• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/geometry/GrTriangulator.h"
9 
10 #include "src/gpu/BufferWriter.h"
11 #include "src/gpu/GrEagerVertexAllocator.h"
12 #include "src/gpu/geometry/GrPathUtils.h"
13 
14 #include "src/core/SkGeometry.h"
15 #include "src/core/SkPointPriv.h"
16 
17 #include <algorithm>
18 
19 
20 #if TRIANGULATOR_LOGGING
21 #define TESS_LOG printf
22 #define DUMP_MESH(M) (M).dump()
23 #else
24 #define TESS_LOG(...)
25 #define DUMP_MESH(M)
26 #endif
27 
28 using EdgeType = GrTriangulator::EdgeType;
29 using Vertex = GrTriangulator::Vertex;
30 using VertexList = GrTriangulator::VertexList;
31 using Line = GrTriangulator::Line;
32 using Edge = GrTriangulator::Edge;
33 using EdgeList = GrTriangulator::EdgeList;
34 using Poly = GrTriangulator::Poly;
35 using MonotonePoly = GrTriangulator::MonotonePoly;
36 using Comparator = GrTriangulator::Comparator;
37 
38 template <class T, T* T::*Prev, T* T::*Next>
list_insert(T * t,T * prev,T * next,T ** head,T ** tail)39 static void list_insert(T* t, T* prev, T* next, T** head, T** tail) {
40     t->*Prev = prev;
41     t->*Next = next;
42     if (prev) {
43         prev->*Next = t;
44     } else if (head) {
45         *head = t;
46     }
47     if (next) {
48         next->*Prev = t;
49     } else if (tail) {
50         *tail = t;
51     }
52 }
53 
54 template <class T, T* T::*Prev, T* T::*Next>
list_remove(T * t,T ** head,T ** tail)55 static void list_remove(T* t, T** head, T** tail) {
56     if (t->*Prev) {
57         t->*Prev->*Next = t->*Next;
58     } else if (head) {
59         *head = t->*Next;
60     }
61     if (t->*Next) {
62         t->*Next->*Prev = t->*Prev;
63     } else if (tail) {
64         *tail = t->*Prev;
65     }
66     t->*Prev = t->*Next = nullptr;
67 }
68 
69 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
70 
sweep_lt_horiz(const SkPoint & a,const SkPoint & b)71 static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) {
72     return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY);
73 }
74 
sweep_lt_vert(const SkPoint & a,const SkPoint & b)75 static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) {
76     return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX);
77 }
78 
sweep_lt(const SkPoint & a,const SkPoint & b) const79 bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const {
80     return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b);
81 }
82 
emit_vertex(Vertex * v,bool emitCoverage,skgpu::VertexWriter data)83 static inline skgpu::VertexWriter emit_vertex(Vertex* v,
84                                               bool emitCoverage,
85                                               skgpu::VertexWriter data) {
86     data << v->fPoint;
87 
88     if (emitCoverage) {
89         data << GrNormalizeByteToFloat(v->fAlpha);
90     }
91 
92     return data;
93 }
94 
emit_triangle(Vertex * v0,Vertex * v1,Vertex * v2,bool emitCoverage,skgpu::VertexWriter data)95 static skgpu::VertexWriter emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2,
96                                          bool emitCoverage, skgpu::VertexWriter data) {
97     TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha);
98     TESS_LOG("              %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha);
99     TESS_LOG("              %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha);
100 #if TESSELLATOR_WIREFRAME
101     data = emit_vertex(v0, emitCoverage, std::move(data));
102     data = emit_vertex(v1, emitCoverage, std::move(data));
103     data = emit_vertex(v1, emitCoverage, std::move(data));
104     data = emit_vertex(v2, emitCoverage, std::move(data));
105     data = emit_vertex(v2, emitCoverage, std::move(data));
106     data = emit_vertex(v0, emitCoverage, std::move(data));
107 #else
108     data = emit_vertex(v0, emitCoverage, std::move(data));
109     data = emit_vertex(v1, emitCoverage, std::move(data));
110     data = emit_vertex(v2, emitCoverage, std::move(data));
111 #endif
112     return data;
113 }
114 
insert(Vertex * v,Vertex * prev,Vertex * next)115 void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) {
116     list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail);
117 }
118 
remove(Vertex * v)119 void GrTriangulator::VertexList::remove(Vertex* v) {
120     list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail);
121 }
122 
123 // Round to nearest quarter-pixel. This is used for screenspace tessellation.
124 
round(SkPoint * p)125 static inline void round(SkPoint* p) {
126     p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
127     p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f);
128 }
129 
double_to_clamped_scalar(double d)130 static inline SkScalar double_to_clamped_scalar(double d) {
131     // Clamps large values to what's finitely representable when cast back to a float.
132     static const double kMaxLimit = (double) SK_ScalarMax;
133     // It's not perfect, but a using a value larger than float_min helps protect from denormalized
134     // values and ill-conditions in intermediate calculations on coordinates.
135     static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min();
136     if (std::abs(d) < kNearZeroLimit) {
137         d = 0.f;
138     }
139     return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit)));
140 }
141 
intersect(const Line & other,SkPoint * point) const142 bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const {
143     double denom = fA * other.fB - fB * other.fA;
144     if (denom == 0.0) {
145         return false;
146     }
147     double scale = 1.0 / denom;
148     point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale);
149     point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale);
150      round(point);
151     return point->isFinite();
152 }
153 
154 // If the edge's vertices differ by many orders of magnitude, the computed line equation can have
155 // significant error in its distance and intersection tests. To avoid this, we recursively subdivide
156 // long edges and effectively perform a binary search to perform a more accurate intersection test.
edge_line_needs_recursion(const SkPoint & p0,const SkPoint & p1)157 static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) {
158     // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate
159     // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with
160     // very large coordinates.
161     int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) -
162                             (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX)));
163     int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) -
164                             (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY)));
165     // Differ by more than 2^20, or roughly a factor of one million.
166     return expDiffX > 20 || expDiffY > 20;
167 }
168 
recursive_edge_intersect(const Line & u,SkPoint u0,SkPoint u1,const Line & v,SkPoint v0,SkPoint v1,SkPoint * p,double * s,double * t)169 static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1,
170                                      const Line& v, SkPoint v0, SkPoint v1,
171                                      SkPoint* p, double* s, double* t) {
172     // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the
173     // two line segments cannot intersect in their domain (even if the lines themselves might).
174     // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines
175     //   appear as empty rects, which then never "intersect" according to SkRect.
176     if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) ||
177         std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) ||
178         std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) ||
179         std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) {
180         return false;
181     }
182 
183     // Compute intersection based on current segment vertices; if an intersection is found but the
184     // vertices differ too much in magnitude, we recurse using the midpoint of the segment to
185     // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude
186     // line reports no intersection but there is one).
187     double denom = u.fA * v.fB - u.fB * v.fA;
188     if (denom == 0.0) {
189         return false;
190     }
191     double dx = static_cast<double>(v0.fX) - u0.fX;
192     double dy = static_cast<double>(v0.fY) - u0.fY;
193     double sNumer = dy * v.fB + dx * v.fA;
194     double tNumer = dy * u.fB + dx * u.fA;
195     // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
196     // This saves us doing the divide below unless absolutely necessary.
197     if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
198                     : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
199         return false;
200     }
201 
202     *s = sNumer / denom;
203     *t = tNumer / denom;
204     SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0);
205 
206     const bool uNeedsSplit = edge_line_needs_recursion(u0, u1);
207     const bool vNeedsSplit = edge_line_needs_recursion(v0, v1);
208     if (!uNeedsSplit && !vNeedsSplit) {
209         p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB);
210         p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA);
211         return true;
212     } else {
213         double sScale = 1.0, sShift = 0.0;
214         double tScale = 1.0, tShift = 0.0;
215 
216         if (uNeedsSplit) {
217             SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX),
218                           (float) (0.5 * u0.fY + 0.5 * u1.fY)};
219             sScale = 0.5;
220             if (*s >= 0.5) {
221                 u0 = uM;
222                 sShift = 0.5;
223             } else {
224                 u1 = uM;
225             }
226         }
227         if (vNeedsSplit) {
228             SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX),
229                           (float) (0.5 * v0.fY + 0.5 * v1.fY)};
230             tScale = 0.5;
231             if (*t >= 0.5) {
232                 v0 = vM;
233                 tShift = 0.5;
234             } else {
235                 v1 = vM;
236             }
237         }
238 
239         // Just recompute both lines, even if only one was split; we're already in a slow path.
240         if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) {
241             // Adjust s and t back to full range
242             *s = sScale * (*s) + sShift;
243             *t = tScale * (*t) + tShift;
244             return true;
245         } else {
246             // False positive
247             return false;
248         }
249     }
250 }
251 
intersect(const Edge & other,SkPoint * p,uint8_t * alpha) const252 bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const {
253     TESS_LOG("intersecting %g -> %g with %g -> %g\n",
254              fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID);
255     if (fTop == other.fTop || fBottom == other.fBottom ||
256         fTop == other.fBottom || fBottom == other.fTop) {
257         // If the two edges share a vertex by construction, they have already been split and
258         // shouldn't be considered "intersecting" anymore.
259         return false;
260     }
261 
262     double s, t; // needed to interpolate vertex alpha
263     const bool intersects = recursive_edge_intersect(
264             fLine, fTop->fPoint, fBottom->fPoint,
265             other.fLine, other.fTop->fPoint, other.fBottom->fPoint,
266             p, &s, &t);
267     if (!intersects) {
268         return false;
269     }
270 
271     if (alpha) {
272         if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) {
273             // If the intersection is on any interior edge, it needs to stay fully opaque or later
274             // triangulation could leech transparency into the inner fill region.
275             *alpha = 255;
276         } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) {
277             // Trivially, the intersection will be fully transparent since since it is by
278             // construction on the outer edge.
279             *alpha = 0;
280         } else {
281             // Could be two connectors crossing, or a connector crossing an outer edge.
282             // Take the max interpolated alpha
283             SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector);
284             *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha,
285                               (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha);
286         }
287     }
288     return true;
289 }
290 
insert(Edge * edge,Edge * prev,Edge * next)291 void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) {
292     list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail);
293 }
294 
remove(Edge * edge)295 void GrTriangulator::EdgeList::remove(Edge* edge) {
296     TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
297     SkASSERT(this->contains(edge));
298     list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail);
299 }
300 
addEdge(Edge * edge)301 void GrTriangulator::MonotonePoly::addEdge(Edge* edge) {
302     if (fSide == kRight_Side) {
303         SkASSERT(!edge->fUsedInRightPoly);
304         list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>(
305             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
306         edge->fUsedInRightPoly = true;
307     } else {
308         SkASSERT(!edge->fUsedInLeftPoly);
309         list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>(
310             edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge);
311         edge->fUsedInLeftPoly = true;
312     }
313 }
314 
emitMonotonePoly(const MonotonePoly * monotonePoly,skgpu::VertexWriter data) const315 skgpu::VertexWriter GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly,
316                                                      skgpu::VertexWriter data) const {
317     SkASSERT(monotonePoly->fWinding != 0);
318     Edge* e = monotonePoly->fFirstEdge;
319     VertexList vertices;
320     vertices.append(e->fTop);
321     int count = 1;
322     while (e != nullptr) {
323         if (kRight_Side == monotonePoly->fSide) {
324             vertices.append(e->fBottom);
325             e = e->fRightPolyNext;
326         } else {
327             vertices.prepend(e->fBottom);
328             e = e->fLeftPolyNext;
329         }
330         count++;
331     }
332     Vertex* first = vertices.fHead;
333     Vertex* v = first->fNext;
334     while (v != vertices.fTail) {
335         SkASSERT(v && v->fPrev && v->fNext);
336         Vertex* prev = v->fPrev;
337         Vertex* curr = v;
338         Vertex* next = v->fNext;
339         if (count == 3) {
340             return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
341         }
342         double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
343         double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
344         double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
345         double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY;
346         if (ax * by - ay * bx >= 0.0) {
347             data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, std::move(data));
348             v->fPrev->fNext = v->fNext;
349             v->fNext->fPrev = v->fPrev;
350             count--;
351             if (v->fPrev == first) {
352                 v = v->fNext;
353             } else {
354                 v = v->fPrev;
355             }
356         } else {
357             v = v->fNext;
358         }
359     }
360     return data;
361 }
362 
emitTriangle(Vertex * prev,Vertex * curr,Vertex * next,int winding,skgpu::VertexWriter data) const363 skgpu::VertexWriter GrTriangulator::emitTriangle(
364         Vertex* prev, Vertex* curr, Vertex* next, int winding, skgpu::VertexWriter data) const {
365     if (winding > 0) {
366         // Ensure our triangles always wind in the same direction as if the path had been
367         // triangulated as a simple fan (a la red book).
368         std::swap(prev, next);
369     }
370     if (fCollectBreadcrumbTriangles && abs(winding) > 1 &&
371         fPath.getFillType() == SkPathFillType::kWinding) {
372         // The first winding count will come from the actual triangle we emit. The remaining counts
373         // come from the breadcrumb triangle.
374         fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1);
375     }
376     return emit_triangle(prev, curr, next, fEmitCoverage, std::move(data));
377 }
378 
Poly(Vertex * v,int winding)379 GrTriangulator::Poly::Poly(Vertex* v, int winding)
380         : fFirstVertex(v)
381         , fWinding(winding)
382         , fHead(nullptr)
383         , fTail(nullptr)
384         , fNext(nullptr)
385         , fPartner(nullptr)
386         , fCount(0)
387 {
388 #if TRIANGULATOR_LOGGING
389     static int gID = 0;
390     fID = gID++;
391     TESS_LOG("*** created Poly %d\n", fID);
392 #endif
393 }
394 
addEdge(Edge * e,Side side,GrTriangulator * tri)395 Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, GrTriangulator* tri) {
396     TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n",
397              e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right");
398     Poly* partner = fPartner;
399     Poly* poly = this;
400     if (side == kRight_Side) {
401         if (e->fUsedInRightPoly) {
402             return this;
403         }
404     } else {
405         if (e->fUsedInLeftPoly) {
406             return this;
407         }
408     }
409     if (partner) {
410         fPartner = partner->fPartner = nullptr;
411     }
412     if (!fTail) {
413         fHead = fTail = tri->allocateMonotonePoly(e, side, fWinding);
414         fCount += 2;
415     } else if (e->fBottom == fTail->fLastEdge->fBottom) {
416         return poly;
417     } else if (side == fTail->fSide) {
418         fTail->addEdge(e);
419         fCount++;
420     } else {
421         e = tri->allocateEdge(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner);
422         fTail->addEdge(e);
423         fCount++;
424         if (partner) {
425             partner->addEdge(e, side, tri);
426             poly = partner;
427         } else {
428             MonotonePoly* m = tri->allocateMonotonePoly(e, side, fWinding);
429             m->fPrev = fTail;
430             fTail->fNext = m;
431             fTail = m;
432         }
433     }
434     return poly;
435 }
emitPoly(const Poly * poly,skgpu::VertexWriter data) const436 skgpu::VertexWriter GrTriangulator::emitPoly(const Poly* poly, skgpu::VertexWriter data) const {
437     if (poly->fCount < 3) {
438         return data;
439     }
440     TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount);
441     for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) {
442         data = this->emitMonotonePoly(m, std::move(data));
443     }
444     return data;
445 }
446 
coincident(const SkPoint & a,const SkPoint & b)447 static bool coincident(const SkPoint& a, const SkPoint& b) {
448     return a == b;
449 }
450 
makePoly(Poly ** head,Vertex * v,int winding) const451 Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const {
452     Poly* poly = fAlloc->make<Poly>(v, winding);
453     poly->fNext = *head;
454     *head = poly;
455     return poly;
456 }
457 
appendPointToContour(const SkPoint & p,VertexList * contour) const458 void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const {
459     Vertex* v = fAlloc->make<Vertex>(p, 255);
460 #if TRIANGULATOR_LOGGING
461     static float gID = 0.0f;
462     v->fID = gID++;
463 #endif
464     contour->append(v);
465 }
466 
quad_error_at(const SkPoint pts[3],SkScalar t,SkScalar u)467 static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) {
468     SkQuadCoeff quad(pts);
469     SkPoint p0 = to_point(quad.eval(t - 0.5f * u));
470     SkPoint mid = to_point(quad.eval(t));
471     SkPoint p1 = to_point(quad.eval(t + 0.5f * u));
472     if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) {
473         return 0;
474     }
475     return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1);
476 }
477 
appendQuadraticToContour(const SkPoint pts[3],SkScalar toleranceSqd,VertexList * contour) const478 void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd,
479                                               VertexList* contour) const {
480     SkQuadCoeff quad(pts);
481     Sk2s aa = quad.fA * quad.fA;
482     SkScalar denom = 2.0f * (aa[0] + aa[1]);
483     Sk2s ab = quad.fA * quad.fB;
484     SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f;
485     int nPoints = 1;
486     SkScalar u = 1.0f;
487     // Test possible subdivision values only at the point of maximum curvature.
488     // If it passes the flatness metric there, it'll pass everywhere.
489     while (nPoints < GrPathUtils::kMaxPointsPerCurve) {
490         u = 1.0f / nPoints;
491         if (quad_error_at(pts, t, u) < toleranceSqd) {
492             break;
493         }
494         nPoints++;
495     }
496     for (int j = 1; j <= nPoints; j++) {
497         this->appendPointToContour(to_point(quad.eval(j * u)), contour);
498     }
499 }
500 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,VertexList * contour,int pointsLeft) const501 void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2,
502                                          const SkPoint& p3, SkScalar tolSqd, VertexList* contour,
503                                          int pointsLeft) const {
504     SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3);
505     SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3);
506     if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
507         !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) {
508         this->appendPointToContour(p3, contour);
509         return;
510     }
511     const SkPoint q[] = {
512         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
513         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
514         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
515     };
516     const SkPoint r[] = {
517         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
518         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
519     };
520     const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
521     pointsLeft >>= 1;
522     this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft);
523     this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft);
524 }
525 
526 // Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
527 
pathToContours(float tolerance,const SkRect & clipBounds,VertexList * contours,bool * isLinear) const528 void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds,
529                                     VertexList* contours, bool* isLinear) const {
530     SkScalar toleranceSqd = tolerance * tolerance;
531     SkPoint pts[4];
532     *isLinear = true;
533     VertexList* contour = contours;
534     SkPath::Iter iter(fPath, false);
535     if (fPath.isInverseFillType()) {
536         SkPoint quad[4];
537         clipBounds.toQuad(quad);
538         for (int i = 3; i >= 0; i--) {
539             this->appendPointToContour(quad[i], contours);
540         }
541         contour++;
542     }
543     SkAutoConicToQuads converter;
544     SkPath::Verb verb;
545     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
546         switch (verb) {
547             case SkPath::kConic_Verb: {
548                 *isLinear = false;
549                 if (toleranceSqd == 0) {
550                     this->appendPointToContour(pts[2], contour);
551                     break;
552                 }
553                 SkScalar weight = iter.conicWeight();
554                 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd);
555                 for (int i = 0; i < converter.countQuads(); ++i) {
556                     this->appendQuadraticToContour(quadPts, toleranceSqd, contour);
557                     quadPts += 2;
558                 }
559                 break;
560             }
561             case SkPath::kMove_Verb:
562                 if (contour->fHead) {
563                     contour++;
564                 }
565                 this->appendPointToContour(pts[0], contour);
566                 break;
567             case SkPath::kLine_Verb: {
568                 this->appendPointToContour(pts[1], contour);
569                 break;
570             }
571             case SkPath::kQuad_Verb: {
572                 *isLinear = false;
573                 if (toleranceSqd == 0) {
574                     this->appendPointToContour(pts[2], contour);
575                     break;
576                 }
577                 this->appendQuadraticToContour(pts, toleranceSqd, contour);
578                 break;
579             }
580             case SkPath::kCubic_Verb: {
581                 *isLinear = false;
582                 if (toleranceSqd == 0) {
583                     this->appendPointToContour(pts[3], contour);
584                     break;
585                 }
586                 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance);
587                 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour,
588                                           pointsLeft);
589                 break;
590             }
591             case SkPath::kClose_Verb:
592             case SkPath::kDone_Verb:
593                 break;
594         }
595     }
596 }
597 
apply_fill_type(SkPathFillType fillType,int winding)598 static inline bool apply_fill_type(SkPathFillType fillType, int winding) {
599     switch (fillType) {
600         case SkPathFillType::kWinding:
601             return winding != 0;
602         case SkPathFillType::kEvenOdd:
603             return (winding & 1) != 0;
604         case SkPathFillType::kInverseWinding:
605             return winding == 1;
606         case SkPathFillType::kInverseEvenOdd:
607             return (winding & 1) == 1;
608         default:
609             SkASSERT(false);
610             return false;
611     }
612 }
613 
applyFillType(int winding) const614 bool GrTriangulator::applyFillType(int winding) const {
615     return apply_fill_type(fPath.getFillType(), winding);
616 }
617 
apply_fill_type(SkPathFillType fillType,Poly * poly)618 static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) {
619     return poly && apply_fill_type(fillType, poly->fWinding);
620 }
621 
allocateMonotonePoly(Edge * edge,Side side,int winding)622 MonotonePoly* GrTriangulator::allocateMonotonePoly(Edge* edge, Side side, int winding) {
623     ++fNumMonotonePolys;
624     return fAlloc->make<MonotonePoly>(edge, side, winding);
625 }
626 
allocateEdge(Vertex * top,Vertex * bottom,int winding,EdgeType type)627 Edge* GrTriangulator::allocateEdge(Vertex* top, Vertex* bottom, int winding, EdgeType type) {
628     ++fNumEdges;
629     return fAlloc->make<Edge>(top, bottom, winding, type);
630 }
631 
makeEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c)632 Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type,
633                                const Comparator& c) {
634     SkASSERT(prev->fPoint != next->fPoint);
635     int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
636     Vertex* top = winding < 0 ? next : prev;
637     Vertex* bottom = winding < 0 ? prev : next;
638     return this->allocateEdge(top, bottom, winding, type);
639 }
640 
insert(Edge * edge,Edge * prev)641 void EdgeList::insert(Edge* edge, Edge* prev) {
642     TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID);
643     SkASSERT(!this->contains(edge));
644     Edge* next = prev ? prev->fRight : fHead;
645     this->insert(edge, prev, next);
646 }
647 
FindEnclosingEdges(Vertex * v,EdgeList * edges,Edge ** left,Edge ** right)648 void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
649     if (v->fFirstEdgeAbove && v->fLastEdgeAbove) {
650         *left = v->fFirstEdgeAbove->fLeft;
651         *right = v->fLastEdgeAbove->fRight;
652         return;
653     }
654     Edge* next = nullptr;
655     Edge* prev;
656     for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) {
657         if (prev->isLeftOf(v)) {
658             break;
659         }
660         next = prev;
661     }
662     *left = prev;
663     *right = next;
664 }
665 
insertAbove(Vertex * v,const Comparator & c)666 void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) {
667     if (fTop->fPoint == fBottom->fPoint ||
668         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
669         return;
670     }
671     TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID);
672     Edge* prev = nullptr;
673     Edge* next;
674     for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) {
675         if (next->isRightOf(fTop)) {
676             break;
677         }
678         prev = next;
679     }
680     list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
681         this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
682 }
683 
insertBelow(Vertex * v,const Comparator & c)684 void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) {
685     if (fTop->fPoint == fBottom->fPoint ||
686         c.sweep_lt(fBottom->fPoint, fTop->fPoint)) {
687         return;
688     }
689     TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID);
690     Edge* prev = nullptr;
691     Edge* next;
692     for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) {
693         if (next->isRightOf(fBottom)) {
694             break;
695         }
696         prev = next;
697     }
698     list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
699         this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow);
700 }
701 
remove_edge_above(Edge * edge)702 static void remove_edge_above(Edge* edge) {
703     SkASSERT(edge->fTop && edge->fBottom);
704     TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID,
705              edge->fBottom->fID);
706     list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>(
707         edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove);
708 }
709 
remove_edge_below(Edge * edge)710 static void remove_edge_below(Edge* edge) {
711     SkASSERT(edge->fTop && edge->fBottom);
712     TESS_LOG("removing edge (%g -> %g) below vertex %g\n",
713              edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID);
714     list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>(
715         edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow);
716 }
717 
disconnect()718 void GrTriangulator::Edge::disconnect() {
719     remove_edge_above(this);
720     remove_edge_below(this);
721 }
722 
rewind(EdgeList * activeEdges,Vertex ** current,Vertex * dst,const Comparator & c)723 static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) {
724     if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) {
725         return;
726     }
727     Vertex* v = *current;
728     TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID);
729     while (v != dst) {
730         v = v->fPrev;
731         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
732             activeEdges->remove(e);
733         }
734         Edge* leftEdge = v->fLeftEnclosingEdge;
735         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
736             activeEdges->insert(e, leftEdge);
737             leftEdge = e;
738             Vertex* top = e->fTop;
739             if (c.sweep_lt(top->fPoint, dst->fPoint) &&
740                 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) ||
741                  (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) {
742                 dst = top;
743             }
744         }
745     }
746     *current = v;
747 }
748 
rewind_if_necessary(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c)749 static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current,
750                                 const Comparator& c) {
751     if (!activeEdges || !current) {
752         return;
753     }
754     Vertex* top = edge->fTop;
755     Vertex* bottom = edge->fBottom;
756     if (edge->fLeft) {
757         Vertex* leftTop = edge->fLeft->fTop;
758         Vertex* leftBottom = edge->fLeft->fBottom;
759         if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) {
760             rewind(activeEdges, current, leftTop, c);
761         } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) {
762             rewind(activeEdges, current, top, c);
763         } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) &&
764                    !edge->fLeft->isLeftOf(bottom)) {
765             rewind(activeEdges, current, leftTop, c);
766         } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) {
767             rewind(activeEdges, current, top, c);
768         }
769     }
770     if (edge->fRight) {
771         Vertex* rightTop = edge->fRight->fTop;
772         Vertex* rightBottom = edge->fRight->fBottom;
773         if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) {
774             rewind(activeEdges, current, rightTop, c);
775         } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) {
776             rewind(activeEdges, current, top, c);
777         } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) &&
778                    !edge->fRight->isRightOf(bottom)) {
779             rewind(activeEdges, current, rightTop, c);
780         } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) &&
781                    !edge->isLeftOf(rightBottom)) {
782             rewind(activeEdges, current, top, c);
783         }
784     }
785 }
786 
setTop(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const787 void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
788                             const Comparator& c) const {
789     remove_edge_below(edge);
790     if (fCollectBreadcrumbTriangles) {
791         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
792                                edge->fWinding);
793     }
794     edge->fTop = v;
795     edge->recompute();
796     edge->insertBelow(v, c);
797     rewind_if_necessary(edge, activeEdges, current, c);
798     this->mergeCollinearEdges(edge, activeEdges, current, c);
799 }
800 
setBottom(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const801 void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
802                                const Comparator& c) const {
803     remove_edge_above(edge);
804     if (fCollectBreadcrumbTriangles) {
805         fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint,
806                                edge->fWinding);
807     }
808     edge->fBottom = v;
809     edge->recompute();
810     edge->insertAbove(v, c);
811     rewind_if_necessary(edge, activeEdges, current, c);
812     this->mergeCollinearEdges(edge, activeEdges, current, c);
813 }
814 
mergeEdgesAbove(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const815 void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges,
816                                      Vertex** current, const Comparator& c) const {
817     if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) {
818         TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n",
819                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
820                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
821         rewind(activeEdges, current, edge->fTop, c);
822         other->fWinding += edge->fWinding;
823         edge->disconnect();
824         edge->fTop = edge->fBottom = nullptr;
825     } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) {
826         rewind(activeEdges, current, edge->fTop, c);
827         other->fWinding += edge->fWinding;
828         this->setBottom(edge, other->fTop, activeEdges, current, c);
829     } else {
830         rewind(activeEdges, current, other->fTop, c);
831         edge->fWinding += other->fWinding;
832         this->setBottom(other, edge->fTop, activeEdges, current, c);
833     }
834 }
835 
mergeEdgesBelow(Edge * edge,Edge * other,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const836 void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges,
837                                      Vertex** current, const Comparator& c) const {
838     if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) {
839         TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n",
840                  edge->fTop->fPoint.fX, edge->fTop->fPoint.fY,
841                  edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY);
842         rewind(activeEdges, current, edge->fTop, c);
843         other->fWinding += edge->fWinding;
844         edge->disconnect();
845         edge->fTop = edge->fBottom = nullptr;
846     } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) {
847         rewind(activeEdges, current, other->fTop, c);
848         edge->fWinding += other->fWinding;
849         this->setTop(other, edge->fBottom, activeEdges, current, c);
850     } else {
851         rewind(activeEdges, current, edge->fTop, c);
852         other->fWinding += edge->fWinding;
853         this->setTop(edge, other->fBottom, activeEdges, current, c);
854     }
855 }
856 
top_collinear(Edge * left,Edge * right)857 static bool top_collinear(Edge* left, Edge* right) {
858     if (!left || !right) {
859         return false;
860     }
861     return left->fTop->fPoint == right->fTop->fPoint ||
862            !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop);
863 }
864 
bottom_collinear(Edge * left,Edge * right)865 static bool bottom_collinear(Edge* left, Edge* right) {
866     if (!left || !right) {
867         return false;
868     }
869     return left->fBottom->fPoint == right->fBottom->fPoint ||
870            !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom);
871 }
872 
mergeCollinearEdges(Edge * edge,EdgeList * activeEdges,Vertex ** current,const Comparator & c) const873 void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current,
874                                          const Comparator& c) const {
875     for (;;) {
876         if (top_collinear(edge->fPrevEdgeAbove, edge)) {
877             this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c);
878         } else if (top_collinear(edge, edge->fNextEdgeAbove)) {
879             this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c);
880         } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) {
881             this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c);
882         } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) {
883             this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c);
884         } else {
885             break;
886         }
887     }
888     SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge));
889     SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove));
890     SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge));
891     SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow));
892 }
893 
splitEdge(Edge * edge,Vertex * v,EdgeList * activeEdges,Vertex ** current,const Comparator & c)894 bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current,
895                                const Comparator& c) {
896     if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) {
897         return false;
898     }
899     TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
900              edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY);
901     Vertex* top;
902     Vertex* bottom;
903     int winding = edge->fWinding;
904     // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between"
905     // the segment end points according to c. This is equivalent to p0 < v < p1.  Unfortunately, if
906     // v was clamped/rounded this relation doesn't always hold.
907     if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) {
908         // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on
909         // the new edge so that it winds as if it were p0->v.
910         top = v;
911         bottom = edge->fTop;
912         winding *= -1;
913         this->setTop(edge, v, activeEdges, current, c);
914     } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) {
915         // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on
916         // the new edge so that it winds as if it were v->p1.
917         top = edge->fBottom;
918         bottom = v;
919         winding *= -1;
920         this->setBottom(edge, v, activeEdges, current, c);
921     } else {
922         // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding
923         // is valid for both edges.
924         top = v;
925         bottom = edge->fBottom;
926         this->setBottom(edge, v, activeEdges, current, c);
927     }
928     Edge* newEdge = this->allocateEdge(top, bottom, winding, edge->fType);
929     newEdge->insertBelow(top, c);
930     newEdge->insertAbove(bottom, c);
931     this->mergeCollinearEdges(newEdge, activeEdges, current, c);
932     return true;
933 }
934 
intersectEdgePair(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,const Comparator & c)935 bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges,
936                                        Vertex** current, const Comparator& c) {
937     if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) {
938         return false;
939     }
940     if (left->fTop == right->fTop || left->fBottom == right->fBottom) {
941         return false;
942     }
943 
944     // Check if the lines intersect as determined by isLeftOf and isRightOf, since that is the
945     // source of ground truth. It may suggest an intersection even if Edge::intersect() did not have
946     // the precision to check it. In this case we are explicitly correcting the edge topology to
947     // match the sided-ness checks.
948     Edge* split = nullptr;
949     Vertex* splitAt = nullptr;
950     if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
951         if (!left->isLeftOf(right->fTop)) {
952             split = left;
953             splitAt = right->fTop;
954         }
955     } else {
956         if (!right->isRightOf(left->fTop)) {
957             split = right;
958             splitAt = left->fTop;
959         }
960     }
961     if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
962         if (!left->isLeftOf(right->fBottom)) {
963             split = left;
964             splitAt = right->fBottom;
965         }
966     } else {
967         if (!right->isRightOf(left->fBottom)) {
968             split = right;
969             splitAt = left->fBottom;
970         }
971     }
972 
973     if (!split) {
974         return false;
975     }
976 
977     // Rewind to the top of the edge that is "moving" since this topology correction can change the
978     // geometry of the split edge.
979     rewind(activeEdges, current, split->fTop, c);
980     return this->splitEdge(split, splitAt, activeEdges, current, c);
981 }
982 
makeConnectingEdge(Vertex * prev,Vertex * next,EdgeType type,const Comparator & c,int windingScale)983 Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type,
984                                          const Comparator& c, int windingScale) {
985     if (!prev || !next || prev->fPoint == next->fPoint) {
986         return nullptr;
987     }
988     Edge* edge = this->makeEdge(prev, next, type, c);
989     edge->insertBelow(edge->fTop, c);
990     edge->insertAbove(edge->fBottom, c);
991     edge->fWinding *= windingScale;
992     this->mergeCollinearEdges(edge, nullptr, nullptr, c);
993     return edge;
994 }
995 
mergeVertices(Vertex * src,Vertex * dst,VertexList * mesh,const Comparator & c) const996 void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh,
997                                    const Comparator& c) const {
998     TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n",
999              src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID);
1000     dst->fAlpha = std::max(src->fAlpha, dst->fAlpha);
1001     if (src->fPartner) {
1002         src->fPartner->fPartner = dst;
1003     }
1004     while (Edge* edge = src->fFirstEdgeAbove) {
1005         this->setBottom(edge, dst, nullptr, nullptr, c);
1006     }
1007     while (Edge* edge = src->fFirstEdgeBelow) {
1008         this->setTop(edge, dst, nullptr, nullptr, c);
1009     }
1010     mesh->remove(src);
1011     dst->fSynthetic = true;
1012 }
1013 
makeSortedVertex(const SkPoint & p,uint8_t alpha,VertexList * mesh,Vertex * reference,const Comparator & c) const1014 Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh,
1015                                          Vertex* reference, const Comparator& c) const {
1016     Vertex* prevV = reference;
1017     while (prevV && c.sweep_lt(p, prevV->fPoint)) {
1018         prevV = prevV->fPrev;
1019     }
1020     Vertex* nextV = prevV ? prevV->fNext : mesh->fHead;
1021     while (nextV && c.sweep_lt(nextV->fPoint, p)) {
1022         prevV = nextV;
1023         nextV = nextV->fNext;
1024     }
1025     Vertex* v;
1026     if (prevV && coincident(prevV->fPoint, p)) {
1027         v = prevV;
1028     } else if (nextV && coincident(nextV->fPoint, p)) {
1029         v = nextV;
1030     } else {
1031         v = fAlloc->make<Vertex>(p, alpha);
1032 #if TRIANGULATOR_LOGGING
1033         if (!prevV) {
1034             v->fID = mesh->fHead->fID - 1.0f;
1035         } else if (!nextV) {
1036             v->fID = mesh->fTail->fID + 1.0f;
1037         } else {
1038             v->fID = (prevV->fID + nextV->fID) * 0.5f;
1039         }
1040 #endif
1041         mesh->insert(v, prevV, nextV);
1042     }
1043     return v;
1044 }
1045 
1046 // Clamps x and y coordinates independently, so the returned point will lie within the bounding
1047 // box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering
1048 // imposed by 'c').
clamp(SkPoint p,SkPoint min,SkPoint max,const Comparator & c)1049 static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) {
1050     if (c.fDirection == Comparator::Direction::kHorizontal) {
1051         // With horizontal sorting, we know min.x <= max.x, but there's no relation between
1052         // Y components unless min.x == max.x.
1053         return {SkTPin(p.fX, min.fX, max.fX),
1054                 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY)
1055                                 : SkTPin(p.fY, max.fY, min.fY)};
1056     } else {
1057         // And with vertical sorting, we know Y's relation but not necessarily X's.
1058         return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX)
1059                                 : SkTPin(p.fX, max.fX, min.fX),
1060                 SkTPin(p.fY, min.fY, max.fY)};
1061     }
1062 }
1063 
computeBisector(Edge * edge1,Edge * edge2,Vertex * v) const1064 void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const {
1065     SkASSERT(fEmitCoverage);  // Edge-AA only!
1066     Line line1 = edge1->fLine;
1067     Line line2 = edge2->fLine;
1068     line1.normalize();
1069     line2.normalize();
1070     double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB;
1071     if (cosAngle > 0.999) {
1072         return;
1073     }
1074     line1.fC += edge1->fWinding > 0 ? -1 : 1;
1075     line2.fC += edge2->fWinding > 0 ? -1 : 1;
1076     SkPoint p;
1077     if (line1.intersect(line2, &p)) {
1078         uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0;
1079         v->fPartner = fAlloc->make<Vertex>(p, alpha);
1080         TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID);
1081     }
1082 }
1083 
checkForIntersection(Edge * left,Edge * right,EdgeList * activeEdges,Vertex ** current,VertexList * mesh,const Comparator & c)1084 bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges,
1085                                           Vertex** current, VertexList* mesh,
1086                                           const Comparator& c) {
1087     if (!left || !right) {
1088         return false;
1089     }
1090     SkPoint p;
1091     uint8_t alpha;
1092     if (left->intersect(*right, &p, &alpha) && p.isFinite()) {
1093         Vertex* v;
1094         TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
1095         Vertex* top = *current;
1096         // If the intersection point is above the current vertex, rewind to the vertex above the
1097         // intersection.
1098         while (top && c.sweep_lt(p, top->fPoint)) {
1099             top = top->fPrev;
1100         }
1101 
1102         // Always clamp the intersection to lie between the vertices of each segment, since
1103         // in theory that's where the intersection is, but in reality, floating point error may
1104         // have computed an intersection beyond a vertex's component(s).
1105         p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c);
1106         p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c);
1107 
1108         if (coincident(p, left->fTop->fPoint)) {
1109             v = left->fTop;
1110         } else if (coincident(p, left->fBottom->fPoint)) {
1111             v = left->fBottom;
1112         } else if (coincident(p, right->fTop->fPoint)) {
1113             v = right->fTop;
1114         } else if (coincident(p, right->fBottom->fPoint)) {
1115             v = right->fBottom;
1116         } else {
1117             v = this->makeSortedVertex(p, alpha, mesh, top, c);
1118             if (left->fTop->fPartner) {
1119                 SkASSERT(fEmitCoverage);  // Edge-AA only!
1120                 v->fSynthetic = true;
1121                 this->computeBisector(left, right, v);
1122             }
1123         }
1124         rewind(activeEdges, current, top ? top : v, c);
1125         this->splitEdge(left, v, activeEdges, current, c);
1126         this->splitEdge(right, v, activeEdges, current, c);
1127         v->fAlpha = std::max(v->fAlpha, alpha);
1128         return true;
1129     }
1130     return this->intersectEdgePair(left, right, activeEdges, current, c);
1131 }
1132 
sanitizeContours(VertexList * contours,int contourCnt) const1133 void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const {
1134     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1135         SkASSERT(contour->fHead);
1136         Vertex* prev = contour->fTail;
1137         prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX);
1138         prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY);
1139         if (fRoundVerticesToQuarterPixel) {
1140             round(&prev->fPoint);
1141         }
1142         for (Vertex* v = contour->fHead; v;) {
1143             v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX);
1144             v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY);
1145             if (fRoundVerticesToQuarterPixel) {
1146                 round(&v->fPoint);
1147             }
1148             Vertex* next = v->fNext;
1149             Vertex* nextWrap = next ? next : contour->fHead;
1150             if (coincident(prev->fPoint, v->fPoint)) {
1151                 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
1152                 contour->remove(v);
1153             } else if (!v->fPoint.isFinite()) {
1154                 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY);
1155                 contour->remove(v);
1156             } else if (!fPreserveCollinearVertices &&
1157                        Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) {
1158                 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY);
1159                 contour->remove(v);
1160             } else {
1161                 prev = v;
1162             }
1163             v = next;
1164         }
1165     }
1166 }
1167 
mergeCoincidentVertices(VertexList * mesh,const Comparator & c) const1168 bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const {
1169     if (!mesh->fHead) {
1170         return false;
1171     }
1172     bool merged = false;
1173     for (Vertex* v = mesh->fHead->fNext; v;) {
1174         Vertex* next = v->fNext;
1175         if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
1176             v->fPoint = v->fPrev->fPoint;
1177         }
1178         if (coincident(v->fPrev->fPoint, v->fPoint)) {
1179             this->mergeVertices(v, v->fPrev, mesh, c);
1180             merged = true;
1181         }
1182         v = next;
1183     }
1184     return merged;
1185 }
1186 
1187 // Stage 2: convert the contours to a mesh of edges connecting the vertices.
1188 
buildEdges(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1189 void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh,
1190                                 const Comparator& c) {
1191     for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) {
1192         Vertex* prev = contour->fTail;
1193         for (Vertex* v = contour->fHead; v;) {
1194             Vertex* next = v->fNext;
1195             this->makeConnectingEdge(prev, v, EdgeType::kInner, c);
1196             mesh->append(v);
1197             prev = v;
1198             v = next;
1199         }
1200     }
1201 }
1202 
1203 template <CompareFunc sweep_lt>
sorted_merge(VertexList * front,VertexList * back,VertexList * result)1204 static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) {
1205     Vertex* a = front->fHead;
1206     Vertex* b = back->fHead;
1207     while (a && b) {
1208         if (sweep_lt(a->fPoint, b->fPoint)) {
1209             front->remove(a);
1210             result->append(a);
1211             a = front->fHead;
1212         } else {
1213             back->remove(b);
1214             result->append(b);
1215             b = back->fHead;
1216         }
1217     }
1218     result->append(*front);
1219     result->append(*back);
1220 }
1221 
SortedMerge(VertexList * front,VertexList * back,VertexList * result,const Comparator & c)1222 void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result,
1223                                  const Comparator& c) {
1224     if (c.fDirection == Comparator::Direction::kHorizontal) {
1225         sorted_merge<sweep_lt_horiz>(front, back, result);
1226     } else {
1227         sorted_merge<sweep_lt_vert>(front, back, result);
1228     }
1229 #if TRIANGULATOR_LOGGING
1230     float id = 0.0f;
1231     for (Vertex* v = result->fHead; v; v = v->fNext) {
1232         v->fID = id++;
1233     }
1234 #endif
1235 }
1236 
1237 // Stage 3: sort the vertices by increasing sweep direction.
1238 
1239 template <CompareFunc sweep_lt>
merge_sort(VertexList * vertices)1240 static void merge_sort(VertexList* vertices) {
1241     Vertex* slow = vertices->fHead;
1242     if (!slow) {
1243         return;
1244     }
1245     Vertex* fast = slow->fNext;
1246     if (!fast) {
1247         return;
1248     }
1249     do {
1250         fast = fast->fNext;
1251         if (fast) {
1252             fast = fast->fNext;
1253             slow = slow->fNext;
1254         }
1255     } while (fast);
1256     VertexList front(vertices->fHead, slow);
1257     VertexList back(slow->fNext, vertices->fTail);
1258     front.fTail->fNext = back.fHead->fPrev = nullptr;
1259 
1260     merge_sort<sweep_lt>(&front);
1261     merge_sort<sweep_lt>(&back);
1262 
1263     vertices->fHead = vertices->fTail = nullptr;
1264     sorted_merge<sweep_lt>(&front, &back, vertices);
1265 }
1266 
1267 #if TRIANGULATOR_LOGGING
dump() const1268 void VertexList::dump() const {
1269     for (Vertex* v = fHead; v; v = v->fNext) {
1270         TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1271         if (Vertex* p = v->fPartner) {
1272             TESS_LOG(", partner %g (%g, %g) alpha %d\n",
1273                     p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha);
1274         } else {
1275             TESS_LOG(", null partner\n");
1276         }
1277         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1278             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1279         }
1280         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1281             TESS_LOG("  edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding);
1282         }
1283     }
1284 }
1285 #endif
1286 
1287 #ifdef SK_DEBUG
validate_edge_pair(Edge * left,Edge * right,const Comparator & c)1288 static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) {
1289     if (!left || !right) {
1290         return;
1291     }
1292     if (left->fTop == right->fTop) {
1293         SkASSERT(left->isLeftOf(right->fBottom));
1294         SkASSERT(right->isRightOf(left->fBottom));
1295     } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) {
1296         SkASSERT(left->isLeftOf(right->fTop));
1297     } else {
1298         SkASSERT(right->isRightOf(left->fTop));
1299     }
1300     if (left->fBottom == right->fBottom) {
1301         SkASSERT(left->isLeftOf(right->fTop));
1302         SkASSERT(right->isRightOf(left->fTop));
1303     } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) {
1304         SkASSERT(left->isLeftOf(right->fBottom));
1305     } else {
1306         SkASSERT(right->isRightOf(left->fBottom));
1307     }
1308 }
1309 
validate_edge_list(EdgeList * edges,const Comparator & c)1310 static void validate_edge_list(EdgeList* edges, const Comparator& c) {
1311     Edge* left = edges->fHead;
1312     if (!left) {
1313         return;
1314     }
1315     for (Edge* right = left->fRight; right; right = right->fRight) {
1316         validate_edge_pair(left, right, c);
1317         left = right;
1318     }
1319 }
1320 #endif
1321 
1322 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
1323 
simplify(VertexList * mesh,const Comparator & c)1324 GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh,
1325                                                         const Comparator& c) {
1326     TESS_LOG("simplifying complex polygons\n");
1327 
1328     int initialNumEdges = fNumEdges;
1329 
1330     EdgeList activeEdges;
1331     auto result = SimplifyResult::kAlreadySimple;
1332     for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) {
1333         if (!v->isConnected()) {
1334             continue;
1335         }
1336 
1337         // The max increase across all skps, svgs and gms with only the triangulating and SW path
1338         // renderers enabled and with the triangulator's maxVerbCount set to the Chrome value is
1339         // 17x.
1340         if (fNumEdges > 170*initialNumEdges) {
1341             return SimplifyResult::kFailed;
1342         }
1343 
1344         Edge* leftEnclosingEdge;
1345         Edge* rightEnclosingEdge;
1346         bool restartChecks;
1347         do {
1348             TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n",
1349                      v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1350             restartChecks = false;
1351             FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1352             v->fLeftEnclosingEdge = leftEnclosingEdge;
1353             v->fRightEnclosingEdge = rightEnclosingEdge;
1354             if (v->fFirstEdgeBelow) {
1355                 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) {
1356                     if (this->checkForIntersection(
1357                             leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) ||
1358                         this->checkForIntersection(
1359                             edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) {
1360                         result = SimplifyResult::kFoundSelfIntersection;
1361                         restartChecks = true;
1362                         break;
1363                     }
1364                 }
1365             } else {
1366                 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges,
1367                                                &v, mesh, c)) {
1368                     result = SimplifyResult::kFoundSelfIntersection;
1369                     restartChecks = true;
1370                 }
1371 
1372             }
1373         } while (restartChecks);
1374 #ifdef SK_DEBUG
1375         validate_edge_list(&activeEdges, c);
1376 #endif
1377         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1378             activeEdges.remove(e);
1379         }
1380         Edge* leftEdge = leftEnclosingEdge;
1381         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1382             activeEdges.insert(e, leftEdge);
1383             leftEdge = e;
1384         }
1385     }
1386     SkASSERT(!activeEdges.fHead && !activeEdges.fTail);
1387     return result;
1388 }
1389 
1390 // Stage 5: Tessellate the simplified mesh into monotone polygons.
1391 
tessellate(const VertexList & vertices,const Comparator &)1392 std::tuple<Poly*, bool> GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) {
1393     TESS_LOG("\ntessellating simple polygons\n");
1394     EdgeList activeEdges;
1395     Poly* polys = nullptr;
1396     for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) {
1397         if (!v->isConnected()) {
1398             continue;
1399         }
1400 #if TRIANGULATOR_LOGGING
1401         TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha);
1402 #endif
1403         Edge* leftEnclosingEdge;
1404         Edge* rightEnclosingEdge;
1405         FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge);
1406         Poly* leftPoly;
1407         Poly* rightPoly;
1408         if (v->fFirstEdgeAbove) {
1409             leftPoly = v->fFirstEdgeAbove->fLeftPoly;
1410             rightPoly = v->fLastEdgeAbove->fRightPoly;
1411         } else {
1412             leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
1413             rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
1414         }
1415 #if TRIANGULATOR_LOGGING
1416         TESS_LOG("edges above:\n");
1417         for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
1418             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1419                      e->fTop->fID, e->fBottom->fID,
1420                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1421                      e->fRightPoly ? e->fRightPoly->fID : -1);
1422         }
1423         TESS_LOG("edges below:\n");
1424         for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) {
1425             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1426                      e->fTop->fID, e->fBottom->fID,
1427                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1428                      e->fRightPoly ? e->fRightPoly->fID : -1);
1429         }
1430 #endif
1431         if (v->fFirstEdgeAbove) {
1432             if (leftPoly) {
1433                 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, this);
1434             }
1435             if (rightPoly) {
1436                 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, this);
1437             }
1438             for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) {
1439                 Edge* rightEdge = e->fNextEdgeAbove;
1440                 activeEdges.remove(e);
1441                 if (e->fRightPoly) {
1442                     e->fRightPoly->addEdge(e, kLeft_Side, this);
1443                 }
1444                 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) {
1445                     rightEdge->fLeftPoly->addEdge(e, kRight_Side, this);
1446                 }
1447             }
1448             activeEdges.remove(v->fLastEdgeAbove);
1449             if (!v->fFirstEdgeBelow) {
1450                 if (leftPoly && rightPoly && leftPoly != rightPoly) {
1451                     SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr);
1452                     rightPoly->fPartner = leftPoly;
1453                     leftPoly->fPartner = rightPoly;
1454                 }
1455             }
1456         }
1457         if (v->fFirstEdgeBelow) {
1458             if (!v->fFirstEdgeAbove) {
1459                 if (leftPoly && rightPoly) {
1460                     if (leftPoly == rightPoly) {
1461                         if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) {
1462                             leftPoly = this->makePoly(&polys, leftPoly->lastVertex(),
1463                                                       leftPoly->fWinding);
1464                             leftEnclosingEdge->fRightPoly = leftPoly;
1465                         } else {
1466                             rightPoly = this->makePoly(&polys, rightPoly->lastVertex(),
1467                                                        rightPoly->fWinding);
1468                             rightEnclosingEdge->fLeftPoly = rightPoly;
1469                         }
1470                     }
1471                     Edge* join = this->allocateEdge(leftPoly->lastVertex(), v, 1, EdgeType::kInner);
1472                     leftPoly = leftPoly->addEdge(join, kRight_Side, this);
1473                     rightPoly = rightPoly->addEdge(join, kLeft_Side, this);
1474                 }
1475             }
1476             Edge* leftEdge = v->fFirstEdgeBelow;
1477             leftEdge->fLeftPoly = leftPoly;
1478             activeEdges.insert(leftEdge, leftEnclosingEdge);
1479             for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge;
1480                  rightEdge = rightEdge->fNextEdgeBelow) {
1481                 activeEdges.insert(rightEdge, leftEdge);
1482                 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0;
1483                 winding += leftEdge->fWinding;
1484                 if (winding != 0) {
1485                     Poly* poly = this->makePoly(&polys, v, winding);
1486                     leftEdge->fRightPoly = rightEdge->fLeftPoly = poly;
1487                 }
1488                 leftEdge = rightEdge;
1489             }
1490             v->fLastEdgeBelow->fRightPoly = rightPoly;
1491         }
1492 #if TRIANGULATOR_LOGGING
1493         TESS_LOG("\nactive edges:\n");
1494         for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
1495             TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n",
1496                      e->fTop->fID, e->fBottom->fID,
1497                      e->fLeftPoly ? e->fLeftPoly->fID : -1,
1498                      e->fRightPoly ? e->fRightPoly->fID : -1);
1499         }
1500 #endif
1501     }
1502     return { polys, true };
1503 }
1504 
1505 // This is a driver function that calls stages 2-5 in turn.
1506 
contoursToMesh(VertexList * contours,int contourCnt,VertexList * mesh,const Comparator & c)1507 void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh,
1508                                     const Comparator& c) {
1509 #if TRIANGULATOR_LOGGING
1510     for (int i = 0; i < contourCnt; ++i) {
1511         Vertex* v = contours[i].fHead;
1512         SkASSERT(v);
1513         TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1514         for (v = v->fNext; v; v = v->fNext) {
1515             TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
1516         }
1517     }
1518 #endif
1519     this->sanitizeContours(contours, contourCnt);
1520     this->buildEdges(contours, contourCnt, mesh, c);
1521 }
1522 
SortMesh(VertexList * vertices,const Comparator & c)1523 void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) {
1524     if (!vertices || !vertices->fHead) {
1525         return;
1526     }
1527 
1528     // Sort vertices in Y (secondarily in X).
1529     if (c.fDirection == Comparator::Direction::kHorizontal) {
1530         merge_sort<sweep_lt_horiz>(vertices);
1531     } else {
1532         merge_sort<sweep_lt_vert>(vertices);
1533     }
1534 #if TRIANGULATOR_LOGGING
1535     for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) {
1536         static float gID = 0.0f;
1537         v->fID = gID++;
1538     }
1539 #endif
1540 }
1541 
contoursToPolys(VertexList * contours,int contourCnt)1542 std::tuple<Poly*, bool> GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) {
1543     const SkRect& pathBounds = fPath.getBounds();
1544     Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal
1545                                                           : Comparator::Direction::kVertical);
1546     VertexList mesh;
1547     this->contoursToMesh(contours, contourCnt, &mesh, c);
1548     TESS_LOG("\ninitial mesh:\n");
1549     DUMP_MESH(mesh);
1550     SortMesh(&mesh, c);
1551     TESS_LOG("\nsorted mesh:\n");
1552     DUMP_MESH(mesh);
1553     this->mergeCoincidentVertices(&mesh, c);
1554     TESS_LOG("\nsorted+merged mesh:\n");
1555     DUMP_MESH(mesh);
1556     auto result = this->simplify(&mesh, c);
1557     if (result == SimplifyResult::kFailed) {
1558         return { nullptr, false };
1559     }
1560     TESS_LOG("\nsimplified mesh:\n");
1561     DUMP_MESH(mesh);
1562     return this->tessellate(mesh, c);
1563 }
1564 
1565 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
polysToTriangles(Poly * polys,SkPathFillType overrideFillType,skgpu::VertexWriter data) const1566 skgpu::VertexWriter GrTriangulator::polysToTriangles(Poly* polys,
1567                                                      SkPathFillType overrideFillType,
1568                                                      skgpu::VertexWriter data) const {
1569     for (Poly* poly = polys; poly; poly = poly->fNext) {
1570         if (apply_fill_type(overrideFillType, poly)) {
1571             data = this->emitPoly(poly, std::move(data));
1572         }
1573     }
1574     return data;
1575 }
1576 
get_contour_count(const SkPath & path,SkScalar tolerance)1577 static int get_contour_count(const SkPath& path, SkScalar tolerance) {
1578     // We could theoretically be more aggressive about not counting empty contours, but we need to
1579     // actually match the exact number of contour linked lists the tessellator will create later on.
1580     int contourCnt = 1;
1581     bool hasPoints = false;
1582 
1583     SkPath::Iter iter(path, false);
1584     SkPath::Verb verb;
1585     SkPoint pts[4];
1586     bool first = true;
1587     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
1588         switch (verb) {
1589             case SkPath::kMove_Verb:
1590                 if (!first) {
1591                     ++contourCnt;
1592                 }
1593                 [[fallthrough]];
1594             case SkPath::kLine_Verb:
1595             case SkPath::kConic_Verb:
1596             case SkPath::kQuad_Verb:
1597             case SkPath::kCubic_Verb:
1598                 hasPoints = true;
1599                 break;
1600             default:
1601                 break;
1602         }
1603         first = false;
1604     }
1605     if (!hasPoints) {
1606         return 0;
1607     }
1608     return contourCnt;
1609 }
1610 
pathToPolys(float tolerance,const SkRect & clipBounds,bool * isLinear)1611 std::tuple<Poly*, bool> GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) {
1612     int contourCnt = get_contour_count(fPath, tolerance);
1613     if (contourCnt <= 0) {
1614         *isLinear = true;
1615         return { nullptr, true };
1616     }
1617 
1618     if (SkPathFillType_IsInverse(fPath.getFillType())) {
1619         contourCnt++;
1620     }
1621     std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]);
1622 
1623     this->pathToContours(tolerance, clipBounds, contours.get(), isLinear);
1624     return this->contoursToPolys(contours.get(), contourCnt);
1625 }
1626 
CountPoints(Poly * polys,SkPathFillType overrideFillType)1627 int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) {
1628     int64_t count = 0;
1629     for (Poly* poly = polys; poly; poly = poly->fNext) {
1630         if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) {
1631             count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3);
1632         }
1633     }
1634     return count;
1635 }
1636 
1637 // Stage 6: Triangulate the monotone polygons into a vertex buffer.
1638 
polysToTriangles(Poly * polys,GrEagerVertexAllocator * vertexAllocator) const1639 int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const {
1640     int64_t count64 = CountPoints(polys, fPath.getFillType());
1641     if (0 == count64 || count64 > SK_MaxS32) {
1642         return 0;
1643     }
1644     int count = count64;
1645 
1646     size_t vertexStride = sizeof(SkPoint);
1647     if (fEmitCoverage) {
1648         vertexStride += sizeof(float);
1649     }
1650     skgpu::VertexWriter verts = vertexAllocator->lockWriter(vertexStride, count);
1651     if (!verts) {
1652         SkDebugf("Could not allocate vertices\n");
1653         return 0;
1654     }
1655 
1656     TESS_LOG("emitting %d verts\n", count);
1657 
1658     skgpu::BufferWriter::Mark start = verts.mark();
1659     verts = this->polysToTriangles(polys, fPath.getFillType(), std::move(verts));
1660 
1661     int actualCount = static_cast<int>((verts.mark() - start) / vertexStride);
1662     SkASSERT(actualCount <= count);
1663     vertexAllocator->unlock(actualCount);
1664     return actualCount;
1665 }
1666