(const std::string & selected)1226 static bool SpeedSelfTest(const std::string &selected) {
1227   if (!selected.empty() && selected.find("self-test") == std::string::npos) {
1228     return true;
1229   }
1230 
1231   TimeResults results;
1232   if (!TimeFunction(&results, []() -> bool { return BORINGSSL_self_test(); })) {
1233     fprintf(stderr, "BORINGSSL_self_test faileid.\n");
1234     ERR_print_errors_fp(stderr);
1235     return false;
1236   }
1237 
1238   results.Print("self-test");
1239   return true;
1240 }
1241 #endif
1242 
1243 static const struct argument kArguments[] = {
1244     {
1245         "-filter",
1246         kOptionalArgument,
1247         "A filter on the speed tests to run",
1248     },
1249     {
1250         "-timeout",
1251         kOptionalArgument,
1252         "The number of seconds to run each test for (default is 1)",
1253     },
1254     {
1255         "-chunks",
1256         kOptionalArgument,
1257         "A comma-separated list of input sizes to run tests at (default is "
1258         "16,256,1350,8192,16384)",
1259     },
1260     {
1261         "-json",
1262         kBooleanArgument,
1263         "If this flag is set, speed will print the output of each benchmark in "
1264         "JSON format as follows: \"{\"description\": "
1265         "\"descriptionOfOperation\", \"numCalls\": 1234, "
1266         "\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When "
1267         "there is no information about the bytes per call for an  operation, "
1268         "the JSON field for bytesPerCall will be omitted.",
1269     },
1270     {
1271         "",
1272         kOptionalArgument,
1273         "",
1274     },
1275 };
1276 
Speed(const std::vector<std::string> & args)1277 bool Speed(const std::vector<std::string> &args) {
1278   std::map<std::string, std::string> args_map;
1279   if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
1280     PrintUsage(kArguments);
1281     return false;
1282   }
1283 
1284   std::string selected;
1285   if (args_map.count("-filter") != 0) {
1286     selected = args_map["-filter"];
1287   }
1288 
1289   if (args_map.count("-json") != 0) {
1290     g_print_json = true;
1291   }
1292 
1293   if (args_map.count("-timeout") != 0) {
1294     g_timeout_seconds = atoi(args_map["-timeout"].c_str());
1295   }
1296 
1297   if (args_map.count("-chunks") != 0) {
1298     g_chunk_lengths.clear();
1299     const char *start = args_map["-chunks"].data();
1300     const char *end = start + args_map["-chunks"].size();
1301     while (start != end) {
1302       errno = 0;
1303       char *ptr;
1304       unsigned long long val = strtoull(start, &ptr, 10);
1305       if (ptr == start /* no numeric characters found */ ||
1306           errno == ERANGE /* overflow */ ||
1307           static_cast<size_t>(val) != val) {
1308         fprintf(stderr, "Error parsing -chunks argument\n");
1309         return false;
1310       }
1311       g_chunk_lengths.push_back(static_cast<size_t>(val));
1312       start = ptr;
1313       if (start != end) {
1314         if (*start != ',') {
1315           fprintf(stderr, "Error parsing -chunks argument\n");
1316           return false;
1317         }
1318         start++;
1319       }
1320     }
1321   }
1322 
1323   // kTLSADLen is the number of bytes of additional data that TLS passes to
1324   // AEADs.
1325   static const size_t kTLSADLen = 13;
1326   // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
1327   // These are AEADs that weren't originally defined as AEADs, but which we use
1328   // via the AEAD interface. In order for that to work, they have some TLS
1329   // knowledge in them and construct a couple of the AD bytes internally.
1330   static const size_t kLegacyADLen = kTLSADLen - 2;
1331 
1332   if (g_print_json) {
1333     puts("[");
1334   }
1335   if (!SpeedRSA(selected) ||
1336       !SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
1337       !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
1338       !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
1339                  selected) ||
1340       !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
1341                  kLegacyADLen, selected) ||
1342       !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
1343                  kLegacyADLen, selected) ||
1344       !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
1345                  kLegacyADLen, selected) ||
1346       !SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
1347                      kLegacyADLen, selected) ||
1348       !SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
1349                      kLegacyADLen, selected) ||
1350       !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
1351                  selected) ||
1352       !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
1353                  selected) ||
1354       !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
1355                      selected) ||
1356       !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
1357                      selected) ||
1358       !SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth",
1359                  kTLSADLen, selected) ||
1360       !SpeedAESBlock("AES-128", 128, selected) ||
1361       !SpeedAESBlock("AES-256", 256, selected) ||
1362       !SpeedHash(EVP_sha1(), "SHA-1", selected) ||
1363       !SpeedHash(EVP_sha256(), "SHA-256", selected) ||
1364       !SpeedHash(EVP_sha512(), "SHA-512", selected) ||
1365       !SpeedHash(EVP_blake2b256(), "BLAKE2b-256", selected) ||
1366       !SpeedRandom(selected) ||
1367       !SpeedECDH(selected) ||
1368       !SpeedECDSA(selected) ||
1369       !Speed25519(selected) ||
1370       !SpeedSPAKE2(selected) ||
1371       !SpeedScrypt(selected) ||
1372       !SpeedRSAKeyGen(selected) ||
1373       !SpeedHRSS(selected) ||
1374       !SpeedHashToCurve(selected) ||
1375       !SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1,
1376                        selected) ||
1377       !SpeedTrustToken("TrustToken-Exp1-Batch10", TRUST_TOKEN_experiment_v1(),
1378                        10, selected) ||
1379       !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1",
1380                        TRUST_TOKEN_experiment_v2_voprf(), 1, selected) ||
1381       !SpeedTrustToken("TrustToken-Exp2VOPRF-Batch10",
1382                        TRUST_TOKEN_experiment_v2_voprf(), 10, selected) ||
1383       !SpeedTrustToken("TrustToken-Exp2PMB-Batch1",
1384                        TRUST_TOKEN_experiment_v2_pmb(), 1, selected) ||
1385       !SpeedTrustToken("TrustToken-Exp2PMB-Batch10",
1386                        TRUST_TOKEN_experiment_v2_pmb(), 10, selected)) {
1387     return false;
1388   }
1389 #if defined(BORINGSSL_FIPS)
1390   if (!SpeedSelfTest(selected)) {
1391     return false;
1392   }
1393 #endif
1394   if (g_print_json) {
1395     puts("\n]");
1396   }
1397 
1398   return true;
1399 }
1400