• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use crate::syntax::atom::Atom::{self, *};
2 use crate::syntax::report::Errors;
3 use crate::syntax::visit::{self, Visit};
4 use crate::syntax::{
5     error, ident, trivial, Api, Array, Enum, ExternFn, ExternType, Impl, Lang, Lifetimes,
6     NamedType, Ptr, Receiver, Ref, Signature, SliceRef, Struct, Trait, Ty1, Type, TypeAlias, Types,
7 };
8 use proc_macro2::{Delimiter, Group, Ident, TokenStream};
9 use quote::{quote, ToTokens};
10 use std::fmt::Display;
11 use syn::{GenericParam, Generics, Lifetime};
12 
13 pub(crate) struct Check<'a> {
14     apis: &'a [Api],
15     types: &'a Types<'a>,
16     errors: &'a mut Errors,
17     generator: Generator,
18 }
19 
20 pub(crate) enum Generator {
21     // cxx-build crate, cxxbridge cli, cxx-gen.
22     #[allow(dead_code)]
23     Build,
24     // cxxbridge-macro. This is relevant in that the macro output is going to
25     // get fed straight to rustc, so for errors that rustc already contains
26     // logic to catch (probably with a better diagnostic than what the proc
27     // macro API is able to produce), we avoid duplicating them in our own
28     // diagnostics.
29     #[allow(dead_code)]
30     Macro,
31 }
32 
typecheck(cx: &mut Errors, apis: &[Api], types: &Types, generator: Generator)33 pub(crate) fn typecheck(cx: &mut Errors, apis: &[Api], types: &Types, generator: Generator) {
34     do_typecheck(&mut Check {
35         apis,
36         types,
37         errors: cx,
38         generator,
39     });
40 }
41 
do_typecheck(cx: &mut Check)42 fn do_typecheck(cx: &mut Check) {
43     ident::check_all(cx, cx.apis);
44 
45     for ty in cx.types {
46         match ty {
47             Type::Ident(ident) => check_type_ident(cx, ident),
48             Type::RustBox(ptr) => check_type_box(cx, ptr),
49             Type::RustVec(ty) => check_type_rust_vec(cx, ty),
50             Type::UniquePtr(ptr) => check_type_unique_ptr(cx, ptr),
51             Type::SharedPtr(ptr) => check_type_shared_ptr(cx, ptr),
52             Type::WeakPtr(ptr) => check_type_weak_ptr(cx, ptr),
53             Type::CxxVector(ptr) => check_type_cxx_vector(cx, ptr),
54             Type::Ref(ty) => check_type_ref(cx, ty),
55             Type::Ptr(ty) => check_type_ptr(cx, ty),
56             Type::Array(array) => check_type_array(cx, array),
57             Type::Fn(ty) => check_type_fn(cx, ty),
58             Type::SliceRef(ty) => check_type_slice_ref(cx, ty),
59             Type::Str(_) | Type::Void(_) => {}
60         }
61     }
62 
63     for api in cx.apis {
64         match api {
65             Api::Include(_) => {}
66             Api::Struct(strct) => check_api_struct(cx, strct),
67             Api::Enum(enm) => check_api_enum(cx, enm),
68             Api::CxxType(ety) | Api::RustType(ety) => check_api_type(cx, ety),
69             Api::CxxFunction(efn) | Api::RustFunction(efn) => check_api_fn(cx, efn),
70             Api::TypeAlias(alias) => check_api_type_alias(cx, alias),
71             Api::Impl(imp) => check_api_impl(cx, imp),
72         }
73     }
74 }
75 
76 impl Check<'_> {
error(&mut self, sp: impl ToTokens, msg: impl Display)77     pub(crate) fn error(&mut self, sp: impl ToTokens, msg: impl Display) {
78         self.errors.error(sp, msg);
79     }
80 }
81 
check_type_ident(cx: &mut Check, name: &NamedType)82 fn check_type_ident(cx: &mut Check, name: &NamedType) {
83     let ident = &name.rust;
84     if Atom::from(ident).is_none()
85         && !cx.types.structs.contains_key(ident)
86         && !cx.types.enums.contains_key(ident)
87         && !cx.types.cxx.contains(ident)
88         && !cx.types.rust.contains(ident)
89     {
90         let msg = format!("unsupported type: {}", ident);
91         cx.error(ident, &msg);
92     }
93 }
94 
check_type_box(cx: &mut Check, ptr: &Ty1)95 fn check_type_box(cx: &mut Check, ptr: &Ty1) {
96     if let Type::Ident(ident) = &ptr.inner {
97         if cx.types.cxx.contains(&ident.rust)
98             && !cx.types.aliases.contains_key(&ident.rust)
99             && !cx.types.structs.contains_key(&ident.rust)
100             && !cx.types.enums.contains_key(&ident.rust)
101         {
102             cx.error(ptr, error::BOX_CXX_TYPE.msg);
103         }
104 
105         if Atom::from(&ident.rust).is_none() {
106             return;
107         }
108     }
109 
110     cx.error(ptr, "unsupported target type of Box");
111 }
112 
check_type_rust_vec(cx: &mut Check, ty: &Ty1)113 fn check_type_rust_vec(cx: &mut Check, ty: &Ty1) {
114     match &ty.inner {
115         Type::Ident(ident) => {
116             if cx.types.cxx.contains(&ident.rust)
117                 && !cx.types.aliases.contains_key(&ident.rust)
118                 && !cx.types.structs.contains_key(&ident.rust)
119                 && !cx.types.enums.contains_key(&ident.rust)
120             {
121                 cx.error(ty, "Rust Vec containing C++ type is not supported yet");
122                 return;
123             }
124 
125             match Atom::from(&ident.rust) {
126                 None | Some(Char) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
127                 | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
128                 | Some(F64) | Some(RustString) => return,
129                 Some(Bool) => { /* todo */ }
130                 Some(CxxString) => {}
131             }
132         }
133         Type::Str(_) => return,
134         _ => {}
135     }
136 
137     cx.error(ty, "unsupported element type of Vec");
138 }
139 
check_type_unique_ptr(cx: &mut Check, ptr: &Ty1)140 fn check_type_unique_ptr(cx: &mut Check, ptr: &Ty1) {
141     if let Type::Ident(ident) = &ptr.inner {
142         if cx.types.rust.contains(&ident.rust) {
143             cx.error(ptr, "unique_ptr of a Rust type is not supported yet");
144             return;
145         }
146 
147         match Atom::from(&ident.rust) {
148             None | Some(CxxString) => return,
149             _ => {}
150         }
151     } else if let Type::CxxVector(_) = &ptr.inner {
152         return;
153     }
154 
155     cx.error(ptr, "unsupported unique_ptr target type");
156 }
157 
check_type_shared_ptr(cx: &mut Check, ptr: &Ty1)158 fn check_type_shared_ptr(cx: &mut Check, ptr: &Ty1) {
159     if let Type::Ident(ident) = &ptr.inner {
160         if cx.types.rust.contains(&ident.rust) {
161             cx.error(ptr, "shared_ptr of a Rust type is not supported yet");
162             return;
163         }
164 
165         match Atom::from(&ident.rust) {
166             None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
167             | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
168             | Some(F64) | Some(CxxString) => return,
169             Some(Char) | Some(RustString) => {}
170         }
171     } else if let Type::CxxVector(_) = &ptr.inner {
172         cx.error(ptr, "std::shared_ptr<std::vector> is not supported yet");
173         return;
174     }
175 
176     cx.error(ptr, "unsupported shared_ptr target type");
177 }
178 
check_type_weak_ptr(cx: &mut Check, ptr: &Ty1)179 fn check_type_weak_ptr(cx: &mut Check, ptr: &Ty1) {
180     if let Type::Ident(ident) = &ptr.inner {
181         if cx.types.rust.contains(&ident.rust) {
182             cx.error(ptr, "weak_ptr of a Rust type is not supported yet");
183             return;
184         }
185 
186         match Atom::from(&ident.rust) {
187             None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
188             | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
189             | Some(F64) | Some(CxxString) => return,
190             Some(Char) | Some(RustString) => {}
191         }
192     } else if let Type::CxxVector(_) = &ptr.inner {
193         cx.error(ptr, "std::weak_ptr<std::vector> is not supported yet");
194         return;
195     }
196 
197     cx.error(ptr, "unsupported weak_ptr target type");
198 }
199 
check_type_cxx_vector(cx: &mut Check, ptr: &Ty1)200 fn check_type_cxx_vector(cx: &mut Check, ptr: &Ty1) {
201     if let Type::Ident(ident) = &ptr.inner {
202         if cx.types.rust.contains(&ident.rust) {
203             cx.error(
204                 ptr,
205                 "C++ vector containing a Rust type is not supported yet",
206             );
207             return;
208         }
209 
210         match Atom::from(&ident.rust) {
211             None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8)
212             | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64)
213             | Some(CxxString) => return,
214             Some(Char) => { /* todo */ }
215             Some(Bool) | Some(RustString) => {}
216         }
217     }
218 
219     cx.error(ptr, "unsupported vector element type");
220 }
221 
check_type_ref(cx: &mut Check, ty: &Ref)222 fn check_type_ref(cx: &mut Check, ty: &Ref) {
223     if ty.mutable && !ty.pinned {
224         if let Some(requires_pin) = match &ty.inner {
225             Type::Ident(ident) if ident.rust == CxxString || is_opaque_cxx(cx, &ident.rust) => {
226                 Some(ident.rust.to_string())
227             }
228             Type::CxxVector(_) => Some("CxxVector<...>".to_owned()),
229             _ => None,
230         } {
231             cx.error(
232                 ty,
233                 format!(
234                     "mutable reference to C++ type requires a pin -- use Pin<&mut {}>",
235                     requires_pin,
236                 ),
237             );
238         }
239     }
240 
241     match ty.inner {
242         Type::Fn(_) | Type::Void(_) => {}
243         Type::Ref(_) => {
244             cx.error(ty, "C++ does not allow references to references");
245             return;
246         }
247         _ => return,
248     }
249 
250     cx.error(ty, "unsupported reference type");
251 }
252 
check_type_ptr(cx: &mut Check, ty: &Ptr)253 fn check_type_ptr(cx: &mut Check, ty: &Ptr) {
254     match ty.inner {
255         Type::Fn(_) | Type::Void(_) => {}
256         Type::Ref(_) => {
257             cx.error(ty, "C++ does not allow pointer to reference as a type");
258             return;
259         }
260         _ => return,
261     }
262 
263     cx.error(ty, "unsupported pointer type");
264 }
265 
check_type_slice_ref(cx: &mut Check, ty: &SliceRef)266 fn check_type_slice_ref(cx: &mut Check, ty: &SliceRef) {
267     let supported = !is_unsized(cx, &ty.inner)
268         || match &ty.inner {
269             Type::Ident(ident) => {
270                 cx.types.rust.contains(&ident.rust) || cx.types.aliases.contains_key(&ident.rust)
271             }
272             _ => false,
273         };
274 
275     if !supported {
276         let mutable = if ty.mutable { "mut " } else { "" };
277         let mut msg = format!("unsupported &{}[T] element type", mutable);
278         if let Type::Ident(ident) = &ty.inner {
279             if is_opaque_cxx(cx, &ident.rust) {
280                 msg += ": opaque C++ type is not supported yet";
281             }
282         }
283         cx.error(ty, msg);
284     }
285 }
286 
check_type_array(cx: &mut Check, ty: &Array)287 fn check_type_array(cx: &mut Check, ty: &Array) {
288     let supported = !is_unsized(cx, &ty.inner);
289 
290     if !supported {
291         cx.error(ty, "unsupported array element type");
292     }
293 }
294 
check_type_fn(cx: &mut Check, ty: &Signature)295 fn check_type_fn(cx: &mut Check, ty: &Signature) {
296     if ty.throws {
297         cx.error(ty, "function pointer returning Result is not supported yet");
298     }
299 
300     for arg in &ty.args {
301         if let Type::Ptr(_) = arg.ty {
302             if ty.unsafety.is_none() {
303                 cx.error(
304                     arg,
305                     "pointer argument requires that the function pointer be marked unsafe",
306                 );
307             }
308         }
309     }
310 }
311 
check_api_struct(cx: &mut Check, strct: &Struct)312 fn check_api_struct(cx: &mut Check, strct: &Struct) {
313     let name = &strct.name;
314     check_reserved_name(cx, &name.rust);
315     check_lifetimes(cx, &strct.generics);
316 
317     if strct.fields.is_empty() {
318         let span = span_for_struct_error(strct);
319         cx.error(span, "structs without any fields are not supported");
320     }
321 
322     if cx.types.cxx.contains(&name.rust) {
323         if let Some(ety) = cx.types.untrusted.get(&name.rust) {
324             let msg = "extern shared struct must be declared in an `unsafe extern` block";
325             cx.error(ety, msg);
326         }
327     }
328 
329     for derive in &strct.derives {
330         if derive.what == Trait::ExternType {
331             let msg = format!("derive({}) on shared struct is not supported", derive);
332             cx.error(derive, msg);
333         }
334     }
335 
336     for field in &strct.fields {
337         if let Type::Fn(_) = field.ty {
338             cx.error(
339                 field,
340                 "function pointers in a struct field are not implemented yet",
341             );
342         } else if is_unsized(cx, &field.ty) {
343             let desc = describe(cx, &field.ty);
344             let msg = format!("using {} by value is not supported", desc);
345             cx.error(field, msg);
346         }
347     }
348 }
349 
check_api_enum(cx: &mut Check, enm: &Enum)350 fn check_api_enum(cx: &mut Check, enm: &Enum) {
351     check_reserved_name(cx, &enm.name.rust);
352     check_lifetimes(cx, &enm.generics);
353 
354     if enm.variants.is_empty() && !enm.explicit_repr && !enm.variants_from_header {
355         let span = span_for_enum_error(enm);
356         cx.error(
357             span,
358             "explicit #[repr(...)] is required for enum without any variants",
359         );
360     }
361 
362     for derive in &enm.derives {
363         if derive.what == Trait::Default || derive.what == Trait::ExternType {
364             let msg = format!("derive({}) on shared enum is not supported", derive);
365             cx.error(derive, msg);
366         }
367     }
368 }
369 
check_api_type(cx: &mut Check, ety: &ExternType)370 fn check_api_type(cx: &mut Check, ety: &ExternType) {
371     check_reserved_name(cx, &ety.name.rust);
372     check_lifetimes(cx, &ety.generics);
373 
374     for derive in &ety.derives {
375         if derive.what == Trait::ExternType && ety.lang == Lang::Rust {
376             continue;
377         }
378         let lang = match ety.lang {
379             Lang::Rust => "Rust",
380             Lang::Cxx => "C++",
381         };
382         let msg = format!(
383             "derive({}) on opaque {} type is not supported yet",
384             derive, lang,
385         );
386         cx.error(derive, msg);
387     }
388 
389     if !ety.bounds.is_empty() {
390         let bounds = &ety.bounds;
391         let span = quote!(#(#bounds)*);
392         cx.error(span, "extern type bounds are not implemented yet");
393     }
394 
395     if let Some(reasons) = cx.types.required_trivial.get(&ety.name.rust) {
396         let msg = format!(
397             "needs a cxx::ExternType impl in order to be used as {}",
398             trivial::as_what(&ety.name, reasons),
399         );
400         cx.error(ety, msg);
401     }
402 }
403 
check_api_fn(cx: &mut Check, efn: &ExternFn)404 fn check_api_fn(cx: &mut Check, efn: &ExternFn) {
405     match efn.lang {
406         Lang::Cxx => {
407             if !efn.generics.params.is_empty() && !efn.trusted {
408                 let ref span = span_for_generics_error(efn);
409                 cx.error(span, "extern C++ function with lifetimes must be declared in `unsafe extern \"C++\"` block");
410             }
411         }
412         Lang::Rust => {
413             if !efn.generics.params.is_empty() && efn.unsafety.is_none() {
414                 let ref span = span_for_generics_error(efn);
415                 let message = format!(
416                     "must be `unsafe fn {}` in order to expose explicit lifetimes to C++",
417                     efn.name.rust,
418                 );
419                 cx.error(span, message);
420             }
421         }
422     }
423 
424     check_generics(cx, &efn.sig.generics);
425 
426     if let Some(receiver) = &efn.receiver {
427         let ref span = span_for_receiver_error(receiver);
428 
429         if receiver.ty.rust == "Self" {
430             let mutability = match receiver.mutable {
431                 true => "mut ",
432                 false => "",
433             };
434             let msg = format!(
435                 "unnamed receiver type is only allowed if the surrounding extern block contains exactly one extern type; use `self: &{mutability}TheType`",
436                 mutability = mutability,
437             );
438             cx.error(span, msg);
439         } else if cx.types.enums.contains_key(&receiver.ty.rust) {
440             cx.error(
441                 span,
442                 "unsupported receiver type; C++ does not allow member functions on enums",
443             );
444         } else if !cx.types.structs.contains_key(&receiver.ty.rust)
445             && !cx.types.cxx.contains(&receiver.ty.rust)
446             && !cx.types.rust.contains(&receiver.ty.rust)
447         {
448             cx.error(span, "unrecognized receiver type");
449         } else if receiver.mutable && !receiver.pinned && is_opaque_cxx(cx, &receiver.ty.rust) {
450             cx.error(
451                 span,
452                 format!(
453                     "mutable reference to opaque C++ type requires a pin -- use `self: Pin<&mut {}>`",
454                     receiver.ty.rust,
455                 ),
456             );
457         }
458     }
459 
460     for arg in &efn.args {
461         if let Type::Fn(_) = arg.ty {
462             if efn.lang == Lang::Rust {
463                 cx.error(
464                     arg,
465                     "passing a function pointer from C++ to Rust is not implemented yet",
466                 );
467             }
468         } else if let Type::Ptr(_) = arg.ty {
469             if efn.sig.unsafety.is_none() {
470                 cx.error(
471                     arg,
472                     "pointer argument requires that the function be marked unsafe",
473                 );
474             }
475         } else if is_unsized(cx, &arg.ty) {
476             let desc = describe(cx, &arg.ty);
477             let msg = format!("passing {} by value is not supported", desc);
478             cx.error(arg, msg);
479         }
480     }
481 
482     if let Some(ty) = &efn.ret {
483         if let Type::Fn(_) = ty {
484             cx.error(ty, "returning a function pointer is not implemented yet");
485         } else if is_unsized(cx, ty) {
486             let desc = describe(cx, ty);
487             let msg = format!("returning {} by value is not supported", desc);
488             cx.error(ty, msg);
489         }
490     }
491 
492     if efn.lang == Lang::Cxx {
493         check_mut_return_restriction(cx, efn);
494     }
495 }
496 
check_api_type_alias(cx: &mut Check, alias: &TypeAlias)497 fn check_api_type_alias(cx: &mut Check, alias: &TypeAlias) {
498     check_lifetimes(cx, &alias.generics);
499 
500     for derive in &alias.derives {
501         let msg = format!("derive({}) on extern type alias is not supported", derive);
502         cx.error(derive, msg);
503     }
504 }
505 
check_api_impl(cx: &mut Check, imp: &Impl)506 fn check_api_impl(cx: &mut Check, imp: &Impl) {
507     let ty = &imp.ty;
508 
509     check_lifetimes(cx, &imp.impl_generics);
510 
511     if let Some(negative) = imp.negative_token {
512         let span = quote!(#negative #ty);
513         cx.error(span, "negative impl is not supported yet");
514         return;
515     }
516 
517     match ty {
518         Type::RustBox(ty)
519         | Type::RustVec(ty)
520         | Type::UniquePtr(ty)
521         | Type::SharedPtr(ty)
522         | Type::WeakPtr(ty)
523         | Type::CxxVector(ty) => {
524             if let Type::Ident(inner) = &ty.inner {
525                 if Atom::from(&inner.rust).is_none() {
526                     return;
527                 }
528             }
529         }
530         _ => {}
531     }
532 
533     cx.error(imp, "unsupported Self type of explicit impl");
534 }
535 
check_mut_return_restriction(cx: &mut Check, efn: &ExternFn)536 fn check_mut_return_restriction(cx: &mut Check, efn: &ExternFn) {
537     if efn.sig.unsafety.is_some() {
538         // Unrestricted as long as the function is made unsafe-to-call.
539         return;
540     }
541 
542     match &efn.ret {
543         Some(Type::Ref(ty)) if ty.mutable => {}
544         Some(Type::SliceRef(slice)) if slice.mutable => {}
545         _ => return,
546     }
547 
548     if let Some(receiver) = &efn.receiver {
549         if receiver.mutable {
550             return;
551         }
552         let resolve = match cx.types.try_resolve(&receiver.ty) {
553             Some(resolve) => resolve,
554             None => return,
555         };
556         if !resolve.generics.lifetimes.is_empty() {
557             return;
558         }
559     }
560 
561     struct FindLifetimeMut<'a> {
562         cx: &'a Check<'a>,
563         found: bool,
564     }
565 
566     impl<'t, 'a> Visit<'t> for FindLifetimeMut<'a> {
567         fn visit_type(&mut self, ty: &'t Type) {
568             self.found |= match ty {
569                 Type::Ref(ty) => ty.mutable,
570                 Type::SliceRef(slice) => slice.mutable,
571                 Type::Ident(ident) if Atom::from(&ident.rust).is_none() => {
572                     match self.cx.types.try_resolve(ident) {
573                         Some(resolve) => !resolve.generics.lifetimes.is_empty(),
574                         None => true,
575                     }
576                 }
577                 _ => false,
578             };
579             visit::visit_type(self, ty);
580         }
581     }
582 
583     let mut visitor = FindLifetimeMut { cx, found: false };
584 
585     for arg in &efn.args {
586         visitor.visit_type(&arg.ty);
587     }
588 
589     if visitor.found {
590         return;
591     }
592 
593     cx.error(
594         efn,
595         "&mut return type is not allowed unless there is a &mut argument",
596     );
597 }
598 
check_reserved_name(cx: &mut Check, ident: &Ident)599 fn check_reserved_name(cx: &mut Check, ident: &Ident) {
600     if ident == "Box"
601         || ident == "UniquePtr"
602         || ident == "SharedPtr"
603         || ident == "WeakPtr"
604         || ident == "Vec"
605         || ident == "CxxVector"
606         || ident == "str"
607         || Atom::from(ident).is_some()
608     {
609         cx.error(ident, "reserved name");
610     }
611 }
612 
check_reserved_lifetime(cx: &mut Check, lifetime: &Lifetime)613 fn check_reserved_lifetime(cx: &mut Check, lifetime: &Lifetime) {
614     if lifetime.ident == "static" {
615         match cx.generator {
616             Generator::Macro => { /* rustc already reports this */ }
617             Generator::Build => {
618                 cx.error(lifetime, error::RESERVED_LIFETIME);
619             }
620         }
621     }
622 }
623 
check_lifetimes(cx: &mut Check, generics: &Lifetimes)624 fn check_lifetimes(cx: &mut Check, generics: &Lifetimes) {
625     for lifetime in &generics.lifetimes {
626         check_reserved_lifetime(cx, lifetime);
627     }
628 }
629 
check_generics(cx: &mut Check, generics: &Generics)630 fn check_generics(cx: &mut Check, generics: &Generics) {
631     for generic_param in &generics.params {
632         if let GenericParam::Lifetime(def) = generic_param {
633             check_reserved_lifetime(cx, &def.lifetime);
634         }
635     }
636 }
637 
is_unsized(cx: &mut Check, ty: &Type) -> bool638 fn is_unsized(cx: &mut Check, ty: &Type) -> bool {
639     match ty {
640         Type::Ident(ident) => {
641             let ident = &ident.rust;
642             ident == CxxString || is_opaque_cxx(cx, ident) || cx.types.rust.contains(ident)
643         }
644         Type::Array(array) => is_unsized(cx, &array.inner),
645         Type::CxxVector(_) | Type::Fn(_) | Type::Void(_) => true,
646         Type::RustBox(_)
647         | Type::RustVec(_)
648         | Type::UniquePtr(_)
649         | Type::SharedPtr(_)
650         | Type::WeakPtr(_)
651         | Type::Ref(_)
652         | Type::Ptr(_)
653         | Type::Str(_)
654         | Type::SliceRef(_) => false,
655     }
656 }
657 
is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool658 fn is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool {
659     cx.types.cxx.contains(ty)
660         && !cx.types.structs.contains_key(ty)
661         && !cx.types.enums.contains_key(ty)
662         && !(cx.types.aliases.contains_key(ty) && cx.types.required_trivial.contains_key(ty))
663 }
664 
span_for_struct_error(strct: &Struct) -> TokenStream665 fn span_for_struct_error(strct: &Struct) -> TokenStream {
666     let struct_token = strct.struct_token;
667     let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
668     brace_token.set_span(strct.brace_token.span);
669     quote!(#struct_token #brace_token)
670 }
671 
span_for_enum_error(enm: &Enum) -> TokenStream672 fn span_for_enum_error(enm: &Enum) -> TokenStream {
673     let enum_token = enm.enum_token;
674     let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
675     brace_token.set_span(enm.brace_token.span);
676     quote!(#enum_token #brace_token)
677 }
678 
span_for_receiver_error(receiver: &Receiver) -> TokenStream679 fn span_for_receiver_error(receiver: &Receiver) -> TokenStream {
680     let ampersand = receiver.ampersand;
681     let lifetime = &receiver.lifetime;
682     let mutability = receiver.mutability;
683     if receiver.shorthand {
684         let var = receiver.var;
685         quote!(#ampersand #lifetime #mutability #var)
686     } else {
687         let ty = &receiver.ty;
688         quote!(#ampersand #lifetime #mutability #ty)
689     }
690 }
691 
span_for_generics_error(efn: &ExternFn) -> TokenStream692 fn span_for_generics_error(efn: &ExternFn) -> TokenStream {
693     let unsafety = efn.unsafety;
694     let fn_token = efn.fn_token;
695     let generics = &efn.generics;
696     quote!(#unsafety #fn_token #generics)
697 }
698 
describe(cx: &mut Check, ty: &Type) -> String699 fn describe(cx: &mut Check, ty: &Type) -> String {
700     match ty {
701         Type::Ident(ident) => {
702             if cx.types.structs.contains_key(&ident.rust) {
703                 "struct".to_owned()
704             } else if cx.types.enums.contains_key(&ident.rust) {
705                 "enum".to_owned()
706             } else if cx.types.aliases.contains_key(&ident.rust) {
707                 "C++ type".to_owned()
708             } else if cx.types.cxx.contains(&ident.rust) {
709                 "opaque C++ type".to_owned()
710             } else if cx.types.rust.contains(&ident.rust) {
711                 "opaque Rust type".to_owned()
712             } else if Atom::from(&ident.rust) == Some(CxxString) {
713                 "C++ string".to_owned()
714             } else if Atom::from(&ident.rust) == Some(Char) {
715                 "C char".to_owned()
716             } else {
717                 ident.rust.to_string()
718             }
719         }
720         Type::RustBox(_) => "Box".to_owned(),
721         Type::RustVec(_) => "Vec".to_owned(),
722         Type::UniquePtr(_) => "unique_ptr".to_owned(),
723         Type::SharedPtr(_) => "shared_ptr".to_owned(),
724         Type::WeakPtr(_) => "weak_ptr".to_owned(),
725         Type::Ref(_) => "reference".to_owned(),
726         Type::Ptr(_) => "raw pointer".to_owned(),
727         Type::Str(_) => "&str".to_owned(),
728         Type::CxxVector(_) => "C++ vector".to_owned(),
729         Type::SliceRef(_) => "slice".to_owned(),
730         Type::Fn(_) => "function pointer".to_owned(),
731         Type::Void(_) => "()".to_owned(),
732         Type::Array(_) => "array".to_owned(),
733     }
734 }
735