1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/utils/SkShadowUtils.h"
9
10 #include "include/core/SkCanvas.h"
11 #include "include/core/SkColorFilter.h"
12 #include "include/core/SkMaskFilter.h"
13 #include "include/core/SkPath.h"
14 #include "include/core/SkString.h"
15 #include "include/core/SkVertices.h"
16 #include "include/private/SkColorData.h"
17 #include "include/private/SkIDChangeListener.h"
18 #include "include/private/SkTPin.h"
19 #include "include/utils/SkRandom.h"
20 #include "src/core/SkBlurMask.h"
21 #include "src/core/SkColorFilterBase.h"
22 #include "src/core/SkColorFilterPriv.h"
23 #include "src/core/SkDevice.h"
24 #include "src/core/SkDrawShadowInfo.h"
25 #include "src/core/SkEffectPriv.h"
26 #include "src/core/SkPathPriv.h"
27 #include "src/core/SkRasterPipeline.h"
28 #include "src/core/SkResourceCache.h"
29 #include "src/core/SkRuntimeEffectPriv.h"
30 #include "src/core/SkTLazy.h"
31 #include "src/core/SkVM.h"
32 #include "src/core/SkVerticesPriv.h"
33 #include "src/utils/SkShadowTessellator.h"
34 #include <new>
35 #if SK_SUPPORT_GPU
36 #include "src/gpu/effects/GrSkSLFP.h"
37 #include "src/gpu/geometry/GrStyledShape.h"
38 #endif
39
40 /**
41 * Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
42 * then blends with the color's G value.
43 * Final result is black with alpha of Gaussian(B)*G.
44 * The assumption is that the original color's alpha is 1.
45 */
46 class SkGaussianColorFilter : public SkColorFilterBase {
47 public:
SkGaussianColorFilter()48 SkGaussianColorFilter() : INHERITED() {}
49
50 #if SK_SUPPORT_GPU
51 GrFPResult asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,
52 GrRecordingContext*, const GrColorInfo&) const override;
53 #endif
54
55 protected:
flatten(SkWriteBuffer &) const56 void flatten(SkWriteBuffer&) const override {}
onAppendStages(const SkStageRec & rec,bool shaderIsOpaque) const57 bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override {
58 rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba);
59 return true;
60 }
61
onProgram(skvm::Builder * p,skvm::Color c,const SkColorInfo & dst,skvm::Uniforms *,SkArenaAlloc *) const62 skvm::Color onProgram(skvm::Builder* p, skvm::Color c, const SkColorInfo& dst, skvm::Uniforms*,
63 SkArenaAlloc*) const override {
64 // x = 1 - x;
65 // exp(-x * x * 4) - 0.018f;
66 // ... now approximate with quartic
67 //
68 skvm::F32 x = p->splat(-2.26661229133605957031f);
69 x = c.a * x + 2.89795351028442382812f;
70 x = c.a * x + 0.21345567703247070312f;
71 x = c.a * x + 0.15489584207534790039f;
72 x = c.a * x + 0.00030726194381713867f;
73 return {x, x, x, x};
74 }
75
76 private:
77 SK_FLATTENABLE_HOOKS(SkGaussianColorFilter)
78
79 using INHERITED = SkColorFilterBase;
80 };
81
CreateProc(SkReadBuffer &)82 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
83 return SkColorFilterPriv::MakeGaussian();
84 }
85
86 #if SK_SUPPORT_GPU
87
asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,GrRecordingContext *,const GrColorInfo &) const88 GrFPResult SkGaussianColorFilter::asFragmentProcessor(std::unique_ptr<GrFragmentProcessor> inputFP,
89 GrRecordingContext*,
90 const GrColorInfo&) const {
91 static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"(
92 half4 main(half4 inColor) {
93 half factor = 1 - inColor.a;
94 factor = exp(-factor * factor * 4) - 0.018;
95 return half4(factor);
96 }
97 )");
98 SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect));
99 return GrFPSuccess(
100 GrSkSLFP::Make(effect, "gaussian_fp", std::move(inputFP), GrSkSLFP::OptFlags::kNone));
101 }
102 #endif
103
MakeGaussian()104 sk_sp<SkColorFilter> SkColorFilterPriv::MakeGaussian() {
105 return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
106 }
107
108 ///////////////////////////////////////////////////////////////////////////////////////////////////
109
110 namespace {
111
resource_cache_shared_id()112 uint64_t resource_cache_shared_id() {
113 return 0x2020776f64616873llu; // 'shadow '
114 }
115
116 /** Factory for an ambient shadow mesh with particular shadow properties. */
117 struct AmbientVerticesFactory {
118 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
119 bool fTransparent;
120 SkVector fOffset;
121
isCompatible__anondfce38310111::AmbientVerticesFactory122 bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
123 if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
124 return false;
125 }
126 *translate = that.fOffset;
127 return true;
128 }
129
makeVertices__anondfce38310111::AmbientVerticesFactory130 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
131 SkVector* translate) const {
132 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
133 // pick a canonical place to generate shadow
134 SkMatrix noTrans(ctm);
135 if (!ctm.hasPerspective()) {
136 noTrans[SkMatrix::kMTransX] = 0;
137 noTrans[SkMatrix::kMTransY] = 0;
138 }
139 *translate = fOffset;
140 return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
141 }
142 };
143
144 /** Factory for an spot shadow mesh with particular shadow properties. */
145 struct SpotVerticesFactory {
146 enum class OccluderType {
147 // The umbra cannot be dropped out because either the occluder is not opaque,
148 // or the center of the umbra is visible. Uses point light.
149 kPointTransparent,
150 // The umbra can be dropped where it is occluded. Uses point light.
151 kPointOpaquePartialUmbra,
152 // It is known that the entire umbra is occluded. Uses point light.
153 kPointOpaqueNoUmbra,
154 // Uses directional light.
155 kDirectional,
156 // The umbra can't be dropped out. Uses directional light.
157 kDirectionalTransparent,
158 };
159
160 SkVector fOffset;
161 SkPoint fLocalCenter;
162 SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
163 SkPoint3 fDevLightPos;
164 SkScalar fLightRadius;
165 OccluderType fOccluderType;
166
isCompatible__anondfce38310111::SpotVerticesFactory167 bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
168 if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
169 fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
170 return false;
171 }
172 switch (fOccluderType) {
173 case OccluderType::kPointTransparent:
174 case OccluderType::kPointOpaqueNoUmbra:
175 // 'this' and 'that' will either both have no umbra removed or both have all the
176 // umbra removed.
177 *translate = that.fOffset;
178 return true;
179 case OccluderType::kPointOpaquePartialUmbra:
180 // In this case we partially remove the umbra differently for 'this' and 'that'
181 // if the offsets don't match.
182 if (fOffset == that.fOffset) {
183 translate->set(0, 0);
184 return true;
185 }
186 return false;
187 case OccluderType::kDirectional:
188 case OccluderType::kDirectionalTransparent:
189 *translate = that.fOffset - fOffset;
190 return true;
191 }
192 SK_ABORT("Uninitialized occluder type?");
193 }
194
makeVertices__anondfce38310111::SpotVerticesFactory195 sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
196 SkVector* translate) const {
197 bool transparent = fOccluderType == OccluderType::kPointTransparent ||
198 fOccluderType == OccluderType::kDirectionalTransparent;
199 bool directional = fOccluderType == OccluderType::kDirectional ||
200 fOccluderType == OccluderType::kDirectionalTransparent;
201 SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
202 if (directional) {
203 translate->set(0, 0);
204 return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
205 transparent, true);
206 } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) {
207 translate->set(0, 0);
208 return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius,
209 transparent, false);
210 } else {
211 // pick a canonical place to generate shadow, with light centered over path
212 SkMatrix noTrans(ctm);
213 noTrans[SkMatrix::kMTransX] = 0;
214 noTrans[SkMatrix::kMTransY] = 0;
215 SkPoint devCenter(fLocalCenter);
216 noTrans.mapPoints(&devCenter, 1);
217 SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
218 *translate = fOffset;
219 return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
220 centerLightPos, fLightRadius, transparent, false);
221 }
222 }
223 };
224
225 /**
226 * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
227 * records are immutable this is not itself a Rec. When we need to update it we return this on
228 * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
229 * a new Rec with an adjusted size for any deletions/additions.
230 */
231 class CachedTessellations : public SkRefCnt {
232 public:
size() const233 size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
234
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const235 sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
236 SkVector* translate) const {
237 return fAmbientSet.find(ambient, matrix, translate);
238 }
239
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)240 sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
241 const SkMatrix& matrix, SkVector* translate) {
242 return fAmbientSet.add(devPath, ambient, matrix, translate);
243 }
244
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const245 sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
246 SkVector* translate) const {
247 return fSpotSet.find(spot, matrix, translate);
248 }
249
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)250 sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
251 const SkMatrix& matrix, SkVector* translate) {
252 return fSpotSet.add(devPath, spot, matrix, translate);
253 }
254
255 private:
256 template <typename FACTORY, int MAX_ENTRIES>
257 class Set {
258 public:
size() const259 size_t size() const { return fSize; }
260
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const261 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
262 SkVector* translate) const {
263 for (int i = 0; i < MAX_ENTRIES; ++i) {
264 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
265 const SkMatrix& m = fEntries[i].fMatrix;
266 if (matrix.hasPerspective() || m.hasPerspective()) {
267 if (matrix != fEntries[i].fMatrix) {
268 continue;
269 }
270 } else if (matrix.getScaleX() != m.getScaleX() ||
271 matrix.getSkewX() != m.getSkewX() ||
272 matrix.getScaleY() != m.getScaleY() ||
273 matrix.getSkewY() != m.getSkewY()) {
274 continue;
275 }
276 return fEntries[i].fVertices;
277 }
278 }
279 return nullptr;
280 }
281
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)282 sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
283 SkVector* translate) {
284 sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
285 if (!vertices) {
286 return nullptr;
287 }
288 int i;
289 if (fCount < MAX_ENTRIES) {
290 i = fCount++;
291 } else {
292 i = fRandom.nextULessThan(MAX_ENTRIES);
293 fSize -= fEntries[i].fVertices->approximateSize();
294 }
295 fEntries[i].fFactory = factory;
296 fEntries[i].fVertices = vertices;
297 fEntries[i].fMatrix = matrix;
298 fSize += vertices->approximateSize();
299 return vertices;
300 }
301
302 private:
303 struct Entry {
304 FACTORY fFactory;
305 sk_sp<SkVertices> fVertices;
306 SkMatrix fMatrix;
307 };
308 Entry fEntries[MAX_ENTRIES];
309 int fCount = 0;
310 size_t fSize = 0;
311 SkRandom fRandom;
312 };
313
314 Set<AmbientVerticesFactory, 4> fAmbientSet;
315 Set<SpotVerticesFactory, 4> fSpotSet;
316 };
317
318 /**
319 * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
320 * path. The key represents the path's geometry and not any shadow params.
321 */
322 class CachedTessellationsRec : public SkResourceCache::Rec {
323 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)324 CachedTessellationsRec(const SkResourceCache::Key& key,
325 sk_sp<CachedTessellations> tessellations)
326 : fTessellations(std::move(tessellations)) {
327 fKey.reset(new uint8_t[key.size()]);
328 memcpy(fKey.get(), &key, key.size());
329 }
330
getKey() const331 const Key& getKey() const override {
332 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
333 }
334
bytesUsed() const335 size_t bytesUsed() const override { return fTessellations->size(); }
336
getCategory() const337 const char* getCategory() const override { return "tessellated shadow masks"; }
338
refTessellations() const339 sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
340
341 template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const342 sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
343 SkVector* translate) const {
344 return fTessellations->find(factory, matrix, translate);
345 }
346
347 private:
348 std::unique_ptr<uint8_t[]> fKey;
349 sk_sp<CachedTessellations> fTessellations;
350 };
351
352 /**
353 * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
354 * vertices and a translation vector. If the CachedTessellations does not contain a suitable
355 * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
356 * to the caller. The caller will update it and reinsert it back into the cache.
357 */
358 template <typename FACTORY>
359 struct FindContext {
FindContext__anondfce38310111::FindContext360 FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
361 : fViewMatrix(viewMatrix), fFactory(factory) {}
362 const SkMatrix* const fViewMatrix;
363 // If this is valid after Find is called then we found the vertices and they should be drawn
364 // with fTranslate applied.
365 sk_sp<SkVertices> fVertices;
366 SkVector fTranslate = {0, 0};
367
368 // If this is valid after Find then the caller should add the vertices to the tessellation set
369 // and create a new CachedTessellationsRec and insert it into SkResourceCache.
370 sk_sp<CachedTessellations> fTessellationsOnFailure;
371
372 const FACTORY* fFactory;
373 };
374
375 /**
376 * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
377 * the FindContext are used to determine if the vertices are reusable. If so the vertices and
378 * necessary translation vector are set on the FindContext.
379 */
380 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)381 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
382 FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
383 const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
384 findContext->fVertices =
385 rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
386 if (findContext->fVertices) {
387 return true;
388 }
389 // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
390 // manipulated we will add a new Rec.
391 findContext->fTessellationsOnFailure = rec.refTessellations();
392 return false;
393 }
394
395 class ShadowedPath {
396 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)397 ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
398 : fPath(path)
399 , fViewMatrix(viewMatrix)
400 #if SK_SUPPORT_GPU
401 , fShapeForKey(*path, GrStyle::SimpleFill())
402 #endif
403 {}
404
path() const405 const SkPath& path() const { return *fPath; }
viewMatrix() const406 const SkMatrix& viewMatrix() const { return *fViewMatrix; }
407 #if SK_SUPPORT_GPU
408 /** Negative means the vertices should not be cached for this path. */
keyBytes() const409 int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const410 void writeKey(void* key) const {
411 fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
412 }
isRRect(SkRRect * rrect)413 bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
414 #else
keyBytes() const415 int keyBytes() const { return -1; }
writeKey(void * key) const416 void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)417 bool isRRect(SkRRect* rrect) { return false; }
418 #endif
419
420 private:
421 const SkPath* fPath;
422 const SkMatrix* fViewMatrix;
423 #if SK_SUPPORT_GPU
424 GrStyledShape fShapeForKey;
425 #endif
426 };
427
428 // This creates a domain of keys in SkResourceCache used by this file.
429 static void* kNamespace;
430
431 // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
432 class ShadowInvalidator : public SkIDChangeListener {
433 public:
ShadowInvalidator(const SkResourceCache::Key & key)434 ShadowInvalidator(const SkResourceCache::Key& key) {
435 fKey.reset(new uint8_t[key.size()]);
436 memcpy(fKey.get(), &key, key.size());
437 }
438
439 private:
getKey() const440 const SkResourceCache::Key& getKey() const {
441 return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
442 }
443
444 // always purge
FindVisitor(const SkResourceCache::Rec &,void *)445 static bool FindVisitor(const SkResourceCache::Rec&, void*) {
446 return false;
447 }
448
changed()449 void changed() override {
450 SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr);
451 }
452
453 std::unique_ptr<uint8_t[]> fKey;
454 };
455
456 /**
457 * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
458 * they are first found in SkResourceCache.
459 */
460 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty,bool)> drawProc,ShadowedPath & path,SkColor color)461 bool draw_shadow(const FACTORY& factory,
462 std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
463 SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) {
464 FindContext<FACTORY> context(&path.viewMatrix(), &factory);
465
466 SkResourceCache::Key* key = nullptr;
467 SkAutoSTArray<32 * 4, uint8_t> keyStorage;
468 int keyDataBytes = path.keyBytes();
469 if (keyDataBytes >= 0) {
470 keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
471 key = new (keyStorage.begin()) SkResourceCache::Key();
472 path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
473 key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
474 SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
475 }
476
477 sk_sp<SkVertices> vertices;
478 bool foundInCache = SkToBool(context.fVertices);
479 if (foundInCache) {
480 vertices = std::move(context.fVertices);
481 } else {
482 // TODO: handle transforming the path as part of the tessellator
483 if (key) {
484 // Update or initialize a tessellation set and add it to the cache.
485 sk_sp<CachedTessellations> tessellations;
486 if (context.fTessellationsOnFailure) {
487 tessellations = std::move(context.fTessellationsOnFailure);
488 } else {
489 tessellations.reset(new CachedTessellations());
490 }
491 vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
492 &context.fTranslate);
493 if (!vertices) {
494 return false;
495 }
496 auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
497 SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key));
498 SkResourceCache::Add(rec);
499 } else {
500 vertices = factory.makeVertices(path.path(), path.viewMatrix(),
501 &context.fTranslate);
502 if (!vertices) {
503 return false;
504 }
505 }
506 }
507
508 SkPaint paint;
509 // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
510 // that against our 'color' param.
511 paint.setColorFilter(
512 SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed(
513 SkColorFilterPriv::MakeGaussian()));
514
515 drawProc(vertices.get(), SkBlendMode::kModulate, paint,
516 context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective());
517
518 return true;
519 }
520 } // namespace
521
tilted(const SkPoint3 & zPlaneParams)522 static bool tilted(const SkPoint3& zPlaneParams) {
523 return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
524 }
525
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)526 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
527 SkColor* outAmbientColor, SkColor* outSpotColor) {
528 // For tonal color we only compute color values for the spot shadow.
529 // The ambient shadow is greyscale only.
530
531 // Ambient
532 *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
533
534 // Spot
535 int spotR = SkColorGetR(inSpotColor);
536 int spotG = SkColorGetG(inSpotColor);
537 int spotB = SkColorGetB(inSpotColor);
538 int max = std::max(std::max(spotR, spotG), spotB);
539 int min = std::min(std::min(spotR, spotG), spotB);
540 SkScalar luminance = 0.5f*(max + min)/255.f;
541 SkScalar origA = SkColorGetA(inSpotColor)/255.f;
542
543 // We compute a color alpha value based on the luminance of the color, scaled by an
544 // adjusted alpha value. We want the following properties to match the UX examples
545 // (assuming a = 0.25) and to ensure that we have reasonable results when the color
546 // is black and/or the alpha is 0:
547 // f(0, a) = 0
548 // f(luminance, 0) = 0
549 // f(1, 0.25) = .5
550 // f(0.5, 0.25) = .4
551 // f(1, 1) = 1
552 // The following functions match this as closely as possible.
553 SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
554 SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
555 colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
556
557 // Similarly, we set the greyscale alpha based on luminance and alpha so that
558 // f(0, a) = a
559 // f(luminance, 0) = 0
560 // f(1, 0.25) = 0.15
561 SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
562
563 // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
564 // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
565 // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and
566 // ignoring edge falloff, this becomes
567 //
568 // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
569 //
570 // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
571 // set the alpha to (S_a + C_a - S_a*C_a).
572 SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
573 SkScalar tonalAlpha = colorScale + greyscaleAlpha;
574 SkScalar unPremulScale = colorScale / tonalAlpha;
575 *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
576 unPremulScale*spotR,
577 unPremulScale*spotG,
578 unPremulScale*spotB);
579 }
580
fill_shadow_rec(const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags,const SkMatrix & ctm,SkDrawShadowRec * rec)581 static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams,
582 const SkPoint3& lightPos, SkScalar lightRadius,
583 SkColor ambientColor, SkColor spotColor,
584 uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) {
585 SkPoint pt = { lightPos.fX, lightPos.fY };
586 if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) {
587 // If light position is in device space, need to transform to local space
588 // before applying to SkCanvas.
589 SkMatrix inverse;
590 if (!ctm.invert(&inverse)) {
591 return false;
592 }
593 inverse.mapPoints(&pt, 1);
594 }
595
596 rec->fZPlaneParams = zPlaneParams;
597 rec->fLightPos = { pt.fX, pt.fY, lightPos.fZ };
598 rec->fLightRadius = lightRadius;
599 rec->fAmbientColor = ambientColor;
600 rec->fSpotColor = spotColor;
601 rec->fFlags = flags;
602
603 return true;
604 }
605
606 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)607 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
608 const SkPoint3& lightPos, SkScalar lightRadius,
609 SkColor ambientColor, SkColor spotColor,
610 uint32_t flags) {
611 SkDrawShadowRec rec;
612 if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor,
613 flags, canvas->getTotalMatrix(), &rec)) {
614 return;
615 }
616
617 canvas->private_draw_shadow_rec(path, rec);
618 }
619
GetLocalBounds(const SkMatrix & ctm,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & lightPos,SkScalar lightRadius,uint32_t flags,SkRect * bounds)620 bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path,
621 const SkPoint3& zPlaneParams, const SkPoint3& lightPos,
622 SkScalar lightRadius, uint32_t flags, SkRect* bounds) {
623 SkDrawShadowRec rec;
624 if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK,
625 flags, ctm, &rec)) {
626 return false;
627 }
628
629 SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds);
630
631 return true;
632 }
633
634 //////////////////////////////////////////////////////////////////////////////////////////////
635
validate_rec(const SkDrawShadowRec & rec)636 static bool validate_rec(const SkDrawShadowRec& rec) {
637 return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
638 SkScalarIsFinite(rec.fLightRadius);
639 }
640
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)641 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
642 auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
643 SkScalar tx, SkScalar ty, bool hasPerspective) {
644 if (vertices->priv().vertexCount()) {
645 // For perspective shadows we've already computed the shadow in world space,
646 // and we can't translate it without changing it. Otherwise we concat the
647 // change in translation from the cached version.
648 SkAutoDeviceTransformRestore adr(
649 this,
650 hasPerspective ? SkMatrix::I()
651 : this->localToDevice() * SkMatrix::Translate(tx, ty));
652 this->drawVertices(vertices, SkBlender::Mode(mode), paint);
653 }
654 };
655
656 if (!validate_rec(rec)) {
657 return;
658 }
659
660 SkMatrix viewMatrix = this->localToDevice();
661 SkAutoDeviceTransformRestore adr(this, SkMatrix::I());
662
663 ShadowedPath shadowedPath(&path, &viewMatrix);
664
665 bool tiltZPlane = tilted(rec.fZPlaneParams);
666 bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
667 bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag);
668 bool uncached = tiltZPlane || path.isVolatile();
669
670 SkPoint3 zPlaneParams = rec.fZPlaneParams;
671 SkPoint3 devLightPos = rec.fLightPos;
672 if (!directional) {
673 viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1);
674 }
675 float lightRadius = rec.fLightRadius;
676
677 if (SkColorGetA(rec.fAmbientColor) > 0) {
678 bool success = false;
679 if (uncached) {
680 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
681 zPlaneParams,
682 transparent);
683 if (vertices) {
684 SkPaint paint;
685 // Run the vertex color through a GaussianColorFilter and then modulate the
686 // grayscale result of that against our 'color' param.
687 paint.setColorFilter(
688 SkColorFilters::Blend(rec.fAmbientColor,
689 SkBlendMode::kModulate)->makeComposed(
690 SkColorFilterPriv::MakeGaussian()));
691 this->drawVertices(vertices.get(), SkBlender::Mode(SkBlendMode::kModulate), paint);
692 success = true;
693 }
694 }
695
696 if (!success) {
697 AmbientVerticesFactory factory;
698 factory.fOccluderHeight = zPlaneParams.fZ;
699 factory.fTransparent = transparent;
700 if (viewMatrix.hasPerspective()) {
701 factory.fOffset.set(0, 0);
702 } else {
703 factory.fOffset.fX = viewMatrix.getTranslateX();
704 factory.fOffset.fY = viewMatrix.getTranslateY();
705 }
706
707 if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) {
708 // Pretransform the path to avoid transforming the stroke, below.
709 SkPath devSpacePath;
710 path.transform(viewMatrix, &devSpacePath);
711 devSpacePath.setIsVolatile(true);
712
713 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
714 // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a').
715 //
716 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
717 // can be calculated by interpolating:
718 //
719 // original edge outer edge
720 // | |<---------- r ------>|
721 // |<------|--- f -------------->|
722 // | | |
723 // alpha = 1 alpha = a alpha = 0
724 //
725 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
726 //
727 // We now need to outset the path to place the new edge in the center of the
728 // blur region:
729 //
730 // original new
731 // | |<------|--- r ------>|
732 // |<------|--- f -|------------>|
733 // | |<- o ->|<--- f/2 --->|
734 //
735 // r = o + f/2, so o = r - f/2
736 //
737 // We outset by using the stroker, so the strokeWidth is o/2.
738 //
739 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
740 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
741 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
742 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
743
744 // Now draw with blur
745 SkPaint paint;
746 paint.setColor(rec.fAmbientColor);
747 paint.setStrokeWidth(strokeWidth);
748 paint.setStyle(SkPaint::kStrokeAndFill_Style);
749 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius);
750 bool respectCTM = false;
751 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
752 this->drawPath(devSpacePath, paint);
753 }
754 }
755 }
756
757 if (SkColorGetA(rec.fSpotColor) > 0) {
758 bool success = false;
759 if (uncached) {
760 sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
761 zPlaneParams,
762 devLightPos, lightRadius,
763 transparent,
764 directional);
765 if (vertices) {
766 SkPaint paint;
767 // Run the vertex color through a GaussianColorFilter and then modulate the
768 // grayscale result of that against our 'color' param.
769 paint.setColorFilter(
770 SkColorFilters::Blend(rec.fSpotColor,
771 SkBlendMode::kModulate)->makeComposed(
772 SkColorFilterPriv::MakeGaussian()));
773 this->drawVertices(vertices.get(), SkBlender::Mode(SkBlendMode::kModulate), paint);
774 success = true;
775 }
776 }
777
778 if (!success) {
779 SpotVerticesFactory factory;
780 factory.fOccluderHeight = zPlaneParams.fZ;
781 factory.fDevLightPos = devLightPos;
782 factory.fLightRadius = lightRadius;
783
784 SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
785 factory.fLocalCenter = center;
786 viewMatrix.mapPoints(¢er, 1);
787 SkScalar radius, scale;
788 if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) {
789 SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX,
790 devLightPos.fY, devLightPos.fZ,
791 lightRadius, &radius, &scale,
792 &factory.fOffset);
793 } else {
794 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
795 devLightPos.fY - center.fY, devLightPos.fZ,
796 lightRadius, &radius, &scale, &factory.fOffset);
797 }
798
799 SkRect devBounds;
800 viewMatrix.mapRect(&devBounds, path.getBounds());
801 if (transparent ||
802 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
803 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
804 // if the translation of the shadow is big enough we're going to end up
805 // filling the entire umbra, we can treat these as all the same
806 if (directional) {
807 factory.fOccluderType =
808 SpotVerticesFactory::OccluderType::kDirectionalTransparent;
809 } else {
810 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
811 }
812 } else if (directional) {
813 factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional;
814 } else if (factory.fOffset.length()*scale + scale < radius) {
815 // if we don't translate more than the blur distance, can assume umbra is covered
816 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra;
817 } else if (path.isConvex()) {
818 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra;
819 } else {
820 factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent;
821 }
822 // need to add this after we classify the shadow
823 factory.fOffset.fX += viewMatrix.getTranslateX();
824 factory.fOffset.fY += viewMatrix.getTranslateY();
825
826 SkColor color = rec.fSpotColor;
827 #ifdef DEBUG_SHADOW_CHECKS
828 switch (factory.fOccluderType) {
829 case SpotVerticesFactory::OccluderType::kPointTransparent:
830 color = 0xFFD2B48C; // tan for transparent
831 break;
832 case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra:
833 color = 0xFFFFA500; // orange for opaque
834 break;
835 case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra:
836 color = 0xFFE5E500; // corn yellow for covered
837 break;
838 case SpotVerticesFactory::OccluderType::kDirectional:
839 case SpotVerticesFactory::OccluderType::kDirectionalTransparent:
840 color = 0xFF550000; // dark red for directional
841 break;
842 }
843 #endif
844 if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) {
845 // draw with blur
846 SkMatrix shadowMatrix;
847 if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius,
848 viewMatrix, zPlaneParams,
849 path.getBounds(), directional,
850 &shadowMatrix, &radius)) {
851 return;
852 }
853 SkAutoDeviceTransformRestore adr2(this, shadowMatrix);
854
855 SkPaint paint;
856 paint.setColor(rec.fSpotColor);
857 SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius);
858 bool respectCTM = false;
859 paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM));
860 this->drawPath(path, paint);
861 }
862 }
863 }
864 }
865