1 // Copyright (c) 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "source/fuzz/fuzzer_pass_donate_modules.h"
16
17 #include <map>
18 #include <queue>
19 #include <set>
20
21 #include "source/fuzz/call_graph.h"
22 #include "source/fuzz/instruction_message.h"
23 #include "source/fuzz/transformation_add_constant_boolean.h"
24 #include "source/fuzz/transformation_add_constant_composite.h"
25 #include "source/fuzz/transformation_add_constant_null.h"
26 #include "source/fuzz/transformation_add_constant_scalar.h"
27 #include "source/fuzz/transformation_add_function.h"
28 #include "source/fuzz/transformation_add_global_undef.h"
29 #include "source/fuzz/transformation_add_global_variable.h"
30 #include "source/fuzz/transformation_add_spec_constant_op.h"
31 #include "source/fuzz/transformation_add_type_array.h"
32 #include "source/fuzz/transformation_add_type_boolean.h"
33 #include "source/fuzz/transformation_add_type_float.h"
34 #include "source/fuzz/transformation_add_type_function.h"
35 #include "source/fuzz/transformation_add_type_int.h"
36 #include "source/fuzz/transformation_add_type_matrix.h"
37 #include "source/fuzz/transformation_add_type_pointer.h"
38 #include "source/fuzz/transformation_add_type_struct.h"
39 #include "source/fuzz/transformation_add_type_vector.h"
40
41 namespace spvtools {
42 namespace fuzz {
43
FuzzerPassDonateModules(opt::IRContext * ir_context,TransformationContext * transformation_context,FuzzerContext * fuzzer_context,protobufs::TransformationSequence * transformations,bool ignore_inapplicable_transformations,std::vector<fuzzerutil::ModuleSupplier> donor_suppliers)44 FuzzerPassDonateModules::FuzzerPassDonateModules(
45 opt::IRContext* ir_context, TransformationContext* transformation_context,
46 FuzzerContext* fuzzer_context,
47 protobufs::TransformationSequence* transformations,
48 bool ignore_inapplicable_transformations,
49 std::vector<fuzzerutil::ModuleSupplier> donor_suppliers)
50 : FuzzerPass(ir_context, transformation_context, fuzzer_context,
51 transformations, ignore_inapplicable_transformations),
52 donor_suppliers_(std::move(donor_suppliers)) {}
53
Apply()54 void FuzzerPassDonateModules::Apply() {
55 // If there are no donor suppliers, this fuzzer pass is a no-op.
56 if (donor_suppliers_.empty()) {
57 return;
58 }
59
60 // Donate at least one module, and probabilistically decide when to stop
61 // donating modules.
62 do {
63 // Choose a donor supplier at random, and get the module that it provides.
64 std::unique_ptr<opt::IRContext> donor_ir_context = donor_suppliers_.at(
65 GetFuzzerContext()->RandomIndex(donor_suppliers_))();
66 assert(donor_ir_context != nullptr && "Supplying of donor failed");
67 assert(
68 fuzzerutil::IsValid(donor_ir_context.get(),
69 GetTransformationContext()->GetValidatorOptions(),
70 fuzzerutil::kSilentMessageConsumer) &&
71 "The donor module must be valid");
72 // Donate the supplied module.
73 //
74 // Randomly decide whether to make the module livesafe (see
75 // FactFunctionIsLivesafe); doing so allows it to be used for live code
76 // injection but restricts its behaviour to allow this, and means that its
77 // functions cannot be transformed as if they were arbitrary dead code.
78 bool make_livesafe = GetFuzzerContext()->ChoosePercentage(
79 GetFuzzerContext()->ChanceOfMakingDonorLivesafe());
80 DonateSingleModule(donor_ir_context.get(), make_livesafe);
81 } while (GetFuzzerContext()->ChoosePercentage(
82 GetFuzzerContext()->GetChanceOfDonatingAdditionalModule()));
83 }
84
DonateSingleModule(opt::IRContext * donor_ir_context,bool make_livesafe)85 void FuzzerPassDonateModules::DonateSingleModule(
86 opt::IRContext* donor_ir_context, bool make_livesafe) {
87 // Check that the donated module has capabilities, supported by the recipient
88 // module.
89 for (const auto& capability_inst : donor_ir_context->capabilities()) {
90 auto capability =
91 static_cast<SpvCapability>(capability_inst.GetSingleWordInOperand(0));
92 if (!GetIRContext()->get_feature_mgr()->HasCapability(capability)) {
93 return;
94 }
95 }
96
97 // The ids used by the donor module may very well clash with ids defined in
98 // the recipient module. Furthermore, some instructions defined in the donor
99 // module will be equivalent to instructions defined in the recipient module,
100 // and it is not always legal to re-declare equivalent instructions. For
101 // example, OpTypeVoid cannot be declared twice.
102 //
103 // To handle this, we maintain a mapping from an id used in the donor module
104 // to the corresponding id that will be used by the donated code when it
105 // appears in the recipient module.
106 //
107 // This mapping is populated in two ways:
108 // (1) by mapping a donor instruction's result id to the id of some equivalent
109 // existing instruction in the recipient (e.g. this has to be done for
110 // OpTypeVoid)
111 // (2) by mapping a donor instruction's result id to a freshly chosen id that
112 // is guaranteed to be different from any id already used by the recipient
113 // (or from any id already chosen to handle a previous donor id)
114 std::map<uint32_t, uint32_t> original_id_to_donated_id;
115
116 HandleExternalInstructionImports(donor_ir_context,
117 &original_id_to_donated_id);
118 HandleTypesAndValues(donor_ir_context, &original_id_to_donated_id);
119 HandleFunctions(donor_ir_context, &original_id_to_donated_id, make_livesafe);
120
121 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3115) Handle some
122 // kinds of decoration.
123 }
124
AdaptStorageClass(SpvStorageClass donor_storage_class)125 SpvStorageClass FuzzerPassDonateModules::AdaptStorageClass(
126 SpvStorageClass donor_storage_class) {
127 switch (donor_storage_class) {
128 case SpvStorageClassFunction:
129 case SpvStorageClassPrivate:
130 case SpvStorageClassWorkgroup:
131 // We leave these alone
132 return donor_storage_class;
133 case SpvStorageClassInput:
134 case SpvStorageClassOutput:
135 case SpvStorageClassUniform:
136 case SpvStorageClassUniformConstant:
137 case SpvStorageClassPushConstant:
138 case SpvStorageClassImage:
139 case SpvStorageClassStorageBuffer:
140 // We change these to Private
141 return SpvStorageClassPrivate;
142 default:
143 // Handle other cases on demand.
144 assert(false && "Currently unsupported storage class.");
145 return SpvStorageClassMax;
146 }
147 }
148
HandleExternalInstructionImports(opt::IRContext * donor_ir_context,std::map<uint32_t,uint32_t> * original_id_to_donated_id)149 void FuzzerPassDonateModules::HandleExternalInstructionImports(
150 opt::IRContext* donor_ir_context,
151 std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
152 // Consider every external instruction set import in the donor module.
153 for (auto& donor_import : donor_ir_context->module()->ext_inst_imports()) {
154 const auto& donor_import_name_words = donor_import.GetInOperand(0).words;
155 // Look for an identical import in the recipient module.
156 for (auto& existing_import : GetIRContext()->module()->ext_inst_imports()) {
157 const auto& existing_import_name_words =
158 existing_import.GetInOperand(0).words;
159 if (donor_import_name_words == existing_import_name_words) {
160 // A matching import has found. Map the result id for the donor import
161 // to the id of the existing import, so that when donor instructions
162 // rely on the import they will be rewritten to use the existing import.
163 original_id_to_donated_id->insert(
164 {donor_import.result_id(), existing_import.result_id()});
165 break;
166 }
167 }
168 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3116): At present
169 // we do not handle donation of instruction imports, i.e. we do not allow
170 // the donor to import instruction sets that the recipient did not already
171 // import. It might be a good idea to allow this, but it requires some
172 // thought.
173 assert(original_id_to_donated_id->count(donor_import.result_id()) &&
174 "Donation of imports is not yet supported.");
175 }
176 }
177
HandleTypesAndValues(opt::IRContext * donor_ir_context,std::map<uint32_t,uint32_t> * original_id_to_donated_id)178 void FuzzerPassDonateModules::HandleTypesAndValues(
179 opt::IRContext* donor_ir_context,
180 std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
181 // Consider every type/global/constant/undef in the module.
182 for (auto& type_or_value : donor_ir_context->module()->types_values()) {
183 HandleTypeOrValue(type_or_value, original_id_to_donated_id);
184 }
185 }
186
HandleTypeOrValue(const opt::Instruction & type_or_value,std::map<uint32_t,uint32_t> * original_id_to_donated_id)187 void FuzzerPassDonateModules::HandleTypeOrValue(
188 const opt::Instruction& type_or_value,
189 std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
190 // The type/value instruction generates a result id, and we need to associate
191 // the donor's result id with a new result id. That new result id will either
192 // be the id of some existing instruction, or a fresh id. This variable
193 // captures it.
194 uint32_t new_result_id;
195
196 // Decide how to handle each kind of instruction on a case-by-case basis.
197 //
198 // Because the donor module is required to be valid, when we encounter a
199 // type comprised of component types (e.g. an aggregate or pointer), we know
200 // that its component types will have been considered previously, and that
201 // |original_id_to_donated_id| will already contain an entry for them.
202 switch (type_or_value.opcode()) {
203 case SpvOpTypeImage:
204 case SpvOpTypeSampledImage:
205 case SpvOpTypeSampler:
206 // We do not donate types and variables that relate to images and
207 // samplers, so we skip these types and subsequently skip anything that
208 // depends on them.
209 return;
210 case SpvOpTypeVoid: {
211 // Void has to exist already in order for us to have an entry point.
212 // Get the existing id of void.
213 opt::analysis::Void void_type;
214 new_result_id = GetIRContext()->get_type_mgr()->GetId(&void_type);
215 assert(new_result_id &&
216 "The module being transformed will always have 'void' type "
217 "declared.");
218 } break;
219 case SpvOpTypeBool: {
220 // Bool cannot be declared multiple times, so use its existing id if
221 // present, or add a declaration of Bool with a fresh id if not.
222 opt::analysis::Bool bool_type;
223 auto bool_type_id = GetIRContext()->get_type_mgr()->GetId(&bool_type);
224 if (bool_type_id) {
225 new_result_id = bool_type_id;
226 } else {
227 new_result_id = GetFuzzerContext()->GetFreshId();
228 ApplyTransformation(TransformationAddTypeBoolean(new_result_id));
229 }
230 } break;
231 case SpvOpTypeInt: {
232 // Int cannot be declared multiple times with the same width and
233 // signedness, so check whether an existing identical Int type is
234 // present and use its id if so. Otherwise add a declaration of the
235 // Int type used by the donor, with a fresh id.
236 const uint32_t width = type_or_value.GetSingleWordInOperand(0);
237 const bool is_signed =
238 static_cast<bool>(type_or_value.GetSingleWordInOperand(1));
239 opt::analysis::Integer int_type(width, is_signed);
240 auto int_type_id = GetIRContext()->get_type_mgr()->GetId(&int_type);
241 if (int_type_id) {
242 new_result_id = int_type_id;
243 } else {
244 new_result_id = GetFuzzerContext()->GetFreshId();
245 ApplyTransformation(
246 TransformationAddTypeInt(new_result_id, width, is_signed));
247 }
248 } break;
249 case SpvOpTypeFloat: {
250 // Similar to SpvOpTypeInt.
251 const uint32_t width = type_or_value.GetSingleWordInOperand(0);
252 opt::analysis::Float float_type(width);
253 auto float_type_id = GetIRContext()->get_type_mgr()->GetId(&float_type);
254 if (float_type_id) {
255 new_result_id = float_type_id;
256 } else {
257 new_result_id = GetFuzzerContext()->GetFreshId();
258 ApplyTransformation(TransformationAddTypeFloat(new_result_id, width));
259 }
260 } break;
261 case SpvOpTypeVector: {
262 // It is not legal to have two Vector type declarations with identical
263 // element types and element counts, so check whether an existing
264 // identical Vector type is present and use its id if so. Otherwise add
265 // a declaration of the Vector type used by the donor, with a fresh id.
266
267 // When considering the vector's component type id, we look up the id
268 // use in the donor to find the id to which this has been remapped.
269 uint32_t component_type_id = original_id_to_donated_id->at(
270 type_or_value.GetSingleWordInOperand(0));
271 auto component_type =
272 GetIRContext()->get_type_mgr()->GetType(component_type_id);
273 assert(component_type && "The base type should be registered.");
274 auto component_count = type_or_value.GetSingleWordInOperand(1);
275 opt::analysis::Vector vector_type(component_type, component_count);
276 auto vector_type_id = GetIRContext()->get_type_mgr()->GetId(&vector_type);
277 if (vector_type_id) {
278 new_result_id = vector_type_id;
279 } else {
280 new_result_id = GetFuzzerContext()->GetFreshId();
281 ApplyTransformation(TransformationAddTypeVector(
282 new_result_id, component_type_id, component_count));
283 }
284 } break;
285 case SpvOpTypeMatrix: {
286 // Similar to SpvOpTypeVector.
287 uint32_t column_type_id = original_id_to_donated_id->at(
288 type_or_value.GetSingleWordInOperand(0));
289 auto column_type =
290 GetIRContext()->get_type_mgr()->GetType(column_type_id);
291 assert(column_type && column_type->AsVector() &&
292 "The column type should be a registered vector type.");
293 auto column_count = type_or_value.GetSingleWordInOperand(1);
294 opt::analysis::Matrix matrix_type(column_type, column_count);
295 auto matrix_type_id = GetIRContext()->get_type_mgr()->GetId(&matrix_type);
296 if (matrix_type_id) {
297 new_result_id = matrix_type_id;
298 } else {
299 new_result_id = GetFuzzerContext()->GetFreshId();
300 ApplyTransformation(TransformationAddTypeMatrix(
301 new_result_id, column_type_id, column_count));
302 }
303
304 } break;
305 case SpvOpTypeArray: {
306 // It is OK to have multiple structurally identical array types, so
307 // we go ahead and add a remapped version of the type declared by the
308 // donor.
309 uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
310 if (!original_id_to_donated_id->count(component_type_id)) {
311 // We did not donate the component type of this array type, so we
312 // cannot donate the array type.
313 return;
314 }
315 new_result_id = GetFuzzerContext()->GetFreshId();
316 ApplyTransformation(TransformationAddTypeArray(
317 new_result_id, original_id_to_donated_id->at(component_type_id),
318 original_id_to_donated_id->at(
319 type_or_value.GetSingleWordInOperand(1))));
320 } break;
321 case SpvOpTypeRuntimeArray: {
322 // A runtime array is allowed as the final member of an SSBO. During
323 // donation we turn runtime arrays into fixed-size arrays. For dead
324 // code donations this is OK because the array is never indexed into at
325 // runtime, so it does not matter what its size is. For live-safe code,
326 // all accesses are made in-bounds, so this is also OK.
327 //
328 // The special OpArrayLength instruction, which works on runtime arrays,
329 // is rewritten to yield the fixed length that is used for the array.
330
331 uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
332 if (!original_id_to_donated_id->count(component_type_id)) {
333 // We did not donate the component type of this runtime array type, so
334 // we cannot donate it as a fixed-size array.
335 return;
336 }
337 new_result_id = GetFuzzerContext()->GetFreshId();
338 ApplyTransformation(TransformationAddTypeArray(
339 new_result_id, original_id_to_donated_id->at(component_type_id),
340 FindOrCreateIntegerConstant(
341 {GetFuzzerContext()->GetRandomSizeForNewArray()}, 32, false,
342 false)));
343 } break;
344 case SpvOpTypeStruct: {
345 // Similar to SpvOpTypeArray.
346 std::vector<uint32_t> member_type_ids;
347 for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
348 auto component_type_id = type_or_value.GetSingleWordInOperand(i);
349 if (!original_id_to_donated_id->count(component_type_id)) {
350 // We did not donate every member type for this struct type, so we
351 // cannot donate the struct type.
352 return;
353 }
354 member_type_ids.push_back(
355 original_id_to_donated_id->at(component_type_id));
356 }
357 new_result_id = GetFuzzerContext()->GetFreshId();
358 ApplyTransformation(
359 TransformationAddTypeStruct(new_result_id, member_type_ids));
360 } break;
361 case SpvOpTypePointer: {
362 // Similar to SpvOpTypeArray.
363 uint32_t pointee_type_id = type_or_value.GetSingleWordInOperand(1);
364 if (!original_id_to_donated_id->count(pointee_type_id)) {
365 // We did not donate the pointee type for this pointer type, so we
366 // cannot donate the pointer type.
367 return;
368 }
369 new_result_id = GetFuzzerContext()->GetFreshId();
370 ApplyTransformation(TransformationAddTypePointer(
371 new_result_id,
372 AdaptStorageClass(static_cast<SpvStorageClass>(
373 type_or_value.GetSingleWordInOperand(0))),
374 original_id_to_donated_id->at(pointee_type_id)));
375 } break;
376 case SpvOpTypeFunction: {
377 // It is not OK to have multiple function types that use identical ids
378 // for their return and parameter types. We thus go through all
379 // existing function types to look for a match. We do not use the
380 // type manager here because we want to regard two function types that
381 // are structurally identical but that differ with respect to the
382 // actual ids used for pointer types as different.
383 //
384 // Example:
385 //
386 // %1 = OpTypeVoid
387 // %2 = OpTypeInt 32 0
388 // %3 = OpTypePointer Function %2
389 // %4 = OpTypePointer Function %2
390 // %5 = OpTypeFunction %1 %3
391 // %6 = OpTypeFunction %1 %4
392 //
393 // We regard %5 and %6 as distinct function types here, even though
394 // they both have the form "uint32* -> void"
395
396 std::vector<uint32_t> return_and_parameter_types;
397 for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
398 uint32_t return_or_parameter_type =
399 type_or_value.GetSingleWordInOperand(i);
400 if (!original_id_to_donated_id->count(return_or_parameter_type)) {
401 // We did not donate every return/parameter type for this function
402 // type, so we cannot donate the function type.
403 return;
404 }
405 return_and_parameter_types.push_back(
406 original_id_to_donated_id->at(return_or_parameter_type));
407 }
408 uint32_t existing_function_id = fuzzerutil::FindFunctionType(
409 GetIRContext(), return_and_parameter_types);
410 if (existing_function_id) {
411 new_result_id = existing_function_id;
412 } else {
413 // No match was found, so add a remapped version of the function type
414 // to the module, with a fresh id.
415 new_result_id = GetFuzzerContext()->GetFreshId();
416 std::vector<uint32_t> argument_type_ids;
417 for (uint32_t i = 1; i < type_or_value.NumInOperands(); i++) {
418 argument_type_ids.push_back(original_id_to_donated_id->at(
419 type_or_value.GetSingleWordInOperand(i)));
420 }
421 ApplyTransformation(TransformationAddTypeFunction(
422 new_result_id,
423 original_id_to_donated_id->at(
424 type_or_value.GetSingleWordInOperand(0)),
425 argument_type_ids));
426 }
427 } break;
428 case SpvOpSpecConstantOp: {
429 new_result_id = GetFuzzerContext()->GetFreshId();
430 auto type_id = original_id_to_donated_id->at(type_or_value.type_id());
431 auto opcode = static_cast<SpvOp>(type_or_value.GetSingleWordInOperand(0));
432
433 // Make sure we take into account |original_id_to_donated_id| when
434 // computing operands for OpSpecConstantOp.
435 opt::Instruction::OperandList operands;
436 for (uint32_t i = 1; i < type_or_value.NumInOperands(); ++i) {
437 const auto& operand = type_or_value.GetInOperand(i);
438 auto data =
439 operand.type == SPV_OPERAND_TYPE_ID
440 ? opt::Operand::OperandData{original_id_to_donated_id->at(
441 operand.words[0])}
442 : operand.words;
443
444 operands.push_back({operand.type, std::move(data)});
445 }
446
447 ApplyTransformation(TransformationAddSpecConstantOp(
448 new_result_id, type_id, opcode, std::move(operands)));
449 } break;
450 case SpvOpSpecConstantTrue:
451 case SpvOpSpecConstantFalse:
452 case SpvOpConstantTrue:
453 case SpvOpConstantFalse: {
454 // It is OK to have duplicate definitions of True and False, so add
455 // these to the module, using a remapped Bool type.
456 new_result_id = GetFuzzerContext()->GetFreshId();
457 auto value = type_or_value.opcode() == SpvOpConstantTrue ||
458 type_or_value.opcode() == SpvOpSpecConstantTrue;
459 ApplyTransformation(
460 TransformationAddConstantBoolean(new_result_id, value, false));
461 } break;
462 case SpvOpSpecConstant:
463 case SpvOpConstant: {
464 // It is OK to have duplicate constant definitions, so add this to the
465 // module using a remapped result type.
466 new_result_id = GetFuzzerContext()->GetFreshId();
467 std::vector<uint32_t> data_words;
468 type_or_value.ForEachInOperand([&data_words](const uint32_t* in_operand) {
469 data_words.push_back(*in_operand);
470 });
471 ApplyTransformation(TransformationAddConstantScalar(
472 new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
473 data_words, false));
474 } break;
475 case SpvOpSpecConstantComposite:
476 case SpvOpConstantComposite: {
477 assert(original_id_to_donated_id->count(type_or_value.type_id()) &&
478 "Composite types for which it is possible to create a constant "
479 "should have been donated.");
480
481 // It is OK to have duplicate constant composite definitions, so add
482 // this to the module using remapped versions of all constituent ids and
483 // the result type.
484 new_result_id = GetFuzzerContext()->GetFreshId();
485 std::vector<uint32_t> constituent_ids;
486 type_or_value.ForEachInId([&constituent_ids, &original_id_to_donated_id](
487 const uint32_t* constituent_id) {
488 assert(original_id_to_donated_id->count(*constituent_id) &&
489 "The constants used to construct this composite should "
490 "have been donated.");
491 constituent_ids.push_back(
492 original_id_to_donated_id->at(*constituent_id));
493 });
494 ApplyTransformation(TransformationAddConstantComposite(
495 new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
496 constituent_ids, false));
497 } break;
498 case SpvOpConstantNull: {
499 if (!original_id_to_donated_id->count(type_or_value.type_id())) {
500 // We did not donate the type associated with this null constant, so
501 // we cannot donate the null constant.
502 return;
503 }
504
505 // It is fine to have multiple OpConstantNull instructions of the same
506 // type, so we just add this to the recipient module.
507 new_result_id = GetFuzzerContext()->GetFreshId();
508 ApplyTransformation(TransformationAddConstantNull(
509 new_result_id,
510 original_id_to_donated_id->at(type_or_value.type_id())));
511 } break;
512 case SpvOpVariable: {
513 if (!original_id_to_donated_id->count(type_or_value.type_id())) {
514 // We did not donate the pointer type associated with this variable,
515 // so we cannot donate the variable.
516 return;
517 }
518
519 // This is a global variable that could have one of various storage
520 // classes. However, we change all global variable pointer storage
521 // classes (such as Uniform, Input and Output) to private when donating
522 // pointer types, with the exception of the Workgroup storage class.
523 //
524 // Thus this variable's pointer type is guaranteed to have storage class
525 // Private or Workgroup.
526 //
527 // We add a global variable with either Private or Workgroup storage
528 // class, using remapped versions of the result type and initializer ids
529 // for the global variable in the donor.
530 //
531 // We regard the added variable as having an irrelevant value. This
532 // means that future passes can add stores to the variable in any
533 // way they wish, and pass them as pointer parameters to functions
534 // without worrying about whether their data might get modified.
535 new_result_id = GetFuzzerContext()->GetFreshId();
536 uint32_t remapped_pointer_type =
537 original_id_to_donated_id->at(type_or_value.type_id());
538 uint32_t initializer_id;
539 SpvStorageClass storage_class =
540 static_cast<SpvStorageClass>(type_or_value.GetSingleWordInOperand(
541 0)) == SpvStorageClassWorkgroup
542 ? SpvStorageClassWorkgroup
543 : SpvStorageClassPrivate;
544 if (type_or_value.NumInOperands() == 1) {
545 // The variable did not have an initializer. Initialize it to zero
546 // if it has Private storage class (to limit problems associated with
547 // uninitialized data), and leave it uninitialized if it has Workgroup
548 // storage class (as Workgroup variables cannot have initializers).
549
550 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3275): we
551 // could initialize Workgroup variables at the start of an entry
552 // point, and should do so if their uninitialized nature proves
553 // problematic.
554 initializer_id = storage_class == SpvStorageClassWorkgroup
555 ? 0
556 : FindOrCreateZeroConstant(
557 fuzzerutil::GetPointeeTypeIdFromPointerType(
558 GetIRContext(), remapped_pointer_type),
559 false);
560 } else {
561 // The variable already had an initializer; use its remapped id.
562 initializer_id = original_id_to_donated_id->at(
563 type_or_value.GetSingleWordInOperand(1));
564 }
565 ApplyTransformation(
566 TransformationAddGlobalVariable(new_result_id, remapped_pointer_type,
567 storage_class, initializer_id, true));
568 } break;
569 case SpvOpUndef: {
570 if (!original_id_to_donated_id->count(type_or_value.type_id())) {
571 // We did not donate the type associated with this undef, so we cannot
572 // donate the undef.
573 return;
574 }
575
576 // It is fine to have multiple Undef instructions of the same type, so
577 // we just add this to the recipient module.
578 new_result_id = GetFuzzerContext()->GetFreshId();
579 ApplyTransformation(TransformationAddGlobalUndef(
580 new_result_id,
581 original_id_to_donated_id->at(type_or_value.type_id())));
582 } break;
583 default: {
584 assert(0 && "Unknown type/value.");
585 new_result_id = 0;
586 } break;
587 }
588
589 // Update the id mapping to associate the instruction's result id with its
590 // corresponding id in the recipient.
591 original_id_to_donated_id->insert({type_or_value.result_id(), new_result_id});
592 }
593
HandleFunctions(opt::IRContext * donor_ir_context,std::map<uint32_t,uint32_t> * original_id_to_donated_id,bool make_livesafe)594 void FuzzerPassDonateModules::HandleFunctions(
595 opt::IRContext* donor_ir_context,
596 std::map<uint32_t, uint32_t>* original_id_to_donated_id,
597 bool make_livesafe) {
598 // Get the ids of functions in the donor module, topologically sorted
599 // according to the donor's call graph.
600 auto topological_order =
601 CallGraph(donor_ir_context).GetFunctionsInTopologicalOrder();
602
603 // Donate the functions in reverse topological order. This ensures that a
604 // function gets donated before any function that depends on it. This allows
605 // donation of the functions to be separated into a number of transformations,
606 // each adding one function, such that every prefix of transformations leaves
607 // the module valid.
608 for (auto function_id = topological_order.rbegin();
609 function_id != topological_order.rend(); ++function_id) {
610 // Find the function to be donated.
611 opt::Function* function_to_donate = nullptr;
612 for (auto& function : *donor_ir_context->module()) {
613 if (function.result_id() == *function_id) {
614 function_to_donate = &function;
615 break;
616 }
617 }
618 assert(function_to_donate && "Function to be donated was not found.");
619
620 if (!original_id_to_donated_id->count(
621 function_to_donate->DefInst().GetSingleWordInOperand(1))) {
622 // We were not able to donate this function's type, so we cannot donate
623 // the function.
624 continue;
625 }
626
627 // We will collect up protobuf messages representing the donor function's
628 // instructions here, and use them to create an AddFunction transformation.
629 std::vector<protobufs::Instruction> donated_instructions;
630
631 // This set tracks the ids of those instructions for which donation was
632 // completely skipped: neither the instruction nor a substitute for it was
633 // donated.
634 std::set<uint32_t> skipped_instructions;
635
636 // Consider every instruction of the donor function.
637 function_to_donate->ForEachInst(
638 [this, &donated_instructions, donor_ir_context,
639 &original_id_to_donated_id,
640 &skipped_instructions](const opt::Instruction* instruction) {
641 if (instruction->opcode() == SpvOpArrayLength) {
642 // We treat OpArrayLength specially.
643 HandleOpArrayLength(*instruction, original_id_to_donated_id,
644 &donated_instructions);
645 } else if (!CanDonateInstruction(donor_ir_context, *instruction,
646 *original_id_to_donated_id,
647 skipped_instructions)) {
648 // This is an instruction that we cannot directly donate.
649 HandleDifficultInstruction(*instruction, original_id_to_donated_id,
650 &donated_instructions,
651 &skipped_instructions);
652 } else {
653 PrepareInstructionForDonation(*instruction, donor_ir_context,
654 original_id_to_donated_id,
655 &donated_instructions);
656 }
657 });
658
659 // If |make_livesafe| is true, try to add the function in a livesafe manner.
660 // Otherwise (if |make_lifesafe| is false or an attempt to make the function
661 // livesafe has failed), add the function in a non-livesafe manner.
662 if (!make_livesafe ||
663 !MaybeAddLivesafeFunction(*function_to_donate, donor_ir_context,
664 *original_id_to_donated_id,
665 donated_instructions)) {
666 ApplyTransformation(TransformationAddFunction(donated_instructions));
667 }
668 }
669 }
670
CanDonateInstruction(opt::IRContext * donor_ir_context,const opt::Instruction & instruction,const std::map<uint32_t,uint32_t> & original_id_to_donated_id,const std::set<uint32_t> & skipped_instructions) const671 bool FuzzerPassDonateModules::CanDonateInstruction(
672 opt::IRContext* donor_ir_context, const opt::Instruction& instruction,
673 const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
674 const std::set<uint32_t>& skipped_instructions) const {
675 if (instruction.type_id() &&
676 !original_id_to_donated_id.count(instruction.type_id())) {
677 // We could not donate the result type of this instruction, so we cannot
678 // donate the instruction.
679 return false;
680 }
681
682 // Now consider instructions we specifically want to skip because we do not
683 // yet support them.
684 switch (instruction.opcode()) {
685 case SpvOpAtomicLoad:
686 case SpvOpAtomicStore:
687 case SpvOpAtomicExchange:
688 case SpvOpAtomicCompareExchange:
689 case SpvOpAtomicCompareExchangeWeak:
690 case SpvOpAtomicIIncrement:
691 case SpvOpAtomicIDecrement:
692 case SpvOpAtomicIAdd:
693 case SpvOpAtomicISub:
694 case SpvOpAtomicSMin:
695 case SpvOpAtomicUMin:
696 case SpvOpAtomicSMax:
697 case SpvOpAtomicUMax:
698 case SpvOpAtomicAnd:
699 case SpvOpAtomicOr:
700 case SpvOpAtomicXor:
701 // We conservatively ignore all atomic instructions at present.
702 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3276): Consider
703 // being less conservative here.
704 case SpvOpImageSampleImplicitLod:
705 case SpvOpImageSampleExplicitLod:
706 case SpvOpImageSampleDrefImplicitLod:
707 case SpvOpImageSampleDrefExplicitLod:
708 case SpvOpImageSampleProjImplicitLod:
709 case SpvOpImageSampleProjExplicitLod:
710 case SpvOpImageSampleProjDrefImplicitLod:
711 case SpvOpImageSampleProjDrefExplicitLod:
712 case SpvOpImageFetch:
713 case SpvOpImageGather:
714 case SpvOpImageDrefGather:
715 case SpvOpImageRead:
716 case SpvOpImageWrite:
717 case SpvOpImageSparseSampleImplicitLod:
718 case SpvOpImageSparseSampleExplicitLod:
719 case SpvOpImageSparseSampleDrefImplicitLod:
720 case SpvOpImageSparseSampleDrefExplicitLod:
721 case SpvOpImageSparseSampleProjImplicitLod:
722 case SpvOpImageSparseSampleProjExplicitLod:
723 case SpvOpImageSparseSampleProjDrefImplicitLod:
724 case SpvOpImageSparseSampleProjDrefExplicitLod:
725 case SpvOpImageSparseFetch:
726 case SpvOpImageSparseGather:
727 case SpvOpImageSparseDrefGather:
728 case SpvOpImageSparseRead:
729 case SpvOpImageSampleFootprintNV:
730 case SpvOpImage:
731 case SpvOpImageQueryFormat:
732 case SpvOpImageQueryLevels:
733 case SpvOpImageQueryLod:
734 case SpvOpImageQueryOrder:
735 case SpvOpImageQuerySamples:
736 case SpvOpImageQuerySize:
737 case SpvOpImageQuerySizeLod:
738 case SpvOpSampledImage:
739 // We ignore all instructions related to accessing images, since we do not
740 // donate images.
741 return false;
742 case SpvOpLoad:
743 switch (donor_ir_context->get_def_use_mgr()
744 ->GetDef(instruction.type_id())
745 ->opcode()) {
746 case SpvOpTypeImage:
747 case SpvOpTypeSampledImage:
748 case SpvOpTypeSampler:
749 // Again, we ignore instructions that relate to accessing images.
750 return false;
751 default:
752 break;
753 }
754 default:
755 break;
756 }
757
758 // Examine each id input operand to the instruction. If it turns out that we
759 // have skipped any of these operands then we cannot donate the instruction.
760 bool result = true;
761 instruction.WhileEachInId(
762 [donor_ir_context, &original_id_to_donated_id, &result,
763 &skipped_instructions](const uint32_t* in_id) -> bool {
764 if (!original_id_to_donated_id.count(*in_id)) {
765 // We do not have a mapped result id for this id operand. That either
766 // means that it is a forward reference (which is OK), that we skipped
767 // the instruction that generated it (which is not OK), or that it is
768 // the id of a function or global value that we did not donate (which
769 // is not OK). We check for the latter two cases.
770 if (skipped_instructions.count(*in_id) ||
771 // A function or global value does not have an associated basic
772 // block.
773 !donor_ir_context->get_instr_block(*in_id)) {
774 result = false;
775 return false;
776 }
777 }
778 return true;
779 });
780 return result;
781 }
782
IsBasicType(const opt::Instruction & instruction) const783 bool FuzzerPassDonateModules::IsBasicType(
784 const opt::Instruction& instruction) const {
785 switch (instruction.opcode()) {
786 case SpvOpTypeArray:
787 case SpvOpTypeBool:
788 case SpvOpTypeFloat:
789 case SpvOpTypeInt:
790 case SpvOpTypeMatrix:
791 case SpvOpTypeStruct:
792 case SpvOpTypeVector:
793 return true;
794 default:
795 return false;
796 }
797 }
798
HandleOpArrayLength(const opt::Instruction & instruction,std::map<uint32_t,uint32_t> * original_id_to_donated_id,std::vector<protobufs::Instruction> * donated_instructions) const799 void FuzzerPassDonateModules::HandleOpArrayLength(
800 const opt::Instruction& instruction,
801 std::map<uint32_t, uint32_t>* original_id_to_donated_id,
802 std::vector<protobufs::Instruction>* donated_instructions) const {
803 assert(instruction.opcode() == SpvOpArrayLength &&
804 "Precondition: instruction must be OpArrayLength.");
805 uint32_t donated_variable_id =
806 original_id_to_donated_id->at(instruction.GetSingleWordInOperand(0));
807 auto donated_variable_instruction =
808 GetIRContext()->get_def_use_mgr()->GetDef(donated_variable_id);
809 auto pointer_to_struct_instruction =
810 GetIRContext()->get_def_use_mgr()->GetDef(
811 donated_variable_instruction->type_id());
812 assert(pointer_to_struct_instruction->opcode() == SpvOpTypePointer &&
813 "Type of variable must be pointer.");
814 auto donated_struct_type_instruction =
815 GetIRContext()->get_def_use_mgr()->GetDef(
816 pointer_to_struct_instruction->GetSingleWordInOperand(1));
817 assert(donated_struct_type_instruction->opcode() == SpvOpTypeStruct &&
818 "Pointee type of pointer used by OpArrayLength must be struct.");
819 assert(donated_struct_type_instruction->NumInOperands() ==
820 instruction.GetSingleWordInOperand(1) + 1 &&
821 "OpArrayLength must refer to the final member of the given "
822 "struct.");
823 uint32_t fixed_size_array_type_id =
824 donated_struct_type_instruction->GetSingleWordInOperand(
825 donated_struct_type_instruction->NumInOperands() - 1);
826 auto fixed_size_array_type_instruction =
827 GetIRContext()->get_def_use_mgr()->GetDef(fixed_size_array_type_id);
828 assert(fixed_size_array_type_instruction->opcode() == SpvOpTypeArray &&
829 "The donated array type must be fixed-size.");
830 auto array_size_id =
831 fixed_size_array_type_instruction->GetSingleWordInOperand(1);
832
833 if (instruction.result_id() &&
834 !original_id_to_donated_id->count(instruction.result_id())) {
835 original_id_to_donated_id->insert(
836 {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
837 }
838
839 donated_instructions->push_back(MakeInstructionMessage(
840 SpvOpCopyObject, original_id_to_donated_id->at(instruction.type_id()),
841 original_id_to_donated_id->at(instruction.result_id()),
842 opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {array_size_id}}})));
843 }
844
HandleDifficultInstruction(const opt::Instruction & instruction,std::map<uint32_t,uint32_t> * original_id_to_donated_id,std::vector<protobufs::Instruction> * donated_instructions,std::set<uint32_t> * skipped_instructions)845 void FuzzerPassDonateModules::HandleDifficultInstruction(
846 const opt::Instruction& instruction,
847 std::map<uint32_t, uint32_t>* original_id_to_donated_id,
848 std::vector<protobufs::Instruction>* donated_instructions,
849 std::set<uint32_t>* skipped_instructions) {
850 if (!instruction.result_id()) {
851 // It does not generate a result id, so it can be ignored.
852 return;
853 }
854 if (!original_id_to_donated_id->count(instruction.type_id())) {
855 // We cannot handle this instruction's result type, so we need to skip it
856 // all together.
857 skipped_instructions->insert(instruction.result_id());
858 return;
859 }
860
861 // We now attempt to replace the instruction with an OpCopyObject.
862 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3278): We could do
863 // something more refined here - we could check which operands to the
864 // instruction could not be donated and replace those operands with
865 // references to other ids (such as constants), so that we still get an
866 // instruction with the opcode and easy-to-handle operands of the donor
867 // instruction.
868 auto remapped_type_id = original_id_to_donated_id->at(instruction.type_id());
869 if (!IsBasicType(
870 *GetIRContext()->get_def_use_mgr()->GetDef(remapped_type_id))) {
871 // The instruction has a non-basic result type, so we cannot replace it with
872 // an object copy of a constant. We thus skip it completely.
873 // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3279): We could
874 // instead look for an available id of the right type and generate an
875 // OpCopyObject of that id.
876 skipped_instructions->insert(instruction.result_id());
877 return;
878 }
879
880 // We are going to add an OpCopyObject instruction. Add a mapping for the
881 // result id of the original instruction if does not already exist (it may
882 // exist in the case that it has been forward-referenced).
883 if (!original_id_to_donated_id->count(instruction.result_id())) {
884 original_id_to_donated_id->insert(
885 {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
886 }
887
888 // We find or add a zero constant to the receiving module for the type in
889 // question, and add an OpCopyObject instruction that copies this zero.
890 //
891 // We mark the constant as irrelevant so that we can replace it with a
892 // more interesting value later.
893 auto zero_constant = FindOrCreateZeroConstant(remapped_type_id, true);
894 donated_instructions->push_back(MakeInstructionMessage(
895 SpvOpCopyObject, remapped_type_id,
896 original_id_to_donated_id->at(instruction.result_id()),
897 opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {zero_constant}}})));
898 }
899
PrepareInstructionForDonation(const opt::Instruction & instruction,opt::IRContext * donor_ir_context,std::map<uint32_t,uint32_t> * original_id_to_donated_id,std::vector<protobufs::Instruction> * donated_instructions)900 void FuzzerPassDonateModules::PrepareInstructionForDonation(
901 const opt::Instruction& instruction, opt::IRContext* donor_ir_context,
902 std::map<uint32_t, uint32_t>* original_id_to_donated_id,
903 std::vector<protobufs::Instruction>* donated_instructions) {
904 // Get the instruction's input operands into donation-ready form,
905 // remapping any id uses in the process.
906 opt::Instruction::OperandList input_operands;
907
908 // Consider each input operand in turn.
909 for (uint32_t in_operand_index = 0;
910 in_operand_index < instruction.NumInOperands(); in_operand_index++) {
911 std::vector<uint32_t> operand_data;
912 const opt::Operand& in_operand = instruction.GetInOperand(in_operand_index);
913 // Check whether this operand is an id.
914 if (spvIsIdType(in_operand.type)) {
915 // This is an id operand - it consists of a single word of data,
916 // which needs to be remapped so that it is replaced with the
917 // donated form of the id.
918 auto operand_id = in_operand.words[0];
919 if (!original_id_to_donated_id->count(operand_id)) {
920 // This is a forward reference. We will choose a corresponding
921 // donor id for the referenced id and update the mapping to
922 // reflect it.
923
924 // Keep release compilers happy because |donor_ir_context| is only used
925 // in this assertion.
926 (void)(donor_ir_context);
927 assert((donor_ir_context->get_def_use_mgr()
928 ->GetDef(operand_id)
929 ->opcode() == SpvOpLabel ||
930 instruction.opcode() == SpvOpPhi) &&
931 "Unsupported forward reference.");
932 original_id_to_donated_id->insert(
933 {operand_id, GetFuzzerContext()->GetFreshId()});
934 }
935 operand_data.push_back(original_id_to_donated_id->at(operand_id));
936 } else {
937 // For non-id operands, we just add each of the data words.
938 for (auto word : in_operand.words) {
939 operand_data.push_back(word);
940 }
941 }
942 input_operands.push_back({in_operand.type, operand_data});
943 }
944
945 if (instruction.opcode() == SpvOpVariable &&
946 instruction.NumInOperands() == 1) {
947 // This is an uninitialized local variable. Initialize it to zero.
948 input_operands.push_back(
949 {SPV_OPERAND_TYPE_ID,
950 {FindOrCreateZeroConstant(
951 fuzzerutil::GetPointeeTypeIdFromPointerType(
952 GetIRContext(),
953 original_id_to_donated_id->at(instruction.type_id())),
954 false)}});
955 }
956
957 if (instruction.result_id() &&
958 !original_id_to_donated_id->count(instruction.result_id())) {
959 original_id_to_donated_id->insert(
960 {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
961 }
962
963 // Remap the result type and result id (if present) of the
964 // instruction, and turn it into a protobuf message.
965 donated_instructions->push_back(MakeInstructionMessage(
966 instruction.opcode(),
967 instruction.type_id()
968 ? original_id_to_donated_id->at(instruction.type_id())
969 : 0,
970 instruction.result_id()
971 ? original_id_to_donated_id->at(instruction.result_id())
972 : 0,
973 input_operands));
974 }
975
CreateLoopLimiterInfo(opt::IRContext * donor_ir_context,const opt::BasicBlock & loop_header,const std::map<uint32_t,uint32_t> & original_id_to_donated_id,protobufs::LoopLimiterInfo * out)976 bool FuzzerPassDonateModules::CreateLoopLimiterInfo(
977 opt::IRContext* donor_ir_context, const opt::BasicBlock& loop_header,
978 const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
979 protobufs::LoopLimiterInfo* out) {
980 assert(loop_header.IsLoopHeader() && "|loop_header| is not a loop header");
981
982 // Grab the loop header's id, mapped to its donated value.
983 out->set_loop_header_id(original_id_to_donated_id.at(loop_header.id()));
984
985 // Get fresh ids that will be used to load the loop limiter, increment
986 // it, compare it with the loop limit, and an id for a new block that
987 // will contain the loop's original terminator.
988 out->set_load_id(GetFuzzerContext()->GetFreshId());
989 out->set_increment_id(GetFuzzerContext()->GetFreshId());
990 out->set_compare_id(GetFuzzerContext()->GetFreshId());
991 out->set_logical_op_id(GetFuzzerContext()->GetFreshId());
992
993 // We are creating a branch from the back-edge block to the merge block. Thus,
994 // if merge block has any OpPhi instructions, we might need to adjust
995 // them.
996
997 // Note that the loop might have an unreachable back-edge block. This means
998 // that the loop can't iterate, so we don't need to adjust anything.
999 const auto back_edge_block_id = TransformationAddFunction::GetBackEdgeBlockId(
1000 donor_ir_context, loop_header.id());
1001 if (!back_edge_block_id) {
1002 return true;
1003 }
1004
1005 auto* back_edge_block = donor_ir_context->cfg()->block(back_edge_block_id);
1006 assert(back_edge_block && "|back_edge_block_id| is invalid");
1007
1008 const auto* merge_block =
1009 donor_ir_context->cfg()->block(loop_header.MergeBlockId());
1010 assert(merge_block && "Loop header has invalid merge block id");
1011
1012 // We don't need to adjust anything if there is already a branch from
1013 // the back-edge block to the merge block.
1014 if (back_edge_block->IsSuccessor(merge_block)) {
1015 return true;
1016 }
1017
1018 // Adjust OpPhi instructions in the |merge_block|.
1019 for (const auto& inst : *merge_block) {
1020 if (inst.opcode() != SpvOpPhi) {
1021 break;
1022 }
1023
1024 // There is no simple way to ensure that a chosen operand for the OpPhi
1025 // instruction will never cause any problems (e.g. if we choose an
1026 // integer id, it might have a zero value when we branch from the back
1027 // edge block. This might cause a division by 0 later in the function.).
1028 // Thus, we ignore possible problems and proceed as follows:
1029 // - if any of the existing OpPhi operands dominates the back-edge
1030 // block - use it
1031 // - if OpPhi has a basic type (see IsBasicType method) - create
1032 // a zero constant
1033 // - otherwise, we can't add a livesafe function.
1034 uint32_t suitable_operand_id = 0;
1035 for (uint32_t i = 0; i < inst.NumInOperands(); i += 2) {
1036 auto dependency_inst_id = inst.GetSingleWordInOperand(i);
1037
1038 if (fuzzerutil::IdIsAvailableBeforeInstruction(
1039 donor_ir_context, back_edge_block->terminator(),
1040 dependency_inst_id)) {
1041 suitable_operand_id = original_id_to_donated_id.at(dependency_inst_id);
1042 break;
1043 }
1044 }
1045
1046 if (suitable_operand_id == 0 &&
1047 IsBasicType(
1048 *donor_ir_context->get_def_use_mgr()->GetDef(inst.type_id()))) {
1049 // We mark this constant as irrelevant so that we can replace it
1050 // with more interesting value later.
1051 suitable_operand_id = FindOrCreateZeroConstant(
1052 original_id_to_donated_id.at(inst.type_id()), true);
1053 }
1054
1055 if (suitable_operand_id == 0) {
1056 return false;
1057 }
1058
1059 out->add_phi_id(suitable_operand_id);
1060 }
1061
1062 return true;
1063 }
1064
MaybeAddLivesafeFunction(const opt::Function & function_to_donate,opt::IRContext * donor_ir_context,const std::map<uint32_t,uint32_t> & original_id_to_donated_id,const std::vector<protobufs::Instruction> & donated_instructions)1065 bool FuzzerPassDonateModules::MaybeAddLivesafeFunction(
1066 const opt::Function& function_to_donate, opt::IRContext* donor_ir_context,
1067 const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
1068 const std::vector<protobufs::Instruction>& donated_instructions) {
1069 // Various types and constants must be in place for a function to be made
1070 // live-safe. Add them if not already present.
1071 FindOrCreateBoolType(); // Needed for comparisons
1072 FindOrCreatePointerToIntegerType(
1073 32, false, SpvStorageClassFunction); // Needed for adding loop limiters
1074 FindOrCreateIntegerConstant({0}, 32, false,
1075 false); // Needed for initializing loop limiters
1076 FindOrCreateIntegerConstant({1}, 32, false,
1077 false); // Needed for incrementing loop limiters
1078
1079 // Get a fresh id for the variable that will be used as a loop limiter.
1080 const uint32_t loop_limiter_variable_id = GetFuzzerContext()->GetFreshId();
1081 // Choose a random loop limit, and add the required constant to the
1082 // module if not already there.
1083 const uint32_t loop_limit = FindOrCreateIntegerConstant(
1084 {GetFuzzerContext()->GetRandomLoopLimit()}, 32, false, false);
1085
1086 // Consider every loop header in the function to donate, and create a
1087 // structure capturing the ids to be used for manipulating the loop
1088 // limiter each time the loop is iterated.
1089 std::vector<protobufs::LoopLimiterInfo> loop_limiters;
1090 for (auto& block : function_to_donate) {
1091 if (block.IsLoopHeader()) {
1092 protobufs::LoopLimiterInfo loop_limiter;
1093
1094 if (!CreateLoopLimiterInfo(donor_ir_context, block,
1095 original_id_to_donated_id, &loop_limiter)) {
1096 return false;
1097 }
1098
1099 loop_limiters.emplace_back(std::move(loop_limiter));
1100 }
1101 }
1102
1103 // Consider every access chain in the function to donate, and create a
1104 // structure containing the ids necessary to clamp the access chain
1105 // indices to be in-bounds.
1106 std::vector<protobufs::AccessChainClampingInfo> access_chain_clamping_info;
1107 for (auto& block : function_to_donate) {
1108 for (auto& inst : block) {
1109 switch (inst.opcode()) {
1110 case SpvOpAccessChain:
1111 case SpvOpInBoundsAccessChain: {
1112 protobufs::AccessChainClampingInfo clamping_info;
1113 clamping_info.set_access_chain_id(
1114 original_id_to_donated_id.at(inst.result_id()));
1115
1116 auto base_object = donor_ir_context->get_def_use_mgr()->GetDef(
1117 inst.GetSingleWordInOperand(0));
1118 assert(base_object && "The base object must exist.");
1119 auto pointer_type = donor_ir_context->get_def_use_mgr()->GetDef(
1120 base_object->type_id());
1121 assert(pointer_type && pointer_type->opcode() == SpvOpTypePointer &&
1122 "The base object must have pointer type.");
1123
1124 auto should_be_composite_type =
1125 donor_ir_context->get_def_use_mgr()->GetDef(
1126 pointer_type->GetSingleWordInOperand(1));
1127
1128 // Walk the access chain, creating fresh ids to facilitate
1129 // clamping each index. For simplicity we do this for every
1130 // index, even though constant indices will not end up being
1131 // clamped.
1132 for (uint32_t index = 1; index < inst.NumInOperands(); index++) {
1133 auto compare_and_select_ids =
1134 clamping_info.add_compare_and_select_ids();
1135 compare_and_select_ids->set_first(GetFuzzerContext()->GetFreshId());
1136 compare_and_select_ids->set_second(
1137 GetFuzzerContext()->GetFreshId());
1138
1139 // Get the bound for the component being indexed into.
1140 uint32_t bound;
1141 if (should_be_composite_type->opcode() == SpvOpTypeRuntimeArray) {
1142 // The donor is indexing into a runtime array. We do not
1143 // donate runtime arrays. Instead, we donate a corresponding
1144 // fixed-size array for every runtime array. We should thus
1145 // find that donor composite type's result id maps to a fixed-
1146 // size array.
1147 auto fixed_size_array_type =
1148 GetIRContext()->get_def_use_mgr()->GetDef(
1149 original_id_to_donated_id.at(
1150 should_be_composite_type->result_id()));
1151 assert(fixed_size_array_type->opcode() == SpvOpTypeArray &&
1152 "A runtime array type in the donor should have been "
1153 "replaced by a fixed-sized array in the recipient.");
1154 // The size of this fixed-size array is a suitable bound.
1155 bound = fuzzerutil::GetBoundForCompositeIndex(
1156 *fixed_size_array_type, GetIRContext());
1157 } else {
1158 bound = fuzzerutil::GetBoundForCompositeIndex(
1159 *should_be_composite_type, donor_ir_context);
1160 }
1161 const uint32_t index_id = inst.GetSingleWordInOperand(index);
1162 auto index_inst =
1163 donor_ir_context->get_def_use_mgr()->GetDef(index_id);
1164 auto index_type_inst = donor_ir_context->get_def_use_mgr()->GetDef(
1165 index_inst->type_id());
1166 assert(index_type_inst->opcode() == SpvOpTypeInt);
1167 opt::analysis::Integer* index_int_type =
1168 donor_ir_context->get_type_mgr()
1169 ->GetType(index_type_inst->result_id())
1170 ->AsInteger();
1171 if (index_inst->opcode() != SpvOpConstant) {
1172 // We will have to clamp this index, so we need a constant
1173 // whose value is one less than the bound, to compare
1174 // against and to use as the clamped value.
1175 FindOrCreateIntegerConstant({bound - 1}, 32,
1176 index_int_type->IsSigned(), false);
1177 }
1178 should_be_composite_type =
1179 TransformationAddFunction::FollowCompositeIndex(
1180 donor_ir_context, *should_be_composite_type, index_id);
1181 }
1182 access_chain_clamping_info.push_back(clamping_info);
1183 break;
1184 }
1185 default:
1186 break;
1187 }
1188 }
1189 }
1190
1191 // If |function_to_donate| has non-void return type and contains an
1192 // OpKill/OpUnreachable instruction, then a value is needed in order to turn
1193 // these into instructions of the form OpReturnValue %value_id.
1194 uint32_t kill_unreachable_return_value_id = 0;
1195 auto function_return_type_inst =
1196 donor_ir_context->get_def_use_mgr()->GetDef(function_to_donate.type_id());
1197 if (function_return_type_inst->opcode() != SpvOpTypeVoid &&
1198 fuzzerutil::FunctionContainsOpKillOrUnreachable(function_to_donate)) {
1199 kill_unreachable_return_value_id = FindOrCreateZeroConstant(
1200 original_id_to_donated_id.at(function_return_type_inst->result_id()),
1201 false);
1202 }
1203
1204 // Try to add the function in a livesafe manner. This may fail due to edge
1205 // cases, e.g. where adding loop limiters changes dominance such that the
1206 // module becomes invalid. It would be ideal to handle all such edge cases,
1207 // but as they are rare it is more pragmatic to bail out of making the
1208 // function livesafe if the transformation's precondition fails to hold.
1209 return MaybeApplyTransformation(TransformationAddFunction(
1210 donated_instructions, loop_limiter_variable_id, loop_limit, loop_limiters,
1211 kill_unreachable_return_value_id, access_chain_clamping_info));
1212 }
1213
1214 } // namespace fuzz
1215 } // namespace spvtools
1216