1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <utility>
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "stack-protector"
55
56 STATISTIC(NumFunProtected, "Number of functions protected");
57 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
58 " taken.");
59
60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
61 cl::init(true), cl::Hidden);
62
63 char StackProtector::ID = 0;
64
StackProtector()65 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
66 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
67 }
68
69 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
70 "Insert stack protectors", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)71 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
72 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
73 "Insert stack protectors", false, true)
74
75 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
76
getAnalysisUsage(AnalysisUsage & AU) const77 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
78 AU.addRequired<TargetPassConfig>();
79 AU.addPreserved<DominatorTreeWrapperPass>();
80 }
81
runOnFunction(Function & Fn)82 bool StackProtector::runOnFunction(Function &Fn) {
83 F = &Fn;
84 M = F->getParent();
85 DominatorTreeWrapperPass *DTWP =
86 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87 DT = DTWP ? &DTWP->getDomTree() : nullptr;
88 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
89 Trip = TM->getTargetTriple();
90 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
91 HasPrologue = false;
92 HasIRCheck = false;
93
94 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
95 if (Attr.isStringAttribute() &&
96 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
97 return false; // Invalid integer string
98
99 if (!RequiresStackProtector())
100 return false;
101
102 // TODO(etienneb): Functions with funclets are not correctly supported now.
103 // Do nothing if this is funclet-based personality.
104 if (Fn.hasPersonalityFn()) {
105 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
106 if (isFuncletEHPersonality(Personality))
107 return false;
108 }
109
110 ++NumFunProtected;
111 return InsertStackProtectors();
112 }
113
114 /// \param [out] IsLarge is set to true if a protectable array is found and
115 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
116 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const117 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
118 bool Strong,
119 bool InStruct) const {
120 if (!Ty)
121 return false;
122 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
123 if (!AT->getElementType()->isIntegerTy(8)) {
124 // If we're on a non-Darwin platform or we're inside of a structure, don't
125 // add stack protectors unless the array is a character array.
126 // However, in strong mode any array, regardless of type and size,
127 // triggers a protector.
128 if (!Strong && (InStruct || !Trip.isOSDarwin()))
129 return false;
130 }
131
132 // If an array has more than SSPBufferSize bytes of allocated space, then we
133 // emit stack protectors.
134 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
135 IsLarge = true;
136 return true;
137 }
138
139 if (Strong)
140 // Require a protector for all arrays in strong mode
141 return true;
142 }
143
144 const StructType *ST = dyn_cast<StructType>(Ty);
145 if (!ST)
146 return false;
147
148 bool NeedsProtector = false;
149 for (StructType::element_iterator I = ST->element_begin(),
150 E = ST->element_end();
151 I != E; ++I)
152 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
153 // If the element is a protectable array and is large (>= SSPBufferSize)
154 // then we are done. If the protectable array is not large, then
155 // keep looking in case a subsequent element is a large array.
156 if (IsLarge)
157 return true;
158 NeedsProtector = true;
159 }
160
161 return NeedsProtector;
162 }
163
HasAddressTaken(const Instruction * AI)164 bool StackProtector::HasAddressTaken(const Instruction *AI) {
165 for (const User *U : AI->users()) {
166 const auto *I = cast<Instruction>(U);
167 switch (I->getOpcode()) {
168 case Instruction::Store:
169 if (AI == cast<StoreInst>(I)->getValueOperand())
170 return true;
171 break;
172 case Instruction::AtomicCmpXchg:
173 // cmpxchg conceptually includes both a load and store from the same
174 // location. So, like store, the value being stored is what matters.
175 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
176 return true;
177 break;
178 case Instruction::PtrToInt:
179 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
180 return true;
181 break;
182 case Instruction::Call: {
183 // Ignore intrinsics that do not become real instructions.
184 // TODO: Narrow this to intrinsics that have store-like effects.
185 const auto *CI = cast<CallInst>(I);
186 if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd())
187 return true;
188 break;
189 }
190 case Instruction::Invoke:
191 return true;
192 case Instruction::BitCast:
193 case Instruction::GetElementPtr:
194 case Instruction::Select:
195 case Instruction::AddrSpaceCast:
196 if (HasAddressTaken(I))
197 return true;
198 break;
199 case Instruction::PHI: {
200 // Keep track of what PHI nodes we have already visited to ensure
201 // they are only visited once.
202 const auto *PN = cast<PHINode>(I);
203 if (VisitedPHIs.insert(PN).second)
204 if (HasAddressTaken(PN))
205 return true;
206 break;
207 }
208 case Instruction::Load:
209 case Instruction::AtomicRMW:
210 case Instruction::Ret:
211 // These instructions take an address operand, but have load-like or
212 // other innocuous behavior that should not trigger a stack protector.
213 // atomicrmw conceptually has both load and store semantics, but the
214 // value being stored must be integer; so if a pointer is being stored,
215 // we'll catch it in the PtrToInt case above.
216 break;
217 default:
218 // Conservatively return true for any instruction that takes an address
219 // operand, but is not handled above.
220 return true;
221 }
222 }
223 return false;
224 }
225
226 /// Search for the first call to the llvm.stackprotector intrinsic and return it
227 /// if present.
findStackProtectorIntrinsic(Function & F)228 static const CallInst *findStackProtectorIntrinsic(Function &F) {
229 for (const BasicBlock &BB : F)
230 for (const Instruction &I : BB)
231 if (const CallInst *CI = dyn_cast<CallInst>(&I))
232 if (CI->getCalledFunction() ==
233 Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector))
234 return CI;
235 return nullptr;
236 }
237
238 /// Check whether or not this function needs a stack protector based
239 /// upon the stack protector level.
240 ///
241 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
242 /// The standard heuristic which will add a guard variable to functions that
243 /// call alloca with a either a variable size or a size >= SSPBufferSize,
244 /// functions with character buffers larger than SSPBufferSize, and functions
245 /// with aggregates containing character buffers larger than SSPBufferSize. The
246 /// strong heuristic will add a guard variables to functions that call alloca
247 /// regardless of size, functions with any buffer regardless of type and size,
248 /// functions with aggregates that contain any buffer regardless of type and
249 /// size, and functions that contain stack-based variables that have had their
250 /// address taken.
RequiresStackProtector()251 bool StackProtector::RequiresStackProtector() {
252 bool Strong = false;
253 bool NeedsProtector = false;
254 HasPrologue = findStackProtectorIntrinsic(*F);
255
256 if (F->hasFnAttribute(Attribute::SafeStack))
257 return false;
258
259 // We are constructing the OptimizationRemarkEmitter on the fly rather than
260 // using the analysis pass to avoid building DominatorTree and LoopInfo which
261 // are not available this late in the IR pipeline.
262 OptimizationRemarkEmitter ORE(F);
263
264 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
265 ORE.emit([&]() {
266 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
267 << "Stack protection applied to function "
268 << ore::NV("Function", F)
269 << " due to a function attribute or command-line switch";
270 });
271 NeedsProtector = true;
272 Strong = true; // Use the same heuristic as strong to determine SSPLayout
273 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
274 Strong = true;
275 else if (HasPrologue)
276 NeedsProtector = true;
277 else if (!F->hasFnAttribute(Attribute::StackProtect))
278 return false;
279
280 for (const BasicBlock &BB : *F) {
281 for (const Instruction &I : BB) {
282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
283 if (AI->isArrayAllocation()) {
284 auto RemarkBuilder = [&]() {
285 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
286 &I)
287 << "Stack protection applied to function "
288 << ore::NV("Function", F)
289 << " due to a call to alloca or use of a variable length "
290 "array";
291 };
292 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
293 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
294 // A call to alloca with size >= SSPBufferSize requires
295 // stack protectors.
296 Layout.insert(std::make_pair(AI,
297 MachineFrameInfo::SSPLK_LargeArray));
298 ORE.emit(RemarkBuilder);
299 NeedsProtector = true;
300 } else if (Strong) {
301 // Require protectors for all alloca calls in strong mode.
302 Layout.insert(std::make_pair(AI,
303 MachineFrameInfo::SSPLK_SmallArray));
304 ORE.emit(RemarkBuilder);
305 NeedsProtector = true;
306 }
307 } else {
308 // A call to alloca with a variable size requires protectors.
309 Layout.insert(std::make_pair(AI,
310 MachineFrameInfo::SSPLK_LargeArray));
311 ORE.emit(RemarkBuilder);
312 NeedsProtector = true;
313 }
314 continue;
315 }
316
317 bool IsLarge = false;
318 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
319 Layout.insert(std::make_pair(AI, IsLarge
320 ? MachineFrameInfo::SSPLK_LargeArray
321 : MachineFrameInfo::SSPLK_SmallArray));
322 ORE.emit([&]() {
323 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
324 << "Stack protection applied to function "
325 << ore::NV("Function", F)
326 << " due to a stack allocated buffer or struct containing a "
327 "buffer";
328 });
329 NeedsProtector = true;
330 continue;
331 }
332
333 if (Strong && HasAddressTaken(AI)) {
334 ++NumAddrTaken;
335 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
336 ORE.emit([&]() {
337 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
338 &I)
339 << "Stack protection applied to function "
340 << ore::NV("Function", F)
341 << " due to the address of a local variable being taken";
342 });
343 NeedsProtector = true;
344 }
345 }
346 }
347 }
348
349 return NeedsProtector;
350 }
351
352 /// Create a stack guard loading and populate whether SelectionDAG SSP is
353 /// supported.
getStackGuard(const TargetLoweringBase * TLI,Module * M,IRBuilder<> & B,bool * SupportsSelectionDAGSP=nullptr)354 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
355 IRBuilder<> &B,
356 bool *SupportsSelectionDAGSP = nullptr) {
357 if (Value *Guard = TLI->getIRStackGuard(B))
358 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
359
360 // Use SelectionDAG SSP handling, since there isn't an IR guard.
361 //
362 // This is more or less weird, since we optionally output whether we
363 // should perform a SelectionDAG SP here. The reason is that it's strictly
364 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
365 // mutating. There is no way to get this bit without mutating the IR, so
366 // getting this bit has to happen in this right time.
367 //
368 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
369 // will put more burden on the backends' overriding work, especially when it
370 // actually conveys the same information getIRStackGuard() already gives.
371 if (SupportsSelectionDAGSP)
372 *SupportsSelectionDAGSP = true;
373 TLI->insertSSPDeclarations(*M);
374 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
375 }
376
377 /// Insert code into the entry block that stores the stack guard
378 /// variable onto the stack:
379 ///
380 /// entry:
381 /// StackGuardSlot = alloca i8*
382 /// StackGuard = <stack guard>
383 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
384 ///
385 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
386 /// node.
CreatePrologue(Function * F,Module * M,ReturnInst * RI,const TargetLoweringBase * TLI,AllocaInst * & AI)387 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
388 const TargetLoweringBase *TLI, AllocaInst *&AI) {
389 bool SupportsSelectionDAGSP = false;
390 IRBuilder<> B(&F->getEntryBlock().front());
391 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
392 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
393
394 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
395 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
396 {GuardSlot, AI});
397 return SupportsSelectionDAGSP;
398 }
399
400 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
401 /// function.
402 ///
403 /// - The prologue code loads and stores the stack guard onto the stack.
404 /// - The epilogue checks the value stored in the prologue against the original
405 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()406 bool StackProtector::InsertStackProtectors() {
407 // If the target wants to XOR the frame pointer into the guard value, it's
408 // impossible to emit the check in IR, so the target *must* support stack
409 // protection in SDAG.
410 bool SupportsSelectionDAGSP =
411 TLI->useStackGuardXorFP() ||
412 (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
413 !TM->Options.EnableGlobalISel);
414 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
415
416 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
417 BasicBlock *BB = &*I++;
418 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
419 if (!RI)
420 continue;
421
422 // Generate prologue instrumentation if not already generated.
423 if (!HasPrologue) {
424 HasPrologue = true;
425 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
426 }
427
428 // SelectionDAG based code generation. Nothing else needs to be done here.
429 // The epilogue instrumentation is postponed to SelectionDAG.
430 if (SupportsSelectionDAGSP)
431 break;
432
433 // Find the stack guard slot if the prologue was not created by this pass
434 // itself via a previous call to CreatePrologue().
435 if (!AI) {
436 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
437 assert(SPCall && "Call to llvm.stackprotector is missing");
438 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
439 }
440
441 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
442 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
443 // instrumentation has already been generated.
444 HasIRCheck = true;
445
446 // Generate epilogue instrumentation. The epilogue intrumentation can be
447 // function-based or inlined depending on which mechanism the target is
448 // providing.
449 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
450 // Generate the function-based epilogue instrumentation.
451 // The target provides a guard check function, generate a call to it.
452 IRBuilder<> B(RI);
453 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
454 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
455 Call->setAttributes(GuardCheck->getAttributes());
456 Call->setCallingConv(GuardCheck->getCallingConv());
457 } else {
458 // Generate the epilogue with inline instrumentation.
459 // If we do not support SelectionDAG based tail calls, generate IR level
460 // tail calls.
461 //
462 // For each block with a return instruction, convert this:
463 //
464 // return:
465 // ...
466 // ret ...
467 //
468 // into this:
469 //
470 // return:
471 // ...
472 // %1 = <stack guard>
473 // %2 = load StackGuardSlot
474 // %3 = cmp i1 %1, %2
475 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
476 //
477 // SP_return:
478 // ret ...
479 //
480 // CallStackCheckFailBlk:
481 // call void @__stack_chk_fail()
482 // unreachable
483
484 // Create the FailBB. We duplicate the BB every time since the MI tail
485 // merge pass will merge together all of the various BB into one including
486 // fail BB generated by the stack protector pseudo instruction.
487 BasicBlock *FailBB = CreateFailBB();
488
489 // Split the basic block before the return instruction.
490 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
491
492 // Update the dominator tree if we need to.
493 if (DT && DT->isReachableFromEntry(BB)) {
494 DT->addNewBlock(NewBB, BB);
495 DT->addNewBlock(FailBB, BB);
496 }
497
498 // Remove default branch instruction to the new BB.
499 BB->getTerminator()->eraseFromParent();
500
501 // Move the newly created basic block to the point right after the old
502 // basic block so that it's in the "fall through" position.
503 NewBB->moveAfter(BB);
504
505 // Generate the stack protector instructions in the old basic block.
506 IRBuilder<> B(BB);
507 Value *Guard = getStackGuard(TLI, M, B);
508 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
509 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
510 auto SuccessProb =
511 BranchProbabilityInfo::getBranchProbStackProtector(true);
512 auto FailureProb =
513 BranchProbabilityInfo::getBranchProbStackProtector(false);
514 MDNode *Weights = MDBuilder(F->getContext())
515 .createBranchWeights(SuccessProb.getNumerator(),
516 FailureProb.getNumerator());
517 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
518 }
519 }
520
521 // Return if we didn't modify any basic blocks. i.e., there are no return
522 // statements in the function.
523 return HasPrologue;
524 }
525
526 /// CreateFailBB - Create a basic block to jump to when the stack protector
527 /// check fails.
CreateFailBB()528 BasicBlock *StackProtector::CreateFailBB() {
529 LLVMContext &Context = F->getContext();
530 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
531 IRBuilder<> B(FailBB);
532 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
533 if (Trip.isOSOpenBSD()) {
534 FunctionCallee StackChkFail = M->getOrInsertFunction(
535 "__stack_smash_handler", Type::getVoidTy(Context),
536 Type::getInt8PtrTy(Context));
537
538 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
539 } else {
540 FunctionCallee StackChkFail =
541 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
542
543 B.CreateCall(StackChkFail, {});
544 }
545 B.CreateUnreachable();
546 return FailBB;
547 }
548
shouldEmitSDCheck(const BasicBlock & BB) const549 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
550 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
551 }
552
copyToMachineFrameInfo(MachineFrameInfo & MFI) const553 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
554 if (Layout.empty())
555 return;
556
557 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
558 if (MFI.isDeadObjectIndex(I))
559 continue;
560
561 const AllocaInst *AI = MFI.getObjectAllocation(I);
562 if (!AI)
563 continue;
564
565 SSPLayoutMap::const_iterator LI = Layout.find(AI);
566 if (LI == Layout.end())
567 continue;
568
569 MFI.setObjectSSPLayout(I, LI->second);
570 }
571 }
572