1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/ops/AAHairLinePathRenderer.h"
9
10 #include "include/core/SkPoint3.h"
11 #include "include/private/SkTemplates.h"
12 #include "src/core/SkGeometry.h"
13 #include "src/core/SkMatrixPriv.h"
14 #include "src/core/SkPointPriv.h"
15 #include "src/core/SkRectPriv.h"
16 #include "src/core/SkStroke.h"
17 #include "src/gpu/GrAuditTrail.h"
18 #include "src/gpu/GrBuffer.h"
19 #include "src/gpu/GrCaps.h"
20 #include "src/gpu/GrDefaultGeoProcFactory.h"
21 #include "src/gpu/GrDrawOpTest.h"
22 #include "src/gpu/GrOpFlushState.h"
23 #include "src/gpu/GrProcessor.h"
24 #include "src/gpu/GrProgramInfo.h"
25 #include "src/gpu/GrResourceProvider.h"
26 #include "src/gpu/GrStyle.h"
27 #include "src/gpu/GrUtil.h"
28 #include "src/gpu/effects/GrBezierEffect.h"
29 #include "src/gpu/geometry/GrPathUtils.h"
30 #include "src/gpu/geometry/GrStyledShape.h"
31 #include "src/gpu/ops/GrMeshDrawOp.h"
32 #include "src/gpu/ops/GrSimpleMeshDrawOpHelperWithStencil.h"
33 #include "src/gpu/v1/SurfaceDrawContext_v1.h"
34
35 #define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
36
37 using PtArray = SkTArray<SkPoint, true>;
38 using IntArray = SkTArray<int, true>;
39 using FloatArray = SkTArray<float, true>;
40
41 namespace {
42
43 // quadratics are rendered as 5-sided polys in order to bound the
44 // AA stroke around the center-curve. See comments in push_quad_index_buffer and
45 // bloat_quad. Quadratics and conics share an index buffer
46
47 // lines are rendered as:
48 // *______________*
49 // |\ -_______ /|
50 // | \ \ / |
51 // | *--------* |
52 // | / ______/ \ |
53 // */_-__________\*
54 // For: 6 vertices and 18 indices (for 6 triangles)
55
56 // Each quadratic is rendered as a five sided polygon. This poly bounds
57 // the quadratic's bounding triangle but has been expanded so that the
58 // 1-pixel wide area around the curve is inside the poly.
59 // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
60 // that is rendered would look like this:
61 // b0
62 // b
63 //
64 // a0 c0
65 // a c
66 // a1 c1
67 // Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0))
68 // specified by these 9 indices:
69 static const uint16_t kQuadIdxBufPattern[] = {
70 0, 1, 2,
71 2, 4, 3,
72 1, 4, 2
73 };
74
75 static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern);
76 static const int kQuadNumVertices = 5;
77 static const int kQuadsNumInIdxBuffer = 256;
78 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
79
get_quads_index_buffer(GrResourceProvider * resourceProvider)80 sk_sp<const GrBuffer> get_quads_index_buffer(GrResourceProvider* resourceProvider) {
81 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey);
82 return resourceProvider->findOrCreatePatternedIndexBuffer(
83 kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices,
84 gQuadsIndexBufferKey);
85 }
86
87
88 // Each line segment is rendered as two quads and two triangles.
89 // p0 and p1 have alpha = 1 while all other points have alpha = 0.
90 // The four external points are offset 1 pixel perpendicular to the
91 // line and half a pixel parallel to the line.
92 //
93 // p4 p5
94 // p0 p1
95 // p2 p3
96 //
97 // Each is drawn as six triangles specified by these 18 indices:
98
99 static const uint16_t kLineSegIdxBufPattern[] = {
100 0, 1, 3,
101 0, 3, 2,
102 0, 4, 5,
103 0, 5, 1,
104 0, 2, 4,
105 1, 5, 3
106 };
107
108 static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern);
109 static const int kLineSegNumVertices = 6;
110 static const int kLineSegsNumInIdxBuffer = 256;
111
112 SKGPU_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
113
get_lines_index_buffer(GrResourceProvider * resourceProvider)114 sk_sp<const GrBuffer> get_lines_index_buffer(GrResourceProvider* resourceProvider) {
115 SKGPU_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey);
116 return resourceProvider->findOrCreatePatternedIndexBuffer(
117 kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices,
118 gLinesIndexBufferKey);
119 }
120
121 // Takes 178th time of logf on Z600 / VC2010
get_float_exp(float x)122 int get_float_exp(float x) {
123 static_assert(sizeof(int) == sizeof(float));
124 #ifdef SK_DEBUG
125 static bool tested;
126 if (!tested) {
127 tested = true;
128 SkASSERT(get_float_exp(0.25f) == -2);
129 SkASSERT(get_float_exp(0.3f) == -2);
130 SkASSERT(get_float_exp(0.5f) == -1);
131 SkASSERT(get_float_exp(1.f) == 0);
132 SkASSERT(get_float_exp(2.f) == 1);
133 SkASSERT(get_float_exp(2.5f) == 1);
134 SkASSERT(get_float_exp(8.f) == 3);
135 SkASSERT(get_float_exp(100.f) == 6);
136 SkASSERT(get_float_exp(1000.f) == 9);
137 SkASSERT(get_float_exp(1024.f) == 10);
138 SkASSERT(get_float_exp(3000000.f) == 21);
139 }
140 #endif
141 const int* iptr = (const int*)&x;
142 return (((*iptr) & 0x7f800000) >> 23) - 127;
143 }
144
145 // Uses the max curvature function for quads to estimate
146 // where to chop the conic. If the max curvature is not
147 // found along the curve segment it will return 1 and
148 // dst[0] is the original conic. If it returns 2 the dst[0]
149 // and dst[1] are the two new conics.
split_conic(const SkPoint src[3],SkConic dst[2],const SkScalar weight)150 int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
151 SkScalar t = SkFindQuadMaxCurvature(src);
152 if (t == 0 || t == 1) {
153 if (dst) {
154 dst[0].set(src, weight);
155 }
156 return 1;
157 } else {
158 if (dst) {
159 SkConic conic;
160 conic.set(src, weight);
161 if (!conic.chopAt(t, dst)) {
162 dst[0].set(src, weight);
163 return 1;
164 }
165 }
166 return 2;
167 }
168 }
169
170 // Calls split_conic on the entire conic and then once more on each subsection.
171 // Most cases will result in either 1 conic (chop point is not within t range)
172 // or 3 points (split once and then one subsection is split again).
chop_conic(const SkPoint src[3],SkConic dst[4],const SkScalar weight)173 int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
174 SkConic dstTemp[2];
175 int conicCnt = split_conic(src, dstTemp, weight);
176 if (2 == conicCnt) {
177 int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
178 conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
179 } else {
180 dst[0] = dstTemp[0];
181 }
182 return conicCnt;
183 }
184
185 // returns 0 if quad/conic is degen or close to it
186 // in this case approx the path with lines
187 // otherwise returns 1
is_degen_quad_or_conic(const SkPoint p[3],SkScalar * dsqd)188 int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) {
189 static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance;
190 static const SkScalar gDegenerateToLineTolSqd =
191 gDegenerateToLineTol * gDegenerateToLineTol;
192
193 if (SkPointPriv::DistanceToSqd(p[0], p[1]) < gDegenerateToLineTolSqd ||
194 SkPointPriv::DistanceToSqd(p[1], p[2]) < gDegenerateToLineTolSqd) {
195 return 1;
196 }
197
198 *dsqd = SkPointPriv::DistanceToLineBetweenSqd(p[1], p[0], p[2]);
199 if (*dsqd < gDegenerateToLineTolSqd) {
200 return 1;
201 }
202
203 if (SkPointPriv::DistanceToLineBetweenSqd(p[2], p[1], p[0]) < gDegenerateToLineTolSqd) {
204 return 1;
205 }
206 return 0;
207 }
208
is_degen_quad_or_conic(const SkPoint p[3])209 int is_degen_quad_or_conic(const SkPoint p[3]) {
210 SkScalar dsqd;
211 return is_degen_quad_or_conic(p, &dsqd);
212 }
213
214 // we subdivide the quads to avoid huge overfill
215 // if it returns -1 then should be drawn as lines
num_quad_subdivs(const SkPoint p[3])216 int num_quad_subdivs(const SkPoint p[3]) {
217 SkScalar dsqd;
218 if (is_degen_quad_or_conic(p, &dsqd)) {
219 return -1;
220 }
221
222 // tolerance of triangle height in pixels
223 // tuned on windows Quadro FX 380 / Z600
224 // trade off of fill vs cpu time on verts
225 // maybe different when do this using gpu (geo or tess shaders)
226 static const SkScalar gSubdivTol = 175 * SK_Scalar1;
227
228 if (dsqd <= gSubdivTol * gSubdivTol) {
229 return 0;
230 } else {
231 static const int kMaxSub = 4;
232 // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
233 // = log4(d*d/tol*tol)/2
234 // = log2(d*d/tol*tol)
235
236 // +1 since we're ignoring the mantissa contribution.
237 int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
238 log = std::min(std::max(0, log), kMaxSub);
239 return log;
240 }
241 }
242
243 /**
244 * Generates the lines and quads to be rendered. Lines are always recorded in
245 * device space. We will do a device space bloat to account for the 1pixel
246 * thickness.
247 * Quads are recorded in device space unless m contains
248 * perspective, then in they are in src space. We do this because we will
249 * subdivide large quads to reduce over-fill. This subdivision has to be
250 * performed before applying the perspective matrix.
251 */
gather_lines_and_quads(const SkPath & path,const SkMatrix & m,const SkIRect & devClipBounds,SkScalar capLength,bool convertConicsToQuads,PtArray * lines,PtArray * quads,PtArray * conics,IntArray * quadSubdivCnts,FloatArray * conicWeights)252 int gather_lines_and_quads(const SkPath& path,
253 const SkMatrix& m,
254 const SkIRect& devClipBounds,
255 SkScalar capLength,
256 bool convertConicsToQuads,
257 PtArray* lines,
258 PtArray* quads,
259 PtArray* conics,
260 IntArray* quadSubdivCnts,
261 FloatArray* conicWeights) {
262 SkPath::Iter iter(path, false);
263
264 int totalQuadCount = 0;
265 SkRect bounds;
266 SkIRect ibounds;
267
268 bool persp = m.hasPerspective();
269
270 // Whenever a degenerate, zero-length contour is encountered, this code will insert a
271 // 'capLength' x-aligned line segment. Since this is rendering hairlines it is hoped this will
272 // suffice for AA square & circle capping.
273 int verbsInContour = 0; // Does not count moves
274 bool seenZeroLengthVerb = false;
275 SkPoint zeroVerbPt;
276
277 // Adds a quad that has already been chopped to the list and checks for quads that are close to
278 // lines. Also does a bounding box check. It takes points that are in src space and device
279 // space. The src points are only required if the view matrix has perspective.
280 auto addChoppedQuad = [&](const SkPoint srcPts[3], const SkPoint devPts[4],
281 bool isContourStart) {
282 SkRect bounds;
283 SkIRect ibounds;
284 bounds.setBounds(devPts, 3);
285 bounds.outset(SK_Scalar1, SK_Scalar1);
286 bounds.roundOut(&ibounds);
287 // We only need the src space space pts when not in perspective.
288 SkASSERT(srcPts || !persp);
289 if (SkIRect::Intersects(devClipBounds, ibounds)) {
290 int subdiv = num_quad_subdivs(devPts);
291 SkASSERT(subdiv >= -1);
292 if (-1 == subdiv) {
293 SkPoint* pts = lines->push_back_n(4);
294 pts[0] = devPts[0];
295 pts[1] = devPts[1];
296 pts[2] = devPts[1];
297 pts[3] = devPts[2];
298 if (isContourStart && pts[0] == pts[1] && pts[2] == pts[3]) {
299 seenZeroLengthVerb = true;
300 zeroVerbPt = pts[0];
301 }
302 } else {
303 // when in perspective keep quads in src space
304 const SkPoint* qPts = persp ? srcPts : devPts;
305 SkPoint* pts = quads->push_back_n(3);
306 pts[0] = qPts[0];
307 pts[1] = qPts[1];
308 pts[2] = qPts[2];
309 quadSubdivCnts->push_back() = subdiv;
310 totalQuadCount += 1 << subdiv;
311 }
312 }
313 };
314
315 // Applies the view matrix to quad src points and calls the above helper.
316 auto addSrcChoppedQuad = [&](const SkPoint srcSpaceQuadPts[3], bool isContourStart) {
317 SkPoint devPts[3];
318 m.mapPoints(devPts, srcSpaceQuadPts, 3);
319 addChoppedQuad(srcSpaceQuadPts, devPts, isContourStart);
320 };
321
322 for (;;) {
323 SkPoint pathPts[4];
324 SkPath::Verb verb = iter.next(pathPts);
325 switch (verb) {
326 case SkPath::kConic_Verb:
327 if (convertConicsToQuads) {
328 SkScalar weight = iter.conicWeight();
329 SkAutoConicToQuads converter;
330 const SkPoint* quadPts = converter.computeQuads(pathPts, weight, 0.25f);
331 for (int i = 0; i < converter.countQuads(); ++i) {
332 addSrcChoppedQuad(quadPts + 2 * i, !verbsInContour && 0 == i);
333 }
334 } else {
335 SkConic dst[4];
336 // We chop the conics to create tighter clipping to hide error
337 // that appears near max curvature of very thin conics. Thin
338 // hyperbolas with high weight still show error.
339 int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
340 for (int i = 0; i < conicCnt; ++i) {
341 SkPoint devPts[4];
342 SkPoint* chopPnts = dst[i].fPts;
343 m.mapPoints(devPts, chopPnts, 3);
344 bounds.setBounds(devPts, 3);
345 bounds.outset(SK_Scalar1, SK_Scalar1);
346 bounds.roundOut(&ibounds);
347 if (SkIRect::Intersects(devClipBounds, ibounds)) {
348 if (is_degen_quad_or_conic(devPts)) {
349 SkPoint* pts = lines->push_back_n(4);
350 pts[0] = devPts[0];
351 pts[1] = devPts[1];
352 pts[2] = devPts[1];
353 pts[3] = devPts[2];
354 if (verbsInContour == 0 && i == 0 && pts[0] == pts[1] &&
355 pts[2] == pts[3]) {
356 seenZeroLengthVerb = true;
357 zeroVerbPt = pts[0];
358 }
359 } else {
360 // when in perspective keep conics in src space
361 SkPoint* cPts = persp ? chopPnts : devPts;
362 SkPoint* pts = conics->push_back_n(3);
363 pts[0] = cPts[0];
364 pts[1] = cPts[1];
365 pts[2] = cPts[2];
366 conicWeights->push_back() = dst[i].fW;
367 }
368 }
369 }
370 }
371 verbsInContour++;
372 break;
373 case SkPath::kMove_Verb:
374 // New contour (and last one was unclosed). If it was just a zero length drawing
375 // operation, and we're supposed to draw caps, then add a tiny line.
376 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
377 SkPoint* pts = lines->push_back_n(2);
378 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
379 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
380 }
381 verbsInContour = 0;
382 seenZeroLengthVerb = false;
383 break;
384 case SkPath::kLine_Verb: {
385 SkPoint devPts[2];
386 m.mapPoints(devPts, pathPts, 2);
387 bounds.setBounds(devPts, 2);
388 bounds.outset(SK_Scalar1, SK_Scalar1);
389 bounds.roundOut(&ibounds);
390 if (SkIRect::Intersects(devClipBounds, ibounds)) {
391 SkPoint* pts = lines->push_back_n(2);
392 pts[0] = devPts[0];
393 pts[1] = devPts[1];
394 if (verbsInContour == 0 && pts[0] == pts[1]) {
395 seenZeroLengthVerb = true;
396 zeroVerbPt = pts[0];
397 }
398 }
399 verbsInContour++;
400 break;
401 }
402 case SkPath::kQuad_Verb: {
403 SkPoint choppedPts[5];
404 // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
405 // When it is degenerate it allows the approximation with lines to work since the
406 // chop point (if there is one) will be at the parabola's vertex. In the nearly
407 // degenerate the QuadUVMatrix computed for the points is almost singular which
408 // can cause rendering artifacts.
409 int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
410 for (int i = 0; i < n; ++i) {
411 addSrcChoppedQuad(choppedPts + i * 2, !verbsInContour && 0 == i);
412 }
413 verbsInContour++;
414 break;
415 }
416 case SkPath::kCubic_Verb: {
417 SkPoint devPts[4];
418 m.mapPoints(devPts, pathPts, 4);
419 bounds.setBounds(devPts, 4);
420 bounds.outset(SK_Scalar1, SK_Scalar1);
421 bounds.roundOut(&ibounds);
422 if (SkIRect::Intersects(devClipBounds, ibounds)) {
423 PREALLOC_PTARRAY(32) q;
424 // We convert cubics to quadratics (for now).
425 // In perspective have to do conversion in src space.
426 if (persp) {
427 SkScalar tolScale =
428 GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, path.getBounds());
429 GrPathUtils::convertCubicToQuads(pathPts, tolScale, &q);
430 } else {
431 GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, &q);
432 }
433 for (int i = 0; i < q.count(); i += 3) {
434 if (persp) {
435 addSrcChoppedQuad(&q[i], !verbsInContour && 0 == i);
436 } else {
437 addChoppedQuad(nullptr, &q[i], !verbsInContour && 0 == i);
438 }
439 }
440 }
441 verbsInContour++;
442 break;
443 }
444 case SkPath::kClose_Verb:
445 // Contour is closed, so we don't need to grow the starting line, unless it's
446 // *just* a zero length subpath. (SVG Spec 11.4, 'stroke').
447 if (capLength > 0) {
448 if (seenZeroLengthVerb && verbsInContour == 1) {
449 SkPoint* pts = lines->push_back_n(2);
450 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
451 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
452 } else if (verbsInContour == 0) {
453 // Contour was (moveTo, close). Add a line.
454 SkPoint devPts[2];
455 m.mapPoints(devPts, pathPts, 1);
456 devPts[1] = devPts[0];
457 bounds.setBounds(devPts, 2);
458 bounds.outset(SK_Scalar1, SK_Scalar1);
459 bounds.roundOut(&ibounds);
460 if (SkIRect::Intersects(devClipBounds, ibounds)) {
461 SkPoint* pts = lines->push_back_n(2);
462 pts[0] = SkPoint::Make(devPts[0].fX - capLength, devPts[0].fY);
463 pts[1] = SkPoint::Make(devPts[1].fX + capLength, devPts[1].fY);
464 }
465 }
466 }
467 break;
468 case SkPath::kDone_Verb:
469 if (seenZeroLengthVerb && verbsInContour == 1 && capLength > 0) {
470 // Path ended with a dangling (moveTo, line|quad|etc). If the final verb is
471 // degenerate, we need to draw a line.
472 SkPoint* pts = lines->push_back_n(2);
473 pts[0] = SkPoint::Make(zeroVerbPt.fX - capLength, zeroVerbPt.fY);
474 pts[1] = SkPoint::Make(zeroVerbPt.fX + capLength, zeroVerbPt.fY);
475 }
476 return totalQuadCount;
477 }
478 }
479 }
480
481 struct LineVertex {
482 SkPoint fPos;
483 float fCoverage;
484 };
485
486 struct BezierVertex {
487 SkPoint fPos;
488 union {
489 struct {
490 SkScalar fKLM[3];
491 } fConic;
492 SkVector fQuadCoord;
493 struct {
494 SkScalar fBogus[4];
495 };
496 };
497 };
498
499 static_assert(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
500
intersect_lines(const SkPoint & ptA,const SkVector & normA,const SkPoint & ptB,const SkVector & normB,SkPoint * result)501 void intersect_lines(const SkPoint& ptA, const SkVector& normA,
502 const SkPoint& ptB, const SkVector& normB,
503 SkPoint* result) {
504
505 SkScalar lineAW = -normA.dot(ptA);
506 SkScalar lineBW = -normB.dot(ptB);
507
508 SkScalar wInv = normA.fX * normB.fY - normA.fY * normB.fX;
509 wInv = SkScalarInvert(wInv);
510 if (!SkScalarIsFinite(wInv)) {
511 // lines are parallel, pick the point in between
512 *result = (ptA + ptB)*SK_ScalarHalf;
513 *result += normA;
514 } else {
515 result->fX = normA.fY * lineBW - lineAW * normB.fY;
516 result->fX *= wInv;
517
518 result->fY = lineAW * normB.fX - normA.fX * lineBW;
519 result->fY *= wInv;
520 }
521 }
522
set_uv_quad(const SkPoint qpts[3],BezierVertex verts[kQuadNumVertices])523 void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) {
524 // this should be in the src space, not dev coords, when we have perspective
525 GrPathUtils::QuadUVMatrix DevToUV(qpts);
526 DevToUV.apply(verts, kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint));
527 }
528
bloat_quad(const SkPoint qpts[3],const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex verts[kQuadNumVertices])529 bool bloat_quad(const SkPoint qpts[3],
530 const SkMatrix* toDevice,
531 const SkMatrix* toSrc,
532 BezierVertex verts[kQuadNumVertices]) {
533 SkASSERT(!toDevice == !toSrc);
534 // original quad is specified by tri a,b,c
535 SkPoint a = qpts[0];
536 SkPoint b = qpts[1];
537 SkPoint c = qpts[2];
538
539 if (toDevice) {
540 toDevice->mapPoints(&a, 1);
541 toDevice->mapPoints(&b, 1);
542 toDevice->mapPoints(&c, 1);
543 }
544 // make a new poly where we replace a and c by a 1-pixel wide edges orthog
545 // to edges ab and bc:
546 //
547 // before | after
548 // | b0
549 // b |
550 // |
551 // | a0 c0
552 // a c | a1 c1
553 //
554 // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
555 // respectively.
556 BezierVertex& a0 = verts[0];
557 BezierVertex& a1 = verts[1];
558 BezierVertex& b0 = verts[2];
559 BezierVertex& c0 = verts[3];
560 BezierVertex& c1 = verts[4];
561
562 SkVector ab = b;
563 ab -= a;
564 SkVector ac = c;
565 ac -= a;
566 SkVector cb = b;
567 cb -= c;
568
569 // After the transform (or due to floating point math) we might have a line,
570 // try to do something reasonable
571
572 bool abNormalized = ab.normalize();
573 bool cbNormalized = cb.normalize();
574
575 if (!abNormalized) {
576 if (!cbNormalized) {
577 return false; // Quad is degenerate so we won't add it.
578 }
579
580 ab = cb;
581 }
582
583 if (!cbNormalized) {
584 cb = ab;
585 }
586
587 // We should have already handled degenerates
588 SkASSERT(ab.length() > 0 && cb.length() > 0);
589
590 SkVector abN = SkPointPriv::MakeOrthog(ab, SkPointPriv::kLeft_Side);
591 if (abN.dot(ac) > 0) {
592 abN.negate();
593 }
594
595 SkVector cbN = SkPointPriv::MakeOrthog(cb, SkPointPriv::kLeft_Side);
596 if (cbN.dot(ac) < 0) {
597 cbN.negate();
598 }
599
600 a0.fPos = a;
601 a0.fPos += abN;
602 a1.fPos = a;
603 a1.fPos -= abN;
604
605 if (toDevice && SkPointPriv::LengthSqd(ac) <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
606 c = b;
607 }
608 c0.fPos = c;
609 c0.fPos += cbN;
610 c1.fPos = c;
611 c1.fPos -= cbN;
612
613 intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
614
615 if (toSrc) {
616 SkMatrixPriv::MapPointsWithStride(*toSrc, &verts[0].fPos, sizeof(BezierVertex),
617 kQuadNumVertices);
618 }
619
620 return true;
621 }
622
623 // Equations based off of Loop-Blinn Quadratic GPU Rendering
624 // Input Parametric:
625 // P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
626 // Output Implicit:
627 // f(x, y, w) = f(P) = K^2 - LM
628 // K = dot(k, P), L = dot(l, P), M = dot(m, P)
629 // k, l, m are calculated in function GrPathUtils::getConicKLM
set_conic_coeffs(const SkPoint p[3],BezierVertex verts[kQuadNumVertices],const SkScalar weight)630 void set_conic_coeffs(const SkPoint p[3],
631 BezierVertex verts[kQuadNumVertices],
632 const SkScalar weight) {
633 SkMatrix klm;
634
635 GrPathUtils::getConicKLM(p, weight, &klm);
636
637 for (int i = 0; i < kQuadNumVertices; ++i) {
638 const SkPoint3 pt3 = {verts[i].fPos.x(), verts[i].fPos.y(), 1.f};
639 klm.mapHomogeneousPoints((SkPoint3* ) verts[i].fConic.fKLM, &pt3, 1);
640 }
641 }
642
add_conics(const SkPoint p[3],const SkScalar weight,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)643 void add_conics(const SkPoint p[3],
644 const SkScalar weight,
645 const SkMatrix* toDevice,
646 const SkMatrix* toSrc,
647 BezierVertex** vert) {
648 if (bloat_quad(p, toDevice, toSrc, *vert)) {
649 set_conic_coeffs(p, *vert, weight);
650 *vert += kQuadNumVertices;
651 }
652 }
653
add_quads(const SkPoint p[3],int subdiv,const SkMatrix * toDevice,const SkMatrix * toSrc,BezierVertex ** vert)654 void add_quads(const SkPoint p[3],
655 int subdiv,
656 const SkMatrix* toDevice,
657 const SkMatrix* toSrc,
658 BezierVertex** vert) {
659 SkASSERT(subdiv >= 0);
660 // temporary vertex storage to avoid reading the vertex buffer
661 BezierVertex outVerts[kQuadNumVertices] = {};
662
663 // storage for the chopped quad
664 // pts 0,1,2 are the first quad, and 2,3,4 the second quad
665 SkPoint choppedQuadPts[5];
666 // start off with our original curve in the second quad slot
667 memcpy(&choppedQuadPts[2], p, 3*sizeof(SkPoint));
668
669 int stepCount = 1 << subdiv;
670 while (stepCount > 1) {
671 // The general idea is:
672 // * chop the quad using pts 2,3,4 as the input
673 // * write out verts using pts 0,1,2
674 // * now 2,3,4 is the remainder of the curve, chop again until all subdivisions are done
675 SkScalar h = 1.f / stepCount;
676 SkChopQuadAt(&choppedQuadPts[2], choppedQuadPts, h);
677
678 if (bloat_quad(choppedQuadPts, toDevice, toSrc, outVerts)) {
679 set_uv_quad(choppedQuadPts, outVerts);
680 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
681 *vert += kQuadNumVertices;
682 }
683 --stepCount;
684 }
685
686 // finish up, write out the final quad
687 if (bloat_quad(&choppedQuadPts[2], toDevice, toSrc, outVerts)) {
688 set_uv_quad(&choppedQuadPts[2], outVerts);
689 memcpy(*vert, outVerts, kQuadNumVertices * sizeof(BezierVertex));
690 *vert += kQuadNumVertices;
691 }
692 }
693
add_line(const SkPoint p[2],const SkMatrix * toSrc,uint8_t coverage,LineVertex ** vert)694 void add_line(const SkPoint p[2],
695 const SkMatrix* toSrc,
696 uint8_t coverage,
697 LineVertex** vert) {
698 const SkPoint& a = p[0];
699 const SkPoint& b = p[1];
700
701 SkVector ortho, vec = b;
702 vec -= a;
703
704 SkScalar lengthSqd = SkPointPriv::LengthSqd(vec);
705
706 if (vec.setLength(SK_ScalarHalf)) {
707 // Create a vector orthogonal to 'vec' and of unit length
708 ortho.fX = 2.0f * vec.fY;
709 ortho.fY = -2.0f * vec.fX;
710
711 float floatCoverage = GrNormalizeByteToFloat(coverage);
712
713 if (lengthSqd >= 1.0f) {
714 // Relative to points a and b:
715 // The inner vertices are inset half a pixel along the line a,b
716 (*vert)[0].fPos = a + vec;
717 (*vert)[0].fCoverage = floatCoverage;
718 (*vert)[1].fPos = b - vec;
719 (*vert)[1].fCoverage = floatCoverage;
720 } else {
721 // The inner vertices are inset a distance of length(a,b) from the outer edge of
722 // geometry. For the "a" inset this is the same as insetting from b by half a pixel.
723 // The coverage is then modulated by the length. This gives us the correct
724 // coverage for rects shorter than a pixel as they get translated subpixel amounts
725 // inside of a pixel.
726 SkScalar length = SkScalarSqrt(lengthSqd);
727 (*vert)[0].fPos = b - vec;
728 (*vert)[0].fCoverage = floatCoverage * length;
729 (*vert)[1].fPos = a + vec;
730 (*vert)[1].fCoverage = floatCoverage * length;
731 }
732 // Relative to points a and b:
733 // The outer vertices are outset half a pixel along the line a,b and then a whole pixel
734 // orthogonally.
735 (*vert)[2].fPos = a - vec + ortho;
736 (*vert)[2].fCoverage = 0;
737 (*vert)[3].fPos = b + vec + ortho;
738 (*vert)[3].fCoverage = 0;
739 (*vert)[4].fPos = a - vec - ortho;
740 (*vert)[4].fCoverage = 0;
741 (*vert)[5].fPos = b + vec - ortho;
742 (*vert)[5].fCoverage = 0;
743
744 if (toSrc) {
745 SkMatrixPriv::MapPointsWithStride(*toSrc, &(*vert)->fPos, sizeof(LineVertex),
746 kLineSegNumVertices);
747 }
748 } else {
749 // just make it degenerate and likely offscreen
750 for (int i = 0; i < kLineSegNumVertices; ++i) {
751 (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
752 }
753 }
754
755 *vert += kLineSegNumVertices;
756 }
757
758 ///////////////////////////////////////////////////////////////////////////////
759
760 class AAHairlineOp final : public GrMeshDrawOp {
761 private:
762 using Helper = GrSimpleMeshDrawOpHelperWithStencil;
763
764 public:
765 DEFINE_OP_CLASS_ID
766
Make(GrRecordingContext * context,GrPaint && paint,const SkMatrix & viewMatrix,const SkPath & path,const GrStyle & style,const SkIRect & devClipBounds,const GrUserStencilSettings * stencilSettings)767 static GrOp::Owner Make(GrRecordingContext* context,
768 GrPaint&& paint,
769 const SkMatrix& viewMatrix,
770 const SkPath& path,
771 const GrStyle& style,
772 const SkIRect& devClipBounds,
773 const GrUserStencilSettings* stencilSettings) {
774 SkScalar hairlineCoverage;
775 uint8_t newCoverage = 0xff;
776 if (GrIsStrokeHairlineOrEquivalent(style, viewMatrix, &hairlineCoverage)) {
777 newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff);
778 }
779
780 const SkStrokeRec& stroke = style.strokeRec();
781 SkScalar capLength = SkPaint::kButt_Cap != stroke.getCap() ? hairlineCoverage * 0.5f : 0.0f;
782
783 return Helper::FactoryHelper<AAHairlineOp>(context, std::move(paint), newCoverage,
784 viewMatrix, path,
785 devClipBounds, capLength, stencilSettings);
786 }
787
AAHairlineOp(GrProcessorSet * processorSet,const SkPMColor4f & color,uint8_t coverage,const SkMatrix & viewMatrix,const SkPath & path,SkIRect devClipBounds,SkScalar capLength,const GrUserStencilSettings * stencilSettings)788 AAHairlineOp(GrProcessorSet* processorSet,
789 const SkPMColor4f& color,
790 uint8_t coverage,
791 const SkMatrix& viewMatrix,
792 const SkPath& path,
793 SkIRect devClipBounds,
794 SkScalar capLength,
795 const GrUserStencilSettings* stencilSettings)
796 : INHERITED(ClassID())
797 , fHelper(processorSet, GrAAType::kCoverage, stencilSettings)
798 , fColor(color)
799 , fCoverage(coverage) {
800 fPaths.emplace_back(PathData{viewMatrix, path, devClipBounds, capLength});
801
802 this->setTransformedBounds(path.getBounds(), viewMatrix, HasAABloat::kYes,
803 IsHairline::kYes);
804 }
805
name() const806 const char* name() const override { return "AAHairlineOp"; }
807
visitProxies(const GrVisitProxyFunc & func) const808 void visitProxies(const GrVisitProxyFunc& func) const override {
809
810 bool visited = false;
811 for (int i = 0; i < 3; ++i) {
812 if (fProgramInfos[i]) {
813 fProgramInfos[i]->visitFPProxies(func);
814 visited = true;
815 }
816 }
817
818 if (!visited) {
819 fHelper.visitProxies(func);
820 }
821 }
822
fixedFunctionFlags() const823 FixedFunctionFlags fixedFunctionFlags() const override { return fHelper.fixedFunctionFlags(); }
824
finalize(const GrCaps & caps,const GrAppliedClip * clip,GrClampType clampType)825 GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
826 GrClampType clampType) override {
827 // This Op uses uniform (not vertex) color, so doesn't need to track wide color.
828 return fHelper.finalizeProcessors(caps, clip, clampType,
829 GrProcessorAnalysisCoverage::kSingleChannel, &fColor,
830 nullptr);
831 }
832
833 enum class Program : uint8_t {
834 kNone = 0x0,
835 kLine = 0x1,
836 kQuad = 0x2,
837 kConic = 0x4,
838 };
839
840 private:
841 void makeLineProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
842 const GrSurfaceProxyView& writeView,
843 bool usesMSAASurface,
844 const SkMatrix* geometryProcessorViewM,
845 const SkMatrix* geometryProcessorLocalM,
846 GrXferBarrierFlags renderPassXferBarriers,
847 GrLoadOp colorLoadOp);
848 void makeQuadProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
849 const GrSurfaceProxyView& writeView,
850 bool usesMSAASurface,
851 const SkMatrix* geometryProcessorViewM,
852 const SkMatrix* geometryProcessorLocalM,
853 GrXferBarrierFlags renderPassXferBarriers,
854 GrLoadOp colorLoadOp);
855 void makeConicProgramInfo(const GrCaps&, SkArenaAlloc*, const GrPipeline*,
856 const GrSurfaceProxyView& writeView,
857 bool usesMSAASurface,
858 const SkMatrix* geometryProcessorViewM,
859 const SkMatrix* geometryProcessorLocalM,
860 GrXferBarrierFlags renderPassXferBarriers,
861 GrLoadOp colorLoadOp);
862
programInfo()863 GrProgramInfo* programInfo() override {
864 // This Op has 3 programInfos and implements its own onPrePrepareDraws so this entry point
865 // should really never be called.
866 SkASSERT(0);
867 return nullptr;
868 }
869
870 Program predictPrograms(const GrCaps*) const;
871
872 void onCreateProgramInfo(const GrCaps*,
873 SkArenaAlloc*,
874 const GrSurfaceProxyView& writeView,
875 bool usesMSAASurface,
876 GrAppliedClip&&,
877 const GrDstProxyView&,
878 GrXferBarrierFlags renderPassXferBarriers,
879 GrLoadOp colorLoadOp) override;
880
881 void onPrePrepareDraws(GrRecordingContext*,
882 const GrSurfaceProxyView& writeView,
883 GrAppliedClip*,
884 const GrDstProxyView&,
885 GrXferBarrierFlags renderPassXferBarriers,
886 GrLoadOp colorLoadOp) override;
887
888 void onPrepareDraws(GrMeshDrawTarget*) override;
889 void onExecute(GrOpFlushState*, const SkRect& chainBounds) override;
890
onCombineIfPossible(GrOp * t,SkArenaAlloc *,const GrCaps & caps)891 CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override {
892 AAHairlineOp* that = t->cast<AAHairlineOp>();
893
894 if (!fHelper.isCompatible(that->fHelper, caps, this->bounds(), that->bounds())) {
895 return CombineResult::kCannotCombine;
896 }
897
898 if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) {
899 return CombineResult::kCannotCombine;
900 }
901
902 // We go to identity if we don't have perspective
903 if (this->viewMatrix().hasPerspective() &&
904 !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) {
905 return CombineResult::kCannotCombine;
906 }
907
908 // TODO we can actually combine hairlines if they are the same color in a kind of bulk
909 // method but we haven't implemented this yet
910 // TODO investigate going to vertex color and coverage?
911 if (this->coverage() != that->coverage()) {
912 return CombineResult::kCannotCombine;
913 }
914
915 if (this->color() != that->color()) {
916 return CombineResult::kCannotCombine;
917 }
918
919 if (fHelper.usesLocalCoords() && !SkMatrixPriv::CheapEqual(this->viewMatrix(),
920 that->viewMatrix())) {
921 return CombineResult::kCannotCombine;
922 }
923
924 fPaths.push_back_n(that->fPaths.count(), that->fPaths.begin());
925 return CombineResult::kMerged;
926 }
927
928 #if GR_TEST_UTILS
onDumpInfo() const929 SkString onDumpInfo() const override {
930 return SkStringPrintf("Color: 0x%08x Coverage: 0x%02x, Count: %d\n%s",
931 fColor.toBytes_RGBA(), fCoverage, fPaths.count(),
932 fHelper.dumpInfo().c_str());
933 }
934 #endif
935
color() const936 const SkPMColor4f& color() const { return fColor; }
coverage() const937 uint8_t coverage() const { return fCoverage; }
viewMatrix() const938 const SkMatrix& viewMatrix() const { return fPaths[0].fViewMatrix; }
939
940 struct PathData {
941 SkMatrix fViewMatrix;
942 SkPath fPath;
943 SkIRect fDevClipBounds;
944 SkScalar fCapLength;
945 };
946
947 SkSTArray<1, PathData, true> fPaths;
948 Helper fHelper;
949 SkPMColor4f fColor;
950 uint8_t fCoverage;
951
952 Program fCharacterization = Program::kNone; // holds a mask of required programs
953 GrSimpleMesh* fMeshes[3] = { nullptr };
954 GrProgramInfo* fProgramInfos[3] = { nullptr };
955
956 using INHERITED = GrMeshDrawOp;
957 };
958
GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)959 GR_MAKE_BITFIELD_CLASS_OPS(AAHairlineOp::Program)
960
961 void AAHairlineOp::makeLineProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
962 const GrPipeline* pipeline,
963 const GrSurfaceProxyView& writeView,
964 bool usesMSAASurface,
965 const SkMatrix* geometryProcessorViewM,
966 const SkMatrix* geometryProcessorLocalM,
967 GrXferBarrierFlags renderPassXferBarriers,
968 GrLoadOp colorLoadOp) {
969 if (fProgramInfos[0]) {
970 return;
971 }
972
973 GrGeometryProcessor* lineGP;
974 {
975 using namespace GrDefaultGeoProcFactory;
976
977 Color color(this->color());
978 LocalCoords localCoords(fHelper.usesLocalCoords() ? LocalCoords::kUsePosition_Type
979 : LocalCoords::kUnused_Type);
980 localCoords.fMatrix = geometryProcessorLocalM;
981
982 lineGP = GrDefaultGeoProcFactory::Make(arena,
983 color,
984 Coverage::kAttribute_Type,
985 localCoords,
986 *geometryProcessorViewM);
987 SkASSERT(sizeof(LineVertex) == lineGP->vertexStride());
988 }
989
990 fProgramInfos[0] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
991 &caps, arena, pipeline, writeView, usesMSAASurface, lineGP, GrPrimitiveType::kTriangles,
992 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
993 }
994
makeQuadProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)995 void AAHairlineOp::makeQuadProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
996 const GrPipeline* pipeline,
997 const GrSurfaceProxyView& writeView,
998 bool usesMSAASurface,
999 const SkMatrix* geometryProcessorViewM,
1000 const SkMatrix* geometryProcessorLocalM,
1001 GrXferBarrierFlags renderPassXferBarriers,
1002 GrLoadOp colorLoadOp) {
1003 if (fProgramInfos[1]) {
1004 return;
1005 }
1006
1007 GrGeometryProcessor* quadGP = GrQuadEffect::Make(arena,
1008 this->color(),
1009 *geometryProcessorViewM,
1010 caps,
1011 *geometryProcessorLocalM,
1012 fHelper.usesLocalCoords(),
1013 this->coverage());
1014 SkASSERT(sizeof(BezierVertex) == quadGP->vertexStride());
1015
1016 fProgramInfos[1] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1017 &caps, arena, pipeline, writeView, usesMSAASurface, quadGP, GrPrimitiveType::kTriangles,
1018 renderPassXferBarriers, colorLoadOp, fHelper.stencilSettings());
1019 }
1020
makeConicProgramInfo(const GrCaps & caps,SkArenaAlloc * arena,const GrPipeline * pipeline,const GrSurfaceProxyView & writeView,bool usesMSAASurface,const SkMatrix * geometryProcessorViewM,const SkMatrix * geometryProcessorLocalM,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1021 void AAHairlineOp::makeConicProgramInfo(const GrCaps& caps, SkArenaAlloc* arena,
1022 const GrPipeline* pipeline,
1023 const GrSurfaceProxyView& writeView,
1024 bool usesMSAASurface,
1025 const SkMatrix* geometryProcessorViewM,
1026 const SkMatrix* geometryProcessorLocalM,
1027 GrXferBarrierFlags renderPassXferBarriers,
1028 GrLoadOp colorLoadOp) {
1029 if (fProgramInfos[2]) {
1030 return;
1031 }
1032
1033 GrGeometryProcessor* conicGP = GrConicEffect::Make(arena,
1034 this->color(),
1035 *geometryProcessorViewM,
1036 caps,
1037 *geometryProcessorLocalM,
1038 fHelper.usesLocalCoords(),
1039 this->coverage());
1040 SkASSERT(sizeof(BezierVertex) == conicGP->vertexStride());
1041
1042 fProgramInfos[2] = GrSimpleMeshDrawOpHelper::CreateProgramInfo(
1043 &caps, arena, pipeline, writeView, usesMSAASurface, conicGP,
1044 GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp,
1045 fHelper.stencilSettings());
1046 }
1047
predictPrograms(const GrCaps * caps) const1048 AAHairlineOp::Program AAHairlineOp::predictPrograms(const GrCaps* caps) const {
1049 bool convertConicsToQuads = !caps->shaderCaps()->floatIs32Bits();
1050
1051 // When predicting the programs we always include the lineProgram bc it is used as a fallback
1052 // for quads and conics. In non-DDL mode there are cases where it sometimes isn't needed for a
1053 // given path.
1054 Program neededPrograms = Program::kLine;
1055
1056 for (int i = 0; i < fPaths.count(); i++) {
1057 uint32_t mask = fPaths[i].fPath.getSegmentMasks();
1058
1059 if (mask & (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)) {
1060 neededPrograms |= Program::kQuad;
1061 }
1062 if (mask & SkPath::kConic_SegmentMask) {
1063 if (convertConicsToQuads) {
1064 neededPrograms |= Program::kQuad;
1065 } else {
1066 neededPrograms |= Program::kConic;
1067 }
1068 }
1069 }
1070
1071 return neededPrograms;
1072 }
1073
onCreateProgramInfo(const GrCaps * caps,SkArenaAlloc * arena,const GrSurfaceProxyView & writeView,bool usesMSAASurface,GrAppliedClip && appliedClip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1074 void AAHairlineOp::onCreateProgramInfo(const GrCaps* caps,
1075 SkArenaAlloc* arena,
1076 const GrSurfaceProxyView& writeView,
1077 bool usesMSAASurface,
1078 GrAppliedClip&& appliedClip,
1079 const GrDstProxyView& dstProxyView,
1080 GrXferBarrierFlags renderPassXferBarriers,
1081 GrLoadOp colorLoadOp) {
1082 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1083 SkMatrix invert;
1084 if (!this->viewMatrix().invert(&invert)) {
1085 return;
1086 }
1087
1088 // we will transform to identity space if the viewmatrix does not have perspective
1089 bool hasPerspective = this->viewMatrix().hasPerspective();
1090 const SkMatrix* geometryProcessorViewM = &SkMatrix::I();
1091 const SkMatrix* geometryProcessorLocalM = &invert;
1092 if (hasPerspective) {
1093 geometryProcessorViewM = &this->viewMatrix();
1094 geometryProcessorLocalM = &SkMatrix::I();
1095 }
1096
1097 auto pipeline = fHelper.createPipeline(caps, arena, writeView.swizzle(),
1098 std::move(appliedClip), dstProxyView);
1099
1100 if (fCharacterization & Program::kLine) {
1101 this->makeLineProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1102 geometryProcessorViewM, geometryProcessorLocalM,
1103 renderPassXferBarriers, colorLoadOp);
1104 }
1105 if (fCharacterization & Program::kQuad) {
1106 this->makeQuadProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1107 geometryProcessorViewM, geometryProcessorLocalM,
1108 renderPassXferBarriers, colorLoadOp);
1109 }
1110 if (fCharacterization & Program::kConic) {
1111 this->makeConicProgramInfo(*caps, arena, pipeline, writeView, usesMSAASurface,
1112 geometryProcessorViewM, geometryProcessorLocalM,
1113 renderPassXferBarriers, colorLoadOp);
1114
1115 }
1116 }
1117
onPrePrepareDraws(GrRecordingContext * context,const GrSurfaceProxyView & writeView,GrAppliedClip * clip,const GrDstProxyView & dstProxyView,GrXferBarrierFlags renderPassXferBarriers,GrLoadOp colorLoadOp)1118 void AAHairlineOp::onPrePrepareDraws(GrRecordingContext* context,
1119 const GrSurfaceProxyView& writeView,
1120 GrAppliedClip* clip,
1121 const GrDstProxyView& dstProxyView,
1122 GrXferBarrierFlags renderPassXferBarriers,
1123 GrLoadOp colorLoadOp) {
1124 SkArenaAlloc* arena = context->priv().recordTimeAllocator();
1125 const GrCaps* caps = context->priv().caps();
1126
1127 // http://skbug.com/12201 -- DDL does not yet support DMSAA.
1128 bool usesMSAASurface = writeView.asRenderTargetProxy()->numSamples() > 1;
1129
1130 // This is equivalent to a GrOpFlushState::detachAppliedClip
1131 GrAppliedClip appliedClip = clip ? std::move(*clip) : GrAppliedClip::Disabled();
1132
1133 // Conservatively predict which programs will be required
1134 fCharacterization = this->predictPrograms(caps);
1135
1136 this->createProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip),
1137 dstProxyView, renderPassXferBarriers, colorLoadOp);
1138
1139 context->priv().recordProgramInfo(fProgramInfos[0]);
1140 context->priv().recordProgramInfo(fProgramInfos[1]);
1141 context->priv().recordProgramInfo(fProgramInfos[2]);
1142 }
1143
onPrepareDraws(GrMeshDrawTarget * target)1144 void AAHairlineOp::onPrepareDraws(GrMeshDrawTarget* target) {
1145 // Setup the viewmatrix and localmatrix for the GrGeometryProcessor.
1146 SkMatrix invert;
1147 if (!this->viewMatrix().invert(&invert)) {
1148 return;
1149 }
1150
1151 // we will transform to identity space if the viewmatrix does not have perspective
1152 const SkMatrix* toDevice = nullptr;
1153 const SkMatrix* toSrc = nullptr;
1154 if (this->viewMatrix().hasPerspective()) {
1155 toDevice = &this->viewMatrix();
1156 toSrc = &invert;
1157 }
1158
1159 SkDEBUGCODE(Program predictedPrograms = this->predictPrograms(&target->caps()));
1160 Program actualPrograms = Program::kNone;
1161
1162 // This is hand inlined for maximum performance.
1163 PREALLOC_PTARRAY(128) lines;
1164 PREALLOC_PTARRAY(128) quads;
1165 PREALLOC_PTARRAY(128) conics;
1166 IntArray qSubdivs;
1167 FloatArray cWeights;
1168 int quadCount = 0;
1169
1170 int instanceCount = fPaths.count();
1171 bool convertConicsToQuads = !target->caps().shaderCaps()->floatIs32Bits();
1172 for (int i = 0; i < instanceCount; i++) {
1173 const PathData& args = fPaths[i];
1174 quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds,
1175 args.fCapLength, convertConicsToQuads, &lines, &quads,
1176 &conics, &qSubdivs, &cWeights);
1177 }
1178
1179 int lineCount = lines.count() / 2;
1180 int conicCount = conics.count() / 3;
1181 int quadAndConicCount = conicCount + quadCount;
1182
1183 static constexpr int kMaxLines = SK_MaxS32 / kLineSegNumVertices;
1184 static constexpr int kMaxQuadsAndConics = SK_MaxS32 / kQuadNumVertices;
1185 if (lineCount > kMaxLines || quadAndConicCount > kMaxQuadsAndConics) {
1186 return;
1187 }
1188
1189 // do lines first
1190 if (lineCount) {
1191 SkASSERT(predictedPrograms & Program::kLine);
1192 actualPrograms |= Program::kLine;
1193
1194 sk_sp<const GrBuffer> linesIndexBuffer = get_lines_index_buffer(target->resourceProvider());
1195
1196 GrMeshDrawOp::PatternHelper helper(target, GrPrimitiveType::kTriangles, sizeof(LineVertex),
1197 std::move(linesIndexBuffer), kLineSegNumVertices,
1198 kIdxsPerLineSeg, lineCount, kLineSegsNumInIdxBuffer);
1199
1200 LineVertex* verts = reinterpret_cast<LineVertex*>(helper.vertices());
1201 if (!verts) {
1202 SkDebugf("Could not allocate vertices\n");
1203 return;
1204 }
1205
1206 for (int i = 0; i < lineCount; ++i) {
1207 add_line(&lines[2*i], toSrc, this->coverage(), &verts);
1208 }
1209
1210 fMeshes[0] = helper.mesh();
1211 }
1212
1213 if (quadCount || conicCount) {
1214 sk_sp<const GrBuffer> vertexBuffer;
1215 int firstVertex;
1216
1217 sk_sp<const GrBuffer> quadsIndexBuffer = get_quads_index_buffer(target->resourceProvider());
1218
1219 int vertexCount = kQuadNumVertices * quadAndConicCount;
1220 void* vertices = target->makeVertexSpace(sizeof(BezierVertex), vertexCount, &vertexBuffer,
1221 &firstVertex);
1222
1223 if (!vertices || !quadsIndexBuffer) {
1224 SkDebugf("Could not allocate vertices\n");
1225 return;
1226 }
1227
1228 // Setup vertices
1229 BezierVertex* bezVerts = reinterpret_cast<BezierVertex*>(vertices);
1230
1231 int unsubdivQuadCnt = quads.count() / 3;
1232 for (int i = 0; i < unsubdivQuadCnt; ++i) {
1233 SkASSERT(qSubdivs[i] >= 0);
1234 if (!quads[3*i].isFinite() || !quads[3*i+1].isFinite() || !quads[3*i+2].isFinite()) {
1235 return;
1236 }
1237 add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &bezVerts);
1238 }
1239
1240 // Start Conics
1241 for (int i = 0; i < conicCount; ++i) {
1242 add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &bezVerts);
1243 }
1244
1245 if (quadCount > 0) {
1246 SkASSERT(predictedPrograms & Program::kQuad);
1247 actualPrograms |= Program::kQuad;
1248
1249 fMeshes[1] = target->allocMesh();
1250 fMeshes[1]->setIndexedPatterned(quadsIndexBuffer, kIdxsPerQuad, quadCount,
1251 kQuadsNumInIdxBuffer, vertexBuffer, kQuadNumVertices,
1252 firstVertex);
1253 firstVertex += quadCount * kQuadNumVertices;
1254 }
1255
1256 if (conicCount > 0) {
1257 SkASSERT(predictedPrograms & Program::kConic);
1258 actualPrograms |= Program::kConic;
1259
1260 fMeshes[2] = target->allocMesh();
1261 fMeshes[2]->setIndexedPatterned(std::move(quadsIndexBuffer), kIdxsPerQuad, conicCount,
1262 kQuadsNumInIdxBuffer, std::move(vertexBuffer),
1263 kQuadNumVertices, firstVertex);
1264 }
1265 }
1266
1267 // In DDL mode this will replace the predicted program requirements with the actual ones.
1268 // However, we will already have surfaced the predicted programs to the DDL.
1269 fCharacterization = actualPrograms;
1270 }
1271
onExecute(GrOpFlushState * flushState,const SkRect & chainBounds)1272 void AAHairlineOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) {
1273 this->createProgramInfo(flushState);
1274
1275 for (int i = 0; i < 3; ++i) {
1276 if (fProgramInfos[i] && fMeshes[i]) {
1277 flushState->bindPipelineAndScissorClip(*fProgramInfos[i], chainBounds);
1278 flushState->bindTextures(fProgramInfos[i]->geomProc(), nullptr,
1279 fProgramInfos[i]->pipeline());
1280 flushState->drawMesh(*fMeshes[i]);
1281 }
1282 }
1283 }
1284
1285 } // anonymous namespace
1286
1287 ///////////////////////////////////////////////////////////////////////////////////////////////////
1288
1289 #if GR_TEST_UTILS
1290
GR_DRAW_OP_TEST_DEFINE(AAHairlineOp)1291 GR_DRAW_OP_TEST_DEFINE(AAHairlineOp) {
1292 SkMatrix viewMatrix = GrTest::TestMatrix(random);
1293 const SkPath& path = GrTest::TestPath(random);
1294 SkIRect devClipBounds;
1295 devClipBounds.setEmpty();
1296 return AAHairlineOp::Make(context, std::move(paint), viewMatrix, path,
1297 GrStyle::SimpleHairline(), devClipBounds,
1298 GrGetRandomStencil(random, context));
1299 }
1300
1301 #endif
1302
1303 ///////////////////////////////////////////////////////////////////////////////////////////////////
1304
1305 namespace skgpu::v1 {
1306
onCanDrawPath(const CanDrawPathArgs & args) const1307 PathRenderer::CanDrawPath AAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
1308 if (GrAAType::kCoverage != args.fAAType) {
1309 return CanDrawPath::kNo;
1310 }
1311
1312 if (!GrIsStrokeHairlineOrEquivalent(args.fShape->style(), *args.fViewMatrix, nullptr)) {
1313 return CanDrawPath::kNo;
1314 }
1315
1316 // We don't currently handle dashing in this class though perhaps we should.
1317 if (args.fShape->style().pathEffect()) {
1318 return CanDrawPath::kNo;
1319 }
1320
1321 if (SkPath::kLine_SegmentMask == args.fShape->segmentMask() ||
1322 args.fCaps->shaderCaps()->shaderDerivativeSupport()) {
1323 return CanDrawPath::kYes;
1324 }
1325
1326 return CanDrawPath::kNo;
1327 }
1328
1329
onDrawPath(const DrawPathArgs & args)1330 bool AAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) {
1331 GR_AUDIT_TRAIL_AUTO_FRAME(args.fContext->priv().auditTrail(),
1332 "AAHairlinePathRenderer::onDrawPath");
1333 SkASSERT(args.fSurfaceDrawContext->numSamples() <= 1);
1334
1335 SkPath path;
1336 args.fShape->asPath(&path);
1337 GrOp::Owner op =
1338 AAHairlineOp::Make(args.fContext, std::move(args.fPaint), *args.fViewMatrix, path,
1339 args.fShape->style(), *args.fClipConservativeBounds,
1340 args.fUserStencilSettings);
1341 args.fSurfaceDrawContext->addDrawOp(args.fClip, std::move(op));
1342 return true;
1343 }
1344
1345 } // namespace skgpu::v1
1346
1347